File size: 11,457 Bytes
e9740df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import gradio as gr

import pathlib
import base64
import re
import time
from io import BytesIO

import imgkit
import os
from PIL import Image
from fastai.callback.core import Callback
from fastai.learner import *
from fastai.torch_core import TitledStr
from torch import tensor, Tensor
from torch.distributions import Transform
import random

# These utility functions need to be in main (or otherwise where created) because fastai loads from that module, see:
# https://docs.fast.ai/learner.html#load_learner
from transformers import GPT2TokenizerFast

import torch
from diffusers import DiffusionPipeline

gpu = False

AUTH_TOKEN = os.environ.get('AUTH_TOKEN')

pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_mega", torch_dtype=torch.float16, revision="fp16", use_auth_token=AUTH_TOKEN)

if gpu:
    pipeline.to("cuda")


# Huggingface Spaces have 16GB RAM and 8 CPU cores
# See https://huggingface.co/docs/hub/spaces-overview#hardware-resources

pretrained_weights = 'gpt2'
tokenizer = GPT2TokenizerFast.from_pretrained(pretrained_weights)


def tokenize(text):
    toks = tokenizer.tokenize(text)
    return tensor(tokenizer.convert_tokens_to_ids(toks))


class TransformersTokenizer(Transform):
    def __init__(self, tokenizer): self.tokenizer = tokenizer

    def encodes(self, x):
        return x if isinstance(x, Tensor) else tokenize(x)

    def decodes(self, x): return TitledStr(self.tokenizer.decode(x.cpu().numpy()))


class DropOutput(Callback):
    def after_pred(self): self.learn.pred = self.pred[0]


def gen_card_text(name):
    if name == '':
      prompt = f"Name: {random.choice('ABCDEFGHIJKLMNOPQRSTUVWXYZ')}"
    else:
      prompt = f"Name: {name}\r\n"
    print(f'GENERATING CARD TEXT with prompt: {prompt}')
    prompt_ids = tokenizer.encode(prompt)
    if gpu:
        inp = tensor(prompt_ids)[None].cuda()  # Use .cuda() for torch GPU
    else:
        inp = tensor(prompt_ids)[None]
    preds = learner.model.generate(inp, max_length=512, num_beams=5, temperature=1.5, do_sample=True,
                                   repetition_penalty=1.2)
    result = tokenizer.decode(preds[0].cpu().numpy())
    result = result.split('###')[0].replace(r'\r\n', '\n').replace('\r', '').replace(r'\r', '')
    print(f'GENERATING CARD COMPLETE')
    print(result)
    if name == '':
      pattern = re.compile('Name: (.*)')
      name = pattern.findall(result)[0]
    return name, result


# init only once
learner = load_learner('./colab-data-test/export.pkl',
                       cpu=not gpu)  # cpu=False uses GPU; make sure installed torch is GPU e.g. `pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116`

pathlib.Path('card_data').mkdir(parents=True, exist_ok=True)
pathlib.Path('card_images').mkdir(parents=True, exist_ok=True)
pathlib.Path('card_html').mkdir(parents=True, exist_ok=True)
pathlib.Path('rendered_cards').mkdir(parents=True, exist_ok=True)


def run(name):
    start = time.time()
    print(f'BEGINNING RUN FOR {name}')
    name, text = gen_card_text(name)
    save_name = get_savename('card_data', name, 'txt')
    pathlib.Path(f'card_data/{save_name}').write_text(text, encoding='utf-8')

    pattern = re.compile('Type: (.*)')
    card_type = pattern.findall(text)[0]
    prompt_template = f"fantasy illustration of a {card_type} {name}, by Greg Rutkowski"
    print(f"GENERATING IMAGE FOR {prompt_template}")
    # Regarding sizing see https://huggingface.co/blog/stable_diffusion#:~:text=When%20choosing%20image%20sizes%2C%20we%20advise%20the%20following%3A
    images = pipeline.text2img(prompt_template, width=512, height=368).images
    card_image = None
    for image in images:
        save_name = get_savename('card_images', name, 'png')
        image.save(f"card_images/{save_name}")
        card_image = image

