Spaces:
Runtime error
Runtime error
"Задание 3" | |
import gradio as gr | |
import numpy as np | |
import torch | |
import espeakng | |
import sentencepiece | |
from datasets import load_dataset | |
from transformers import pipeline, MarianMTModel, MarianTokenizer, VitsModel, VitsTokenizer | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
import phonemizer | |
model_wav2vec = 'facebook/wav2vec2-lv-60-espeak-cv-ft' | |
asr_pipe = pipeline("automatic-speech-recognition", model=model_wav2vec, device=device) | |
# from speech to text | |
def translate_audio(audio): | |
outputs = asr_pipe(audio, max_new_tokens=256, | |
generate_kwargs={"task": "translate"}) | |
return outputs["text"] | |
# translation | |
def translate_text(text, from_language, target_language): #to English -mul en, to Russian - en ru | |
model_name = f'Helsinki-NLP/opus-mt-{from_language}-{target_language}' | |
tokenizer = MarianTokenizer.from_pretrained(model_name) | |
model = MarianMTModel.from_pretrained(model_name) | |
inputs = tokenizer.encode(text, return_tensors="pt") | |
outputs = model.generate(inputs, num_beams=4, max_length=50, early_stopping=True) | |
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return translated_text | |
# load text-to-speech checkpoint | |
#model = pipeline("text-to-speech", model="voxxer/speecht5_finetuned_commonvoice_ru_translit") | |
model = VitsModel.from_pretrained("voxxer/speecht5_finetuned_commonvoice_ru_translit") | |
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-rus") | |
def synthesise(text): | |
translated_text = translate_text(text, 'mul', 'en') | |
translated_text = translate_text(translate_text, 'en', 'ru') | |
inputs = tokenizer(translated_text, return_tensors="pt") | |
input_ids = inputs["input_ids"] | |
with torch.no_grad(): | |
outputs = model(input_ids) | |
speech = outputs["waveform"] | |
return speech.cpu() | |
def speech_to_speech_translation(audio): | |
text_from_audio = translate_audio(audio) | |
print(translated_text) | |
synthesised_speech = synthesise(text_from_audio) | |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
return 16000, synthesised_speech[0] | |
title = "Cascaded STST" | |
description = """ | |
* В начале происходит распознавание речи с помощью модели facebook/wav2vec2-lv-60-espeak-cv-ft и на выходе получается текст на любом из 60 языков. | |
* Затем полученный текст переводится сначала на английский с помощью Helsinki-NLP/opus-mt-mul-en, а потом на русский с помощью Helsinki-NLP/opus-mt-en-ru | |
* На последнем шаге полученный текст озвучивается с помощью fine-tune-говой версии microsoft/speecht5_tts - voxxer/speecht5_finetuned_commonvoice_ru_translit | |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Russian. Demo uses facebook/mms-tts-rus model for text-to-speech: | |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") | |
""" | |
demo = gr.Blocks() | |
mic_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
title=title, | |
description=description, | |
) | |
file_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
examples=[["./example.wav"]], | |
title=title, | |
description=description, | |
) | |
with demo: | |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
demo.launch() | |