File size: 8,651 Bytes
ce026c7 582459e ce026c7 c5e4aef ce026c7 1425010 ce026c7 c5e4aef ce026c7 98d8d0a d2307e4 1425010 ce026c7 f6676b6 d2307e4 98d8d0a 25e410d ce026c7 1889e3c 5159a77 e3b4cd4 026d83a c50ba42 ce026c7 5159a77 54a97b2 026d83a 54a97b2 ce026c7 54a97b2 5159a77 e3b4cd4 5159a77 af52397 5159a77 434296c aef1e59 5159a77 3a60572 5159a77 d1555f9 5159a77 4e08cc5 41d3ca9 5159a77 af230b3 cde3fbe 91dc1c2 5159a77 2167d4d 5159a77 98d8d0a 434296c 8c5de78 ad6513c 8c5de78 708b01f ab5b5ac a0fa656 329d584 af230b3 a0fa656 378846e 5159a77 91dc1c2 5159a77 bf824dd f2f9318 bf824dd cbfad45 0ce4dc0 d1a578d b537591 1b9c8e0 cbfad45 1b9c8e0 c911ef4 0ce4dc0 3ac632f 656ebf6 0ce4dc0 bb6622d e0a19a8 f2f9318 bf824dd e0a19a8 1f83ca9 bf824dd b600a20 bf824dd 5159a77 374f33e 459599c 27a6975 459599c 5159a77 3789b16 c39bb40 a9e79e7 5159a77 2fdafda 6cde4a8 3ac632f 91dc1c2 8c4e1df d1555f9 27a6975 2242a2f 0e4eb74 d1555f9 27a6975 5159a77 91dc1c2 34408be 91dc1c2 0e4eb74 91dc1c2 3a60572 bf824dd 0418ceb 91dc1c2 5159a77 3a60572 ce026c7 5159a77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import os
os.system("git clone https://github.com/google-research/frame-interpolation")
import sys
sys.path.append("frame-interpolation")
import math
import cv2
import numpy as np
import tensorflow as tf
import mediapy
from PIL import Image
import gradio as gr
from huggingface_hub import snapshot_download
from image_tools.sizes import resize_and_crop
from moviepy.editor import *
model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style")
from eval import interpolator, util
interpolator = interpolator.Interpolator(model, None)
ffmpeg_path = util.get_ffmpeg_path()
mediapy.set_ffmpeg(ffmpeg_path)
def do_interpolation(frame1, frame2, interpolation):
print("tween frames: " + str(interpolation))
print(frame1, frame2)
input_frames = [frame1, frame2]
frames = list(
util.interpolate_recursively_from_files(
input_frames, int(interpolation), interpolator))
#print(frames)
mediapy.write_video(f"{frame1}_to_{frame2}_out.mp4", frames, fps=25)
return f"{frame1}_to_{frame2}_out.mp4"
def get_frames(video_in, step, name, resize_w):
frames = []
cap = cv2.VideoCapture(video_in)
cframes = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cfps = int(cap.get(cv2.CAP_PROP_FPS))
print(f'frames: {cframes}, fps: {cfps}')
#resize the video
#clip = VideoFileClip(video_in)
#check fps
#if cfps > 25:
# print("video rate is over 25, resetting to 25")
# clip_resized = clip.resize(height=1024)
# clip_resized.write_videofile("video_resized.mp4", fps=25)
#else:
# print("video rate is OK")
# clip_resized = clip.resize(height=1024)
# clip_resized.write_videofile("video_resized.mp4", fps=cfps)
#print("video resized to 1024 height")
# Opens the Video file with CV2
#cap = cv2.VideoCapture("video_resized.mp4")
fps = cap.get(cv2.CAP_PROP_FPS)
print("video fps: " + str(fps))
i=0
while(cap.isOpened()):
ret, frame = cap.read()
if ret == False:
break
if resize_w > 0:
resize_h = resize_w / 2.0
frame = cv2.resize(frame, (int(resize_w), int(resize_h)))
cv2.imwrite(f"{name}_{step}{str(i)}.jpg",frame)
frames.append(f"{name}_{step}{str(i)}.jpg")
i+=1
cap.release()
cv2.destroyAllWindows()
print("broke the video into frames")
return frames, fps
def create_video(frames, fps, type):
print("building video result")
clip = ImageSequenceClip(frames, fps=fps)
clip.write_videofile(type + "_result.mp4", fps=fps)
return type + "_result.mp4"
def infer(url_in,interpolation,fps_output,resize_n,winsize):
fps_output = logscale(fps_output)
# 1. break video into frames and get FPS
break_vid = get_frames(url_in, "vid_input_frame", "origin", resize_n)
frames_list = break_vid[0]
fps = break_vid[1]
print(f"ORIGIN FPS: {fps}")
n_frame = int(15*fps) #limited to 15 seconds
#n_frame = len(frames_list)
if n_frame >= len(frames_list):
print("video is shorter than the cut value")
n_frame = len(frames_list)