    image_data = pil_to_base64(card_image)
    html = format_html(text, image_data)
    save_name = get_savename('card_html', name, 'html')
    pathlib.Path(f'card_html/{save_name}').write_text(html, encoding='utf-8')
    rendered = html_to_png(name, html)

    end = time.time()
    print(f'RUN COMPLETED IN {int(end - start)} seconds')
    return rendered, text, card_image, html


def pil_to_base64(image):
    print('CONVERTING PIL IMAGE TO BASE64 STRING')
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue())
    print('CONVERTING PIL IMAGE TO BASE64 STRING COMPLETE')
    return img_str


def format_html(text, image_data):
    template = pathlib.Path("colab-data-test/card_template.html").read_text(encoding='utf-8')
    if "['U']" in text:
        template = template.replace("{card_color}", 'style="background-color:#5a73ab"')
    elif "['W']" in text:
        template = template.replace("{card_color}", 'style="background-color:#f0e3d0"')
    elif "['G']" in text:
        template = template.replace("{card_color}", 'style="background-color:#325433"')
    elif "['B']" in text:
        template = template.replace("{card_color}", 'style="background-color:#1a1b1e"')
    elif "['R']" in text:
        template = template.replace("{card_color}", 'style="background-color:#c2401c"')
    elif "Type: Land" in text:
        template = template.replace("{card_color}", 'style="background-color:#aa8c71"')
    elif "Type: Artifact" in text:
        template = template.replace("{card_color}", 'style="background-color:#9ba7bc"')
    else:
        template = template.replace("{card_color}", 'style="background-color:#edd99d"')
    pattern = re.compile('Name: (.*)')
    name = pattern.findall(text)[0]
    template = template.replace("{name}", name)
    pattern = re.compile('ManaCost: (.*)')
    mana_cost = pattern.findall(text)[0]
    if mana_cost == "None":
        template = template.replace("{mana_cost}", '<i class="ms ms-cost" style="visibility: hidden"></i>')
    else:
        symbols = []
        for c in mana_cost:
            if c in {"{", "}"}:
                continue
            else:
                symbols.append(c.lower())
        formatted_symbols = []
        for s in symbols:
            formatted_symbols.append(f'<i class="ms ms-{s} ms-cost ms-shadow"></i>')
        template = template.replace("{mana_cost}", "\n".join(formatted_symbols[::-1]))
    if not isinstance(image_data, (bytes, bytearray)):
        template = template.replace('{image_data}', f'{image_data}')
    else:
        template = template.replace('{image_data}', f'data:image/png;base64,{image_data.decode("utf-8")}')
    pattern = re.compile('Type: (.*)')
    card_type = pattern.findall(text)[0]
    template = template.replace("{card_type}", card_type)
    if len(card_type) > 30:
        template = template.replace("{type_size}", "16")
    else:
        template = template.replace("{type_size}", "18")
    pattern = re.compile('Rarity: (.*)')
    rarity = pattern.findall(text)[0]
    template = template.replace("{rarity}", f"ss-{rarity}")
    pattern = re.compile('Text: (.*)\nFlavorText', re.MULTILINE | re.DOTALL)
    card_text = pattern.findall(text)[0]
    text_lines = []
    for line in card_text.splitlines():
        line = line.replace('{T}', '<i class="ms ms-tap ms-cost" style="top:0px;float:none;height: 18px;width: 18px;font-size: 13px;"></i>')
        line = line.replace('{UT}', '<i class="ms ms-untap ms-cost" style="top:0px;float:none;height: 18px;width: 18px;font-size: 13px;"></i>')
        line = line.replace('{E}', '<i class="ms ms-instant ms-cost" style="top:0px;float:none;height: 18px;width: 18px;font-size: 13px;"></i>')
        line = re.sub(r"{(.*?)}", r'<i class="ms ms-\1 ms-cost" style="top:0px;float:none;height: 18px;width: 18px;font-size: 13px;"></i>'.lower(), line)
        line = re.sub(r"ms-(.)/(.)", r'<i class="ms ms-\1\2 ms-cost" style="top:0px;float:none;height: 18px;width: 18px;font-size: 13px;"></i>'.lower(), line)
        line = line.replace('(', '(<i>').replace(')', '</i>)')
        text_lines.append(f"<p>{line}</p>")
    template = template.replace("{card_text}", "\n".join(text_lines))
    pattern = re.compile('FlavorText: (.*)\nPower', re.MULTILINE | re.DOTALL)
    flavor_text = pattern.findall(text)
    if flavor_text:
        flavor_text = flavor_text[0]
        flavor_text_lines = []
        for line in flavor_text.splitlines():
            flavor_text_lines.append(f"<p>{line}</p>")
        template = template.replace("{flavor_text}", "<blockquote>" + "\n".join(flavor_text_lines) + "</blockquote>")
    else:
        template = template.replace("{flavor_text}", "")
    if len(card_text) + len(flavor_text or '') > 170 or len(text_lines) > 3:
        template = template.replace("{text_size}", '16')
        template = template.replace('ms-cost" style="top:0px;float:none;height: 18px;width: 18px;font-size: 13px;"></i>',
                                    'ms-cost" style="top:0px;float:none;height: 16px;width: 16px;font-size: 11px;"></i>')
    else:
        template = template.replace("{text_size}", '18')
    pattern = re.compile('Power: (.*)')
    power = pattern.findall(text)
    if power:
        power = power[0]
        if not power:
            template = template.replace("{power_toughness}", "")
        pattern = re.compile('Toughness: (.*)')
        toughness = pattern.findall(text)[0]
        template = template.replace("{power_toughness}", f'<header class="powerToughness"><div><h2 style="font-family: \'Beleren\';font-size: 19px;">{power}/{toughness}</h2></div></header>')
    else:
        template = template.replace("{power_toughness}", "")
    pathlib.Path("test.html").write_text(template, encoding='utf-8')
    return template


