"Задание 3" import gradio as gr import numpy as np import torch import espeakng import sentencepiece from datasets import load_dataset from transformers import pipeline, MarianMTModel, MarianTokenizer, VitsModel, VitsTokenizer device = "cuda:0" if torch.cuda.is_available() else "cpu" import phonemizer model_wav2vec = 'facebook/wav2vec2-lv-60-espeak-cv-ft' asr_pipe = pipeline("automatic-speech-recognition", model=model_wav2vec, device=device) # from speech to text def translate_audio(audio): outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) return outputs["text"] # translation def translate_text(text, from_language, target_language): #to English -mul en, to Russian - en ru model_name = f'Helsinki-NLP/opus-mt-{from_language}-{target_language}' tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) inputs = tokenizer.encode(text, return_tensors="pt") outputs = model.generate(inputs, num_beams=4, max_length=50, early_stopping=True) translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return translated_text # load text-to-speech checkpoint #model = pipeline("text-to-speech", model="voxxer/speecht5_finetuned_commonvoice_ru_translit") model = VitsModel.from_pretrained("voxxer/speecht5_finetuned_commonvoice_ru_translit") tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-rus") def synthesise(text): translated_text = translate_text(text, 'mul', 'en') translated_text = translate_text(translate_text, 'en', 'ru') inputs = tokenizer(translated_text, return_tensors="pt") input_ids = inputs["input_ids"] with torch.no_grad(): outputs = model(input_ids) speech = outputs["waveform"] return speech.cpu() def speech_to_speech_translation(audio): text_from_audio = translate_audio(audio) print(translated_text) synthesised_speech = synthesise(text_from_audio) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech[0] title = "Cascaded STST" description = """ * В начале происходит распознавание речи с помощью модели facebook/wav2vec2-lv-60-espeak-cv-ft и на выходе получается текст на любом из 60 языков. * Затем полученный текст переводится сначала на английский с помощью Helsinki-NLP/opus-mt-mul-en, а потом на русский с помощью Helsinki-NLP/opus-mt-en-ru * На последнем шаге полученный текст озвучивается с помощью fine-tune-говой версии microsoft/speecht5_tts - voxxer/speecht5_finetuned_commonvoice_ru_translit Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Russian. Demo uses facebook/mms-tts-rus model for text-to-speech: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()