# 2. prepare frames result arrays
result_frames = []
print("set stop frames to: " + str(n_frame))
for idx, frame in enumerate(frames_list[0:int(n_frame)]):
if idx < len(frames_list) - 1:
next_frame = frames_list[idx+1]
interpolated_frames = do_interpolation(frame, next_frame, interpolation) # should return a list of 3 interpolated frames
break_interpolated_video = get_frames(interpolated_frames, "interpol", f"{idx}_", 0)
print(break_interpolated_video[0])
for j, img in enumerate(break_interpolated_video[0][0:len(break_interpolated_video[0])-1]):
print(f"IMG:{img}")
os.rename(img, f"{frame}_to_{next_frame}_{j}.jpg")
result_frames.append(f"{frame}_to_{next_frame}_{j}.jpg")
print("frames " + str(idx) + " & " + str(idx+1) + "/" + str(n_frame) + ": done;")
#print(f"CURRENT FRAMES: {result_frames}")
result_frames.append(f"{frames_list[n_frame-1]}")
final_vid = create_video(result_frames, fps_output, "interpolated")
files = final_vid
depth_map = cv2.VideoCapture(final_vid)
print("total frames: " + str(len(result_frames)))
ret, fr1 = depth_map.read()
prvs = cv2.cvtColor(fr1, cv2.COLOR_RGBA2GRAY)
hsv = np.zeros_like(fr1)
hsv[..., 1] = 255
res = np.zeros_like(prvs)
flow = res
while(depth_map.isOpened()):
ret, fr2 = depth_map.read()
if ret == False:
break
nxt = cv2.cvtColor(fr2, cv2.COLOR_RGBA2GRAY)
fl = cv2.calcOpticalFlowFarneback(prvs, nxt, flow, 0.5, 3, winsize, 3, 5, 1.2, 0)
mag, ang = cv2.cartToPolar(fl[..., 0], fl[..., 1])
hsv[..., 0] = ang*180/np.pi/2
hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB)
rgb = cv2.cvtColor(rgb, cv2.COLOR_RGBA2GRAY)
alpha = 1.0/len(result_frames)
beta = (1.0 - alpha)
res = cv2.addWeighted(rgb, alpha, res, beta, 0.0, res)
prvs = nxt
cv2.imwrite('opticalfb.png', res)
depth_map.release()
cv2.destroyAllWindows()
return final_vid, files, 'opticalfb.png'
def logscale(linear):
return int(math.pow(2, linear))
title="""
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
margin-bottom: 10px;
"
>
<h1 style="font-weight: 600; margin-bottom: 7px;">
Video interpolation with FILM
</h1>
</div>
<p> This space uses FILM to generate interpolation frames in a video you need to 'tween'.<br />
Generation is limited to 15 seconds, from the beginning of your video input.<br />
<a style="display:inline-block" href="https://huggingface.co/spaces/freealise/video_frame_interpolation?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
</p>
</div>
"""
with gr.Blocks() as demo:
with gr.Column():
gr.HTML(title)
with gr.Row():
with gr.Column():
url_input = gr.Textbox(value="./examples/streetview.mp4", label="URL")
resize_num = gr.Slider(minimum=1, maximum=4096, step=1, value=256, label="Resize to width: ")
winsize_num = gr.Slider(minimum=1, maximum=256, step=1, value=15, label="Motion detection window size: ")
with gr.Row():
interpolation_slider = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Interpolation Steps: ")
interpolation = gr.Label(value=2, show_label=False)
interpolation_slider.change(fn=logscale, inputs=[interpolation_slider], outputs=[interpolation])
with gr.Row():
fps_output_slider = gr.Slider(minimum=0, maximum=5, step=1, value=0, label="FPS output: ")
fps_output = gr.Label(value=1, show_label=False)
fps_output_slider.change(fn=logscale, inputs=[fps_output_slider], outputs=[fps_output])
submit_btn = gr.Button("Submit")
with gr.Column():
video_output = gr.Video()
file_output = gr.File()
depth_output = gr.ImageEditor(image_mode="L", interactive=True, label="Depth map")
gr.Examples(
examples=[["./examples/streetview.mp4", 1, 0, 256, 15]],
fn=infer,
inputs=[url_input,interpolation_slider,fps_output_slider,resize_num,winsize_num],
outputs=[video_output,file_output,depth_output],
cache_examples=True
)
submit_btn.click(fn=infer, inputs=[url_input,interpolation_slider,fps_output_slider,resize_num,winsize_num], outputs=[video_output, file_output, depth_output])
demo.launch() |