Spaces:
Running
Running
File size: 2,101 Bytes
08dcbea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
scale: 4
num_gpu: 1
manual_seed: 0
is_train: True
dist: False
# ----------------- options for synthesizing training data ----------------- #
# USM the ground-truth
l1_gt_usm: True
percep_gt_usm: True
gan_gt_usm: False
# the first degradation process
resize_prob: [0.2, 0.7, 0.1] # up, down, keep
resize_range: [0.15, 1.5]
gaussian_noise_prob: 1
noise_range: [1, 30]
poisson_scale_range: [0.05, 3]
gray_noise_prob: 1
jpeg_range: [30, 95]
# the second degradation process
second_blur_prob: 1
resize_prob2: [0.3, 0.4, 0.3] # up, down, keep
resize_range2: [0.3, 1.2]
gaussian_noise_prob2: 1
noise_range2: [1, 25]
poisson_scale_range2: [0.05, 2.5]
gray_noise_prob2: 1
jpeg_range2: [30, 95]
gt_size: 32
queue_size: 1
# network structures
network_g:
type: RRDBNet
num_in_ch: 3
num_out_ch: 3
num_feat: 4
num_block: 1
num_grow_ch: 2
network_d:
type: UNetDiscriminatorSN
num_in_ch: 3
num_feat: 2
skip_connection: True
# path
path:
pretrain_network_g: ~
param_key_g: params_ema
strict_load_g: true
resume_state: ~
# training settings
train:
ema_decay: 0.999
optim_g:
type: Adam
lr: !!float 1e-4
weight_decay: 0
betas: [0.9, 0.99]
optim_d:
type: Adam
lr: !!float 1e-4
weight_decay: 0
betas: [0.9, 0.99]
scheduler:
type: MultiStepLR
milestones: [400000]
gamma: 0.5
total_iter: 400000
warmup_iter: -1 # no warm up
# losses
pixel_opt:
type: L1Loss
loss_weight: 1.0
reduction: mean
# perceptual loss (content and style losses)
perceptual_opt:
type: PerceptualLoss
layer_weights:
# before relu
'conv1_2': 0.1
'conv2_2': 0.1
'conv3_4': 1
'conv4_4': 1
'conv5_4': 1
vgg_type: vgg19
use_input_norm: true
perceptual_weight: !!float 1.0
style_weight: 0
range_norm: false
criterion: l1
# gan loss
gan_opt:
type: GANLoss
gan_type: vanilla
real_label_val: 1.0
fake_label_val: 0.0
loss_weight: !!float 1e-1
net_d_iters: 1
net_d_init_iters: 0
# validation settings
val:
val_freq: !!float 5e3
save_img: False
|