File size: 11,457 Bytes
e9740df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import gradio as gr
import pathlib
import base64
import re
import time
from io import BytesIO
import imgkit
import os
from PIL import Image
from fastai.callback.core import Callback
from fastai.learner import *
from fastai.torch_core import TitledStr
from torch import tensor, Tensor
from torch.distributions import Transform
import random
# These utility functions need to be in main (or otherwise where created) because fastai loads from that module, see:
# https://docs.fast.ai/learner.html#load_learner
from transformers import GPT2TokenizerFast
import torch
from diffusers import DiffusionPipeline
gpu = False
AUTH_TOKEN = os.environ.get('AUTH_TOKEN')
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_mega", torch_dtype=torch.float16, revision="fp16", use_auth_token=AUTH_TOKEN)
if gpu:
pipeline.to("cuda")
# Huggingface Spaces have 16GB RAM and 8 CPU cores
# See https://huggingface.co/docs/hub/spaces-overview#hardware-resources
pretrained_weights = 'gpt2'
tokenizer = GPT2TokenizerFast.from_pretrained(pretrained_weights)
def tokenize(text):
toks = tokenizer.tokenize(text)
return tensor(tokenizer.convert_tokens_to_ids(toks))
class TransformersTokenizer(Transform):
def __init__(self, tokenizer): self.tokenizer = tokenizer
def encodes(self, x):
return x if isinstance(x, Tensor) else tokenize(x)
def decodes(self, x): return TitledStr(self.tokenizer.decode(x.cpu().numpy()))
class DropOutput(Callback):
def after_pred(self): self.learn.pred = self.pred[0]
def gen_card_text(name):
if name == '':
prompt = f"Name: {random.choice('ABCDEFGHIJKLMNOPQRSTUVWXYZ')}"
else:
prompt = f"Name: {name}\r\n"
print(f'GENERATING CARD TEXT with prompt: {prompt}')
prompt_ids = tokenizer.encode(prompt)
if gpu:
inp = tensor(prompt_ids)[None].cuda() # Use .cuda() for torch GPU
else:
inp = tensor(prompt_ids)[None]
preds = learner.model.generate(inp, max_length=512, num_beams=5, temperature=1.5, do_sample=True,
repetition_penalty=1.2)
result = tokenizer.decode(preds[0].cpu().numpy())
result = result.split('###')[0].replace(r'\r\n', '\n').replace('\r', '').replace(r'\r', '')
print(f'GENERATING CARD COMPLETE')
print(result)
if name == '':
pattern = re.compile('Name: (.*)')
name = pattern.findall(result)[0]
return name, result
# init only once
learner = load_learner('./colab-data-test/export.pkl',
cpu=not gpu) # cpu=False uses GPU; make sure installed torch is GPU e.g. `pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116`
pathlib.Path('card_data').mkdir(parents=True, exist_ok=True)
pathlib.Path('card_images').mkdir(parents=True, exist_ok=True)
pathlib.Path('card_html').mkdir(parents=True, exist_ok=True)
pathlib.Path('rendered_cards').mkdir(parents=True, exist_ok=True)
def run(name):
start = time.time()
print(f'BEGINNING RUN FOR {name}')
name, text = gen_card_text(name)
save_name = get_savename('card_data', name, 'txt')
pathlib.Path(f'card_data/{save_name}').write_text(text, encoding='utf-8')
pattern = re.compile('Type: (.*)')
card_type = pattern.findall(text)[0]
prompt_template = f"fantasy illustration of a {card_type} {name}, by Greg Rutkowski"
print(f"GENERATING IMAGE FOR {prompt_template}")
# Regarding sizing see https://huggingface.co/blog/stable_diffusion#:~:text=When%20choosing%20image%20sizes%2C%20we%20advise%20the%20following%3A
images = pipeline.text2img(prompt_template, width=512, height=368).images
card_image = None
for image in images:
save_name = get_savename('card_images', name, 'png')
image.save(f"card_images/{save_name}")
card_image = image
image_data = pil_to_base64(card_image)
html = format_html(text, image_data)
save_name = get_savename('card_html', name, 'html')
pathlib.Path(f'card_html/{save_name}').write_text(html, encoding='utf-8')
rendered = html_to_png(name, html)
end = time.time()
print(f'RUN COMPLETED IN {int(end - start)} seconds')
return rendered, text, card_image, html
def pil_to_base64(image):
print('CONVERTING PIL IMAGE TO BASE64 STRING')
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue())
print('CONVERTING PIL IMAGE TO BASE64 STRING COMPLETE')
return img_str
def format_html(text, image_data):
template = pathlib.Path("colab-data-test/card_template.html").read_text(encoding='utf-8')
if "['U']" in text:
template = template.replace("{card_color}", 'style="background-color:#5a73ab"')
elif "['W']" in text:
template = template.replace("{card_color}", 'style="background-color:#f0e3d0"')
elif "['G']" in text:
template = template.replace("{card_color}", 'style="background-color:#325433"')
elif "['B']" in text:
template = template.replace("{card_color}", 'style="background-color:#1a1b1e"')
elif "['R']" in text:
template = template.replace("{card_color}", 'style="background-color:#c2401c"')
elif "Type: Land" in text:
template = template.replace("{card_color}", 'style="background-color:#aa8c71"')
elif "Type: Artifact" in text:
template = template.replace("{card_color}", 'style="background-color:#9ba7bc"')
else:
template = template.replace("{card_color}", 'style="background-color:#edd99d"')
pattern = re.compile('Name: (.*)')
name = pattern.findall(text)[0]
