Spaces:
Sleeping
Sleeping
import torch | |
import os | |
from transformers import AutoModelForCausalLM, GemmaTokenizerFast, TextIteratorStreamer, AutoTokenizer | |
from interface import GemmaLLMInterface | |
from llama_index.core.node_parser import SentenceSplitter | |
from llama_index.embeddings.instructor import InstructorEmbedding | |
import gradio as gr | |
from llama_index.core import ChatPromptTemplate | |
from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader, PromptTemplate, load_index_from_storage | |
from llama_index.core.node_parser import SentenceSplitter | |
from huggingface_hub import hf_hub_download | |
from llama_cpp import Llama | |
import spaces | |
from huggingface_hub import login | |
from llama_index.core.memory import ChatMemoryBuffer | |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
login(huggingface_token) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
"""model_id = "google/gemma-2-2b-it" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", ## change this back to auto!!! | |
torch_dtype= torch.bfloat16 if torch.cuda.is_available() else torch.float32, | |
token=True) | |
model.eval()""" | |
#from accelerate import disk_offload | |
#disk_offload(model=model, offload_dir="offload") | |
# what models will be used by LlamaIndex: | |
"""Settings.embed_model = InstructorEmbedding(model_name="hkunlp/instructor-base") | |
Settings.llm = GemmaLLMInterface(model=model, tokenizer=tokenizer)""" | |
Settings.embed_model = InstructorEmbedding(model_name="hkunlp/instructor-base") | |
Settings.llm = GemmaLLMInterface(model_id="google/gemma-2-2b-it") | |
############################--------------------------------- | |
# Get the parser | |
parser = SentenceSplitter.from_defaults( | |
chunk_size=256, chunk_overlap=64, paragraph_separator="\n\n" | |
) | |
def build_index(): | |
# Load documents from a file | |
documents = SimpleDirectoryReader(input_files=["data/blockchainprova.txt"]).load_data() | |
# Parse the documents into nodes | |
nodes = parser.get_nodes_from_documents(documents) | |
# Build the vector store index from the nodes | |
index = VectorStoreIndex(nodes) | |
return index | |
def handle_query(query_str, chathistory): | |
index = build_index() | |
qa_prompt_str = ( | |
"Context information is below.\n" | |
"---------------------\n" | |
"{context_str}\n" | |
"---------------------\n" | |
"Given the context information and not prior knowledge, " | |
"answer the question: {query_str}\n" | |
) | |
# Text QA Prompt | |
chat_text_qa_msgs = [ | |
( | |
"system", | |
"Sei un assistente italiano di nome Ossy che risponde solo alle domande o richieste pertinenti. ", | |
), | |
("user", qa_prompt_str), | |
] | |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) | |
try: | |
# Create a streaming query engine | |
"""query_engine = index.as_query_engine(text_qa_template=text_qa_template, streaming=False, similarity_top_k=1) | |
# Execute the query | |
streaming_response = query_engine.query(query_str) | |
r = streaming_response.response | |
cleaned_result = r.replace("<end_of_turn>", "").strip() | |
yield cleaned_result""" | |
# Stream the response | |
"""outputs = [] | |
for text in streaming_response.response_gen: | |
outputs.append(str(text)) | |
yield "".join(outputs)""" | |
memory = ChatMemoryBuffer.from_defaults(token_limit=1500) | |
chat_engine = index.as_chat_engine( | |
chat_mode="context", | |
memory=memory, | |
system_prompt=( | |
"Sei un assistente italiano di nome Ossy che risponde solo alle domande o richieste pertinenti. " | |
), | |
) | |
response = chat_engine.stream_chat(query_str) | |
#response = chat_engine.chat(query_str) | |
for token in response.response_gen: | |
yield token | |
except Exception as e: | |
yield f"Error processing query: {str(e)}" | |