import gradio as gr import torch from diffusers import AutoencoderKL, TCDScheduler from diffusers.models.model_loading_utils import load_state_dict from gradio_imageslider import ImageSlider from huggingface_hub import hf_hub_download from controlnet_union import ControlNetModel_Union from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline from PIL import Image, ImageDraw import numpy as np MODELS = { "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning", } config_file = hf_hub_download( "xinsir/controlnet-union-sdxl-1.0", filename="config_promax.json", ) config = ControlNetModel_Union.load_config(config_file) controlnet_model = ControlNetModel_Union.from_config(config) model_file = hf_hub_download( "xinsir/controlnet-union-sdxl-1.0", filename="diffusion_pytorch_model_promax.safetensors", ) state_dict = load_state_dict(model_file) model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" ) model.to(device="cpu", dtype=torch.float16) vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 ).to("cpu") pipe = StableDiffusionXLFillPipeline.from_pretrained( "SG161222/RealVisXL_V5.0_Lightning", torch_dtype=torch.float16, vae=vae, controlnet=model, variant="fp16", ).to("cpu") pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) prompt = "high quality" ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = pipe.encode_prompt(prompt, "cpu", True) """ def fill_image(image, model_selection): margin = 256 overlap = 24 # Open the original image source = image # Changed from image["background"] to match new input format # Calculate new output size output_size = (source.width + 2*margin, source.height + 2*margin) # Create a white background background = Image.new('RGB', output_size, (255, 255, 255)) # Calculate position to paste the original image position = (margin, margin) # Paste the original image onto the white background background.paste(source, position) # Create the mask mask = Image.new('L', output_size, 255) # Start with all white mask_draw = ImageDraw.Draw(mask) mask_draw.rectangle([ (position[0] + overlap, position[1] + overlap), (position[0] + source.width - overlap, position[1] + source.height - overlap) ], fill=0) # Prepare the image for ControlNet cnet_image = background.copy() cnet_image.paste(0, (0, 0), mask) for image in pipe( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, image=cnet_image, ): yield image, cnet_image image = image.convert("RGBA") cnet_image.paste(image, (0, 0), mask) yield background, cnet_image """ def infer(image, model_selection, ratio_choice, overlap_width): source = image if ratio_choice == "16:9": target_ratio = (16, 9) # Set the new target ratio to 16:9 target_width = 1280 # Adjust target width based on desired resolution overlap = overlap_width #fade_width = 24 max_height = 720 # Adjust max height instead of width # Resize the image if it's taller than max_height if source.height > max_height: scale_factor = max_height / source.height new_height = max_height new_width = int(source.width * scale_factor) source = source.resize((new_width, new_height), Image.LANCZOS) # Calculate the required width for the 16:9 ratio target_width = (source.height * target_ratio[0]) // target_ratio[1] # Calculate margins (now left and right) margin_x = (target_width - source.width) // 2 # Calculate new output size output_size = (target_width, source.height) # Create a white background background = Image.new('RGB', output_size, (255, 255, 255)) # Calculate position to paste the original image position = (margin_x, 0) # Paste the original image onto the white background background.paste(source, position) # Create the mask mask = Image.new('L', output_size, 255) # Start with all white mask_draw = ImageDraw.Draw(mask) mask_draw.rectangle([ (margin_x + overlap, overlap), (margin_x + source.width - overlap, source.height - overlap) ], fill=0) # Prepare the image for ControlNet cnet_image = background.copy() cnet_image.paste(0, (0, 0), mask) for image in pipe( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, image=cnet_image, ): yield cnet_image, image image = image.convert("RGBA") cnet_image.paste(image, (0, 0), mask) yield background, cnet_image elif ratio_choice == "9:16": target_ratio=(9, 16) target_height=1280 overlap=overlap_width #fade_width=24 max_width = 720 # Resize the image if it's wider than max_width if source.width > max_width: scale_factor = max_width / source.width new_width = max_width new_height = int(source.height * scale_factor) source = source.resize((new_width, new_height), Image.LANCZOS) # Calculate the required height for 9:16 ratio target_height = (source.width * target_ratio[1]) // target_ratio[0] # Calculate margins (only top and bottom) margin_y = (target_height - source.height) // 2 # Calculate new output size output_size = (source.width, target_height) # Create a white background background = Image.new('RGB', output_size, (255, 255, 255)) # Calculate position to paste the original image position = (0, margin_y) # Paste the original image onto the white background background.paste(source, position) # Create the mask mask = Image.new('L', output_size, 255) # Start with all white mask_draw = ImageDraw.Draw(mask) mask_draw.rectangle([ (overlap, margin_y + overlap), (source.width - overlap, margin_y + source.height - overlap) ], fill=0) # Prepare the image for ControlNet cnet_image = background.copy() cnet_image.paste(0, (0, 0), mask) for image in pipe( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, image=cnet_image, ): yield cnet_image, image image = image.convert("RGBA") cnet_image.paste(image, (0, 0), mask) yield background, cnet_image def clear_result(): return gr.update(value=None) css = """ .gradio-container { width: 1024px !important; } """ title = """

Diffusers Image Outpaint

Drop an image you would like to extend, pick your expected ratio and hit Generate.
""" with gr.Blocks(css=css) as demo: with gr.Column(): gr.HTML(title) with gr.Row(): with gr.Column(): input_image = gr.Image( type="pil", label="Input Image", sources=["upload"], ) with gr.Row(): ratio = gr.Radio( label="Expected ratio", choices=["9:16", "16:9"], value = "9:16" ) model_selection = gr.Dropdown( choices=list(MODELS.keys()), value="RealVisXL V5.0 Lightning", label="Model", ) overlap_width = gr.Slider( label="Mask overlap width", minimum = 1, maximum = 50, value = 42, step = 1 ) run_button = gr.Button("Generate") gr.Examples( examples = [ ["./examples/example_1.webp", "RealVisXL V5.0 Lightning", "16:9"], ["./examples/example_2.jpg", "RealVisXL V5.0 Lightning", "16:9"], ["./examples/example_3.jpg", "RealVisXL V5.0 Lightning", "9:16"] ], inputs = [input_image, model_selection, ratio] ) with gr.Column(): result = ImageSlider( interactive=False, label="Generated Image", ) run_button.click( fn=clear_result, inputs=None, outputs=result, ).then( fn=infer, inputs=[input_image, model_selection, ratio, overlap_width], outputs=result, ) demo.launch(share=False)