template = template.replace("{name}", name)
pattern = re.compile('ManaCost: (.*)')
mana_cost = pattern.findall(text)[0]
if mana_cost == "None":
template = template.replace("{mana_cost}", '<i class="ms ms-cost" style="visibility: hidden"></i>')
else:
symbols = []
for c in mana_cost:
if c in {"{", "}"}:
continue
else:
symbols.append(c.lower())
formatted_symbols = []
for s in symbols:
formatted_symbols.append(f'<i class="ms ms-{s} ms-cost ms-shadow"></i>')
template = template.replace("{mana_cost}", "\n".join(formatted_symbols[::-1]))
if not isinstance(image_data, (bytes, bytearray)):
template = template.replace('{image_data}', f'{image_data}')
else:
template = template.replace('{image_data}', f'data:image/png;base64,{image_data.decode("utf-8")}')
pattern = re.compile('Type: (.*)')
card_type = pattern.findall(text)[0]
template = template.replace("{card_type}", card_type)
if len(card_type) > 30:
template = template.replace("{type_size}", "16")
else:
template = template.replace("{type_size}", "18")
pattern = re.compile('Rarity: (.*)')
rarity = pattern.findall(text)[0]
template = template.replace("{rarity}", f"ss-{rarity}")
pattern = re.compile('Text: (.*)\nFlavorText', re.MULTILINE | re.DOTALL)
card_text = pattern.findall(text)[0]
text_lines = []
for line in card_text.splitlines():
line = line.replace('{T}', '<i class="ms ms-tap ms-cost" style="top:0px;float:none;height: 18px;width: 18px;font-size: 13px;"></i>')
line = line.replace('{UT}', '<i class="ms ms-untap ms-cost" style="top:0px;float:none;height: 18px;width: 18px;font-size: 13px;"></i>')
line = line.replace('{E}', '<i class="ms ms-instant ms-cost" style="top:0px;float:none;height: 18px;width: 18px;font-size: 13px;"></i>')
line = re.sub(r"{(.*?)}", r'<i class="ms ms-\1 ms-cost" style="top:0px;float:none;height: 18px;width: 18px;font-size: 13px;"></i>'.lower(), line)
line = re.sub(r"ms-(.)/(.)", r'<i class="ms ms-\1\2 ms-cost" style="top:0px;float:none;height: 18px;width: 18px;font-size: 13px;"></i>'.lower(), line)
line = line.replace('(', '(<i>').replace(')', '</i>)')
text_lines.append(f"<p>{line}</p>")
template = template.replace("{card_text}", "\n".join(text_lines))
pattern = re.compile('FlavorText: (.*)\nPower', re.MULTILINE | re.DOTALL)
flavor_text = pattern.findall(text)
if flavor_text:
flavor_text = flavor_text[0]
flavor_text_lines = []
for line in flavor_text.splitlines():
flavor_text_lines.append(f"<p>{line}</p>")
template = template.replace("{flavor_text}", "<blockquote>" + "\n".join(flavor_text_lines) + "</blockquote>")
else:
template = template.replace("{flavor_text}", "")
if len(card_text) + len(flavor_text or '') > 170 or len(text_lines) > 3:
template = template.replace("{text_size}", '16')
template = template.replace('ms-cost" style="top:0px;float:none;height: 18px;width: 18px;font-size: 13px;"></i>',
'ms-cost" style="top:0px;float:none;height: 16px;width: 16px;font-size: 11px;"></i>')
else:
template = template.replace("{text_size}", '18')
pattern = re.compile('Power: (.*)')
power = pattern.findall(text)
if power:
power = power[0]
if not power:
template = template.replace("{power_toughness}", "")
pattern = re.compile('Toughness: (.*)')
toughness = pattern.findall(text)[0]
template = template.replace("{power_toughness}", f'<header class="powerToughness"><div><h2 style="font-family: \'Beleren\';font-size: 19px;">{power}/{toughness}</h2></div></header>')
else:
template = template.replace("{power_toughness}", "")
pathlib.Path("test.html").write_text(template, encoding='utf-8')
return template
def get_savename(directory, name, extension):
save_name = f"{name}.{extension}"
i = 1
while os.path.exists(os.path.join(directory, save_name)):
save_name = save_name.replace(f'.{extension}', '').split('-')[0] + f"-{i}.{extension}"
i += 1
return save_name
def html_to_png(card_name, html):
save_name = get_savename('rendered_cards', card_name, 'png')
print('CONVERTING HTML CARD TO PNG IMAGE')
path = os.path.join('rendered_cards', save_name)
try:
css = ['./colab-data-test/css/mana.css', './colab-data-test/css/keyrune.css', './colab-data-test/css/mtg_custom.css']
imgkit.from_string(html, path, {"xvfb": ""}, css=css)
except:
pass
print('OPENING IMAGE FROM FILE')
img = Image.open(path)
print('CROPPING BACKGROUND')
area = (0, 50, 400, 600)
cropped_img = img.crop(area)
cropped_img.resize((400, 550))
cropped_img.save(os.path.join(path))
print('CONVERTING HTML CARD TO PNG IMAGE COMPLETE')
return cropped_img.convert('RGB')
app_description = (
"""
# Create your own Magic: The Gathering cards!
Enter a name, click Submit, and wait for about 20 seconds to see the result.
""").strip()
input_box = gr.Textbox(label="Enter a card name", placeholder="Firebolt")
rendered_card = gr.Image(label="Card", type='pil')
output_text_box = gr.Textbox(label="Card Text")
output_card_image = gr.Image(label="Card Image", type='pil')
output_card_html = gr.HTML(label="Card HTML", visible=False, show_label=False)
x = gr.components.Textbox()
iface = gr.Interface(title="MagicGen", theme="default", description=app_description, fn=run, inputs=[input_box],
outputs=[rendered_card, output_text_box, output_card_image, output_card_html])
iface.launch()
|