Spaces:
Runtime error
Runtime error
"Задание 3" | |
import gradio as gr | |
import numpy as np | |
import torch | |
from transformers import pipeline, MarianMTModel, MarianTokenizer, VitsModel, VitsTokenizer | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
import phonemizer | |
# variants: 'voidful/wav2vec2-xlsr-multilingual-56'; facebook/wav2vec2-lv-60-espeak-cv-ft, но здесь не загружается библиотека py-espeak-ng | |
model_wav2vec = 'openai/whisper-small' | |
asr_pipe = pipeline("automatic-speech-recognition", model=model_wav2vec, device=device) | |
# load speech-to-text checkpoint | |
def translate_audio(audio): | |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) | |
return outputs["text"] | |
# translation into Russian | |
def translate_text(text): | |
# to English - mul en, to Russian - en ru | |
model_mul_en = pipeline("translation", model = "Helsinki-NLP/opus-mt-mul-en") | |
model_en_ru = pipeline("translation", model = "Helsinki-NLP/opus-mt-en-ru") | |
translated_text = model_en_ru(model_mul_en(text)[0]['translation_text']) | |
return translated_text[0]['translation_text'] | |
# load text-to-speech checkpoint | |
model = VitsModel.from_pretrained("facebook/mms-tts-rus") | |
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-rus") | |
def synthesise(text): | |
translated_text = translate_text(text) | |
inputs = tokenizer(translated_text, return_tensors="pt") | |
input_ids = inputs["input_ids"] | |
with torch.no_grad(): | |
outputs = model(input_ids) | |
speech = outputs["waveform"] | |
return speech.cpu() | |
def speech_to_speech_translation(audio): | |
text_from_audio = translate_audio(audio) | |
synthesised_speech = synthesise(text_from_audio) | |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
return 16000, synthesised_speech[0] | |
title = "Cascaded STST. **Russian** language version" | |
description = """ | |
* В начале происходит распознавание речи с помощью модели `openai/whisper-small`. | |
* Затем полученный текст переводится сначала на английский с помощью `Helsinki-NLP/opus-mt-mul-en`, а потом на русский с помощью `Helsinki-NLP/opus-mt-en-ru`. | |
* На последнем шаге полученный текст озвучивается с помощью модели `facebook/mms-tts-rus model`. | |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Russian. | |
Demo uses `openai/whisper-small` for speech-to-text and `facebook/mms-tts-rus model` for text-to-speech: | |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") | |
""" | |
demo = gr.Blocks() | |
mic_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
title=title, | |
description=description, | |
) | |
file_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
examples=[["./example.wav"]], | |
title=title, | |
description=description, | |
) | |
with demo: | |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
demo.launch() | |