File size: 8,217 Bytes
f0608de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63c9ed5
f0608de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63c9ed5
f0608de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63c9ed5
f0608de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os
import spaces
from threading import Thread
from typing import Iterator
from backend2 import load_documents, prepare_documents, get_context_sources
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, GemmaTokenizerFast, TextIteratorStreamer
from huggingface_hub import login
from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, PromptTemplate, load_index_from_storage, StorageContext
from llama_index.core.node_parser import SentenceSplitter
from llama_index.embeddings.instructor import InstructorEmbedding


huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
login(huggingface_token)

DESCRIPTION = """\
# La Chatbot degli Osservatori
"""
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
os.environ["MAX_INPUT_TOKEN_LENGTH"] = "4096" #"8192"
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH"))


# Force usage of CPU
#device = torch.device("cpu")

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model_id = "google/gemma-2-2b-it"
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype= torch.bfloat16 #torch.float16 if torch.cuda.is_available() else torch.float32,
)
tokenizer = GemmaTokenizerFast.from_pretrained(model_id)
#tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
model.config.sliding_window = 4096
#model = model.to(device)
model.eval()

###------####
# rag
documents_paths = {
    'blockchain': 'documents/blockchain',
    'metaverse': 'documents/metaverso',
    'payment': 'documents/payment'
}

global session_state
session_state = {"index": False,
                 "documents_loaded": False}

INSTRUCTION_1 = 'In italiano, chiedi sempre se la domanda si riferisce agli "Osservatori Blockchain", "Osservatori Payment" oppure "Osservatori Metaverse".'
INSTRUCTION_2 = 'Sei un assistente che risponde sempre in italiano alle domande basandosi solo sulle informazioni fornite nel contesto che ti darò. Se non trovi informazioni, rispondi "Puoi chiedere maggiori informazioni all\'ufficio di riferimento.". Se invece la domanda è completamente fuori contesto, non rispondere e rammenta il topic del contesto'


"""# Reading documents from disk
docs = SimpleDirectoryReader(input_files=["data/blockchainprova.txt"]).load_data()
            # Splitting the document into chunks with
            # predefined size and overlap
parser = SentenceSplitter.from_defaults(
                chunk_size=256, chunk_overlap=64, paragraph_separator="\n\n"
            )
nodes = parser.get_nodes_from_documents(docs)"""


@spaces.GPU()
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    
    
    global matched_path
    
    conversation = []
    for user, assistant in chat_history:
        conversation.extend(
            [
                {"role": "user", "content": user},
                {"role": "assistant", "content": assistant},
            ]
        )
    
    
    if not session_state["index"]:
        
        matched_path = None
        words = message.lower()
        for key, path in documents_paths.items():
            if key in words:
                matched_path = path
                break
        if matched_path:
            documents = load_documents(matched_path)
            DB = prepare_documents(documents)
            context, sources = get_context_sources(message, DB)
            print("*** sources ***", sources)
            gr.Info("doc preparati con ", sources)
            
            
            conversation.append({"role": "user", "content": f'Contesto: {context}\n\n Domanda: {message}. Rispondi in italiano'})

            ######
            
            """index = VectorStoreIndex(nodes)
            # get retriver
            retriever = index.as_retriever(similarity_top_k=3)
            relevant_chunks = retriever.retrieve(message)
            print(f"Found: {len(relevant_chunks)} relevant chunks")
            for idx, chunk in enumerate(relevant_chunks):
                
                info_message += f"{idx + 1}) {chunk.text[:64]}...\n"
                print(info_message)
                gr.Info(info_message)"""
            
            session_state["documents_loaded"] = True
            session_state["index"] = True
            
        else: ## CHIEDI CHIARIMENTO
          
            conversation.append({"role": "user", "content": f"Domanda: {message} . Comando: {INSTRUCTION_1}" })
            gr.Info("richiesta di chiarimento")
            print("******** CONV1 ", conversation)

            
                  
    else:
        
        documents = load_documents(matched_path)
        DB = prepare_documents(documents)
        context, sources = get_context_sources(message, DB)
        gr.Info("contesto già indicizzato")
        conversation.append({"role": "user", "content": f"{INSTRUCTION_2}"})
        conversation.append({"role": "assistant", "content": "Ok."})  
        conversation.append({"role": "user", "content": f'Contesto: {context}\n\n Domanda: {message}. Rispondi in italiano'})
        
        print("******** CONV2 ", conversation)
        
    

    # Iterate model output
    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=None, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()
    

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)
    
    if session_state["documents_loaded"]:
        outputs.append(f"Fonti utilizzate: {sources}")
        yield "".join(outputs) 
        
    #sources = []    
    print("debug - CHATHISTORY", chat_history)    

chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),
    ],
    stop_btn=None,
    examples=[
        ["Ciao, in cosa puoi aiutarmi?"],
        ["Ciao, in cosa consiste un piatto di spaghetti?"],
        ["Ciao, quali sono le aziende che hanno iniziato ad integrare le stablecoins? Fammi un breve sommario."],
        ["Spiegami la differenza tra mondi virtuali pubblici o privati"],
        ["Trovami un esempio di progetto B2B"],
        ["Quali sono le regole europee sui bonifici istantanei?"],
    ],
    cache_examples=False,
)

with gr.Blocks(css=".gradio-container {background-color: #B9D9EB}", fill_height=True) as demo:
    gr.Markdown(DESCRIPTION, elem_classes="centered")
    chat_interface.render()

if __name__ == "__main__":
    #demo.queue(max_size=20).launch()
    demo.launch()