Spaces:
Runtime error
Runtime error
File size: 5,674 Bytes
2645a2e 5d63fc3 2645a2e 88004fc 2645a2e 5cee4f3 2645a2e af0c10d 5cee4f3 2645a2e af0c10d 2645a2e af0c10d 5cee4f3 6428557 2645a2e 5cee4f3 2645a2e 5d63fc3 2645a2e f576e7d 7da477e 9d70bcc 2645a2e 5cee4f3 df91e4c f576e7d 2645a2e f9f60e5 2645a2e 88004fc 5d63fc3 180c6d2 6b323b9 180c6d2 5d63fc3 2645a2e 5d63fc3 2645a2e f576e7d 2645a2e 9d70bcc 1a3a077 2645a2e 6428557 7da477e df91e4c 2645a2e df91e4c 2645a2e 9d70bcc 2645a2e 63c64d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import subprocess
from PIL import Image
def download_file(url, output_filename):
command = ['wget', '-O', output_filename, '-q', url]
subprocess.run(command, check=True)
url1 = 'https://storage.googleapis.com/mediapipe-models/image_segmenter/selfie_multiclass_256x256/float32/latest/selfie_multiclass_256x256.tflite'
url2 = 'https://storage.googleapis.com/mediapipe-models/image_segmenter/selfie_segmenter/float16/latest/selfie_segmenter.tflite'
filename1 = 'selfie_multiclass_256x256.tflite'
filename2 = 'selfie_segmenter.tflite'
download_file(url1, filename1)
download_file(url2, filename2)
import cv2
import mediapipe as mp
import numpy as np
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
import random
import gradio as gr
import spaces
import torch
from diffusers import FluxInpaintPipeline
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
bfl_repo="black-forest-labs/FLUX.1-dev"
BG_COLOR = (255, 255, 255) # white
MASK_COLOR = (0, 0 , 0) # black
def maskHead(input):
base_options = python.BaseOptions(model_asset_path='selfie_multiclass_256x256.tflite')
options = vision.ImageSegmenterOptions(base_options=base_options,
output_category_mask=True)
with vision.ImageSegmenter.create_from_options(options) as segmenter:
image = mp.Image.create_from_file(input)
segmentation_result = segmenter.segment(image)
hairmask = segmentation_result.confidence_masks[1]
facemask = segmentation_result.confidence_masks[3]
image_data = image.numpy_view()
fg_image = np.zeros(image_data.shape, dtype=np.uint8)
fg_image[:] = MASK_COLOR
bg_image = np.zeros(image_data.shape, dtype=np.uint8)
bg_image[:] = BG_COLOR
combined_mask = np.maximum(hairmask.numpy_view(), facemask.numpy_view())
condition = np.stack((combined_mask,) * 3, axis=-1) > 0.2
output_image = np.where(condition, fg_image, bg_image)
return output_image
def random_positioning(input, output_size=(1024, 1024)):
background = cv2.imread("default.jpeg")
if background is None:
raise ValueError("Unable to load background image")
background = cv2.resize(background, output_size, interpolation=cv2.INTER_AREA)
if input is None:
raise ValueError("Unable to load input image")
scale_factor = random.uniform(0.5, 1.0)
new_size = (int(input.shape[1] * scale_factor), int(input.shape[0] * scale_factor))
resized_image = cv2.resize(input, new_size, interpolation=cv2.INTER_AREA)
if background.shape[2] != resized_image.shape[2]:
raise ValueError("Input image and background image must have the same number of channels")
x_offset = random.randint(0, output_size[0] - new_size[0])
y_offset = random.randint(0, output_size[1] - new_size[1])
background[y_offset:y_offset+new_size[1], x_offset:x_offset+new_size[0]] = resized_image
return background
def remove_background(image_path, mask):
image = cv2.imread(image_path)
inverted_mask = cv2.bitwise_not(mask)
_, binary_mask = cv2.threshold(inverted_mask, 127, 255, cv2.THRESH_BINARY)
result = np.zeros_like(image, dtype=np.uint8)
result[binary_mask == 255] = image[binary_mask == 255]
return result
pipe = FluxInpaintPipeline.from_pretrained(bfl_repo, torch_dtype=torch.bfloat16).to(DEVICE)
MAX_SEED = np.iinfo(np.int32).max
TRIGGER = "a photo of TOK"
print(dir(pipe))
@spaces.GPU(duration=100)
def execute(image, prompt, debug=False):
if not prompt :
gr.Info("Please enter a text prompt.")
return None
if not image :
gr.Info("Please upload a image.")
return None
img = cv2.imread(image)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
imgs = [ random_positioning(img), random_positioning(img)]
pipe.load_lora_weights("XLabs-AI/flux-RealismLora", weight_name='lora.safetensors')
response = []
for image in range(len(imgs)):
seed_slicer = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed_slicer)
current_img = imgs[image]
cv2.imwrite('base_image.jpg', current_img)
cv2.imwrite("mask.jpg", maskHead('base_image.jpg'))
im = Image.open('base_image.jpg')
np_arr = np.array(im)
rgb_image = cv2.cvtColor(np_arr, cv2.COLOR_BGR2RGB)
im = Image.fromarray(rgb_image)
mask = Image.open('mask.jpg')
result = pipe(
prompt=f"{prompt} {TRIGGER}",
image=im,
mask_image=mask,
width=1024,
height=1024,
strength=0.85,
generator=generator,
num_inference_steps=28,
max_sequence_length=256,
joint_attention_kwargs={"scale": 0.9},
).images[0]
if debug:
response.append(im)
response.append(mask)
response.append(result)
return response
# Created by Fountai
# https://x.com/EuFountai
description = "This is an unofficial implementation of the ip face adapter for FLUX DEV and does not explicitly follow the ip face model, I created a wrapper with inpaint and mediapipe, I like to call Fake IP Adapter"
title = "Flux IP Face Adapter"
iface = gr.Interface(
fn=execute,
description=description,
title=title,
inputs=[
gr.Image(type="filepath"),
gr.Textbox(label="Prompt"),
gr.Checkbox(label="Debug Mode")
],
outputs="gallery"
)
iface.launch()
|