Spaces:
Sleeping
Sleeping
added text iterator
Browse files- backend.py +24 -17
backend.py
CHANGED
@@ -13,26 +13,13 @@ from llama_cpp import Llama
|
|
13 |
import spaces
|
14 |
from huggingface_hub import login
|
15 |
|
|
|
|
|
16 |
|
17 |
|
18 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
19 |
login(huggingface_token)
|
20 |
|
21 |
-
"""hf_hub_download(
|
22 |
-
repo_id="google/gemma-2-2b-it-GGUF",
|
23 |
-
filename="2b_it_v2.gguf",
|
24 |
-
local_dir="./models",
|
25 |
-
token=huggingface_token
|
26 |
-
)
|
27 |
-
|
28 |
-
llm = Llama(
|
29 |
-
model_path=f"models/2b_it_v2.gguf",
|
30 |
-
flash_attn=True,
|
31 |
-
_gpu_layers=81,
|
32 |
-
n_batch=1024,
|
33 |
-
n_ctx=8192,
|
34 |
-
)"""
|
35 |
-
|
36 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
37 |
|
38 |
model_id = "google/gemma-2-2b-it"
|
@@ -85,8 +72,28 @@ def handle_query(query_str, chathistory):
|
|
85 |
("user", qa_prompt_str),
|
86 |
]
|
87 |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
|
88 |
-
|
|
|
|
|
|
|
89 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
result = index.as_query_engine(text_qa_template=text_qa_template).query(query_str)
|
91 |
response_text = result.response
|
92 |
|
@@ -95,7 +102,7 @@ def handle_query(query_str, chathistory):
|
|
95 |
|
96 |
yield cleaned_result
|
97 |
except Exception as e:
|
98 |
-
yield f"Error processing query: {str(e)}"
|
99 |
|
100 |
|
101 |
|
|
|
13 |
import spaces
|
14 |
from huggingface_hub import login
|
15 |
|
16 |
+
from transformers import TextIteratorStreamer
|
17 |
+
import threading
|
18 |
|
19 |
|
20 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
21 |
login(huggingface_token)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
24 |
|
25 |
model_id = "google/gemma-2-2b-it"
|
|
|
72 |
("user", qa_prompt_str),
|
73 |
]
|
74 |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
|
75 |
+
|
76 |
+
# Create the query engine
|
77 |
+
query_engine = index.as_query_engine(text_qa_template=text_qa_template)
|
78 |
+
|
79 |
try:
|
80 |
+
# Setup the TextIteratorStreamer for streaming the response
|
81 |
+
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
82 |
+
|
83 |
+
# Create a thread to run the generation in the background
|
84 |
+
def generate_response():
|
85 |
+
query_engine.query(query_str, streamer=streamer)
|
86 |
+
|
87 |
+
generation_thread = threading.Thread(target=generate_response)
|
88 |
+
generation_thread.start()
|
89 |
+
|
90 |
+
# Stream tokens as they are generated
|
91 |
+
for new_text in streamer:
|
92 |
+
yield new_text
|
93 |
+
except Exception as e:
|
94 |
+
yield f"Error processing query: {str(e)}"
|
95 |
+
|
96 |
+
""" try:
|
97 |
result = index.as_query_engine(text_qa_template=text_qa_template).query(query_str)
|
98 |
response_text = result.response
|
99 |
|
|
|
102 |
|
103 |
yield cleaned_result
|
104 |
except Exception as e:
|
105 |
+
yield f"Error processing query: {str(e)}""""
|
106 |
|
107 |
|
108 |
|