def get_savename(directory, name, extension):
    save_name = f"{name}.{extension}"
    i = 1
    while os.path.exists(os.path.join(directory, save_name)):
        save_name = save_name.replace(f'.{extension}', '').split('-')[0] + f"-{i}.{extension}"
        i += 1
    return save_name


def html_to_png(card_name, html):
    save_name = get_savename('rendered_cards', card_name, 'png')
    print('CONVERTING HTML CARD TO PNG IMAGE')

    path = os.path.join('rendered_cards', save_name)
    try:
      css = ['./colab-data-test/css/mana.css', './colab-data-test/css/keyrune.css', './colab-data-test/css/mtg_custom.css']
      imgkit.from_string(html, path, {"xvfb": ""}, css=css)
    except:
      pass
    print('OPENING IMAGE FROM FILE')
    img = Image.open(path)
    print('CROPPING BACKGROUND')
    area = (0, 50, 400, 600)
    cropped_img = img.crop(area)
    cropped_img.resize((400, 550))
    cropped_img.save(os.path.join(path))
    print('CONVERTING HTML CARD TO PNG IMAGE COMPLETE')
    return cropped_img.convert('RGB')


app_description = (
    """
    # Create your own Magic: The Gathering cards!
    Enter a name, click Submit, and wait for about 20 seconds to see the result.
    """).strip()
input_box = gr.Textbox(label="Enter a card name", placeholder="Firebolt")
rendered_card = gr.Image(label="Card", type='pil')
output_text_box = gr.Textbox(label="Card Text")
output_card_image = gr.Image(label="Card Image", type='pil')
output_card_html = gr.HTML(label="Card HTML", visible=False, show_label=False)
x = gr.components.Textbox()
iface = gr.Interface(title="MagicGen", theme="default", description=app_description, fn=run, inputs=[input_box],
                     outputs=[rendered_card, output_text_box, output_card_image, output_card_html])

iface.launch()