Spaces:
Sleeping
Sleeping
changed GemmaLLMInterface
Browse files- interface.py +24 -23
interface.py
CHANGED
@@ -6,15 +6,13 @@ import torch
|
|
6 |
from transformers import TextIteratorStreamer
|
7 |
from threading import Thread
|
8 |
|
9 |
-
|
10 |
-
|
11 |
class GemmaLLMInterface(CustomLLM):
|
12 |
model: Any
|
13 |
tokenizer: Any
|
14 |
context_window: int = 8192
|
15 |
num_output: int = 2048
|
16 |
model_name: str = "gemma_2"
|
17 |
-
|
18 |
def _format_prompt(self, message: str) -> str:
|
19 |
return (
|
20 |
f"<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n"
|
@@ -27,48 +25,51 @@ class GemmaLLMInterface(CustomLLM):
|
|
27 |
num_output=self.num_output,
|
28 |
model_name=self.model_name,
|
29 |
)
|
30 |
-
|
31 |
-
|
32 |
-
def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
|
33 |
prompt = self._format_prompt(prompt)
|
34 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
35 |
self.model.to(device)
|
36 |
-
|
37 |
-
# Tokenize prompt and move inputs to the correct device
|
38 |
inputs = self.tokenizer(prompt, return_tensors="pt", add_special_tokens=True).to(device)
|
39 |
-
|
40 |
-
# Ensure the input doesn't exceed the maximum token length
|
41 |
if inputs["input_ids"].shape[1] > self.context_window:
|
42 |
inputs["input_ids"] = inputs["input_ids"][:, -self.context_window:]
|
43 |
-
|
44 |
-
# Create a streamer to handle token streaming
|
45 |
streamer = TextIteratorStreamer(self.tokenizer, timeout=None, skip_prompt=True, skip_special_tokens=True)
|
46 |
-
|
47 |
-
# Generate kwargs for the model
|
48 |
generate_kwargs = {
|
49 |
"input_ids": inputs["input_ids"],
|
50 |
"streamer": streamer,
|
51 |
"max_new_tokens": self.num_output,
|
52 |
"do_sample": True,
|
53 |
-
"top_p": 0.9,
|
54 |
"top_k": 50,
|
55 |
"temperature": 0.7,
|
56 |
"num_beams": 1,
|
57 |
"repetition_penalty": 1.1,
|
58 |
}
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
61 |
t = Thread(target=self.model.generate, kwargs=generate_kwargs)
|
62 |
t.start()
|
63 |
-
|
64 |
-
# Collect the streamed response token by token
|
65 |
response = ""
|
66 |
for new_token in streamer:
|
67 |
response += new_token
|
68 |
-
|
|
|
69 |
|
70 |
@llm_completion_callback()
|
71 |
def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
6 |
from transformers import TextIteratorStreamer
|
7 |
from threading import Thread
|
8 |
|
|
|
|
|
9 |
class GemmaLLMInterface(CustomLLM):
|
10 |
model: Any
|
11 |
tokenizer: Any
|
12 |
context_window: int = 8192
|
13 |
num_output: int = 2048
|
14 |
model_name: str = "gemma_2"
|
15 |
+
|
16 |
def _format_prompt(self, message: str) -> str:
|
17 |
return (
|
18 |
f"<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n"
|
|
|
25 |
num_output=self.num_output,
|
26 |
model_name=self.model_name,
|
27 |
)
|
28 |
+
|
29 |
+
def _prepare_generation(self, prompt: str) -> tuple:
|
|
|
30 |
prompt = self._format_prompt(prompt)
|
31 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
self.model.to(device)
|
33 |
+
|
|
|
34 |
inputs = self.tokenizer(prompt, return_tensors="pt", add_special_tokens=True).to(device)
|
|
|
|
|
35 |
if inputs["input_ids"].shape[1] > self.context_window:
|
36 |
inputs["input_ids"] = inputs["input_ids"][:, -self.context_window:]
|
37 |
+
|
|
|
38 |
streamer = TextIteratorStreamer(self.tokenizer, timeout=None, skip_prompt=True, skip_special_tokens=True)
|
39 |
+
|
|
|
40 |
generate_kwargs = {
|
41 |
"input_ids": inputs["input_ids"],
|
42 |
"streamer": streamer,
|
43 |
"max_new_tokens": self.num_output,
|
44 |
"do_sample": True,
|
45 |
+
"top_p": 0.9,
|
46 |
"top_k": 50,
|
47 |
"temperature": 0.7,
|
48 |
"num_beams": 1,
|
49 |
"repetition_penalty": 1.1,
|
50 |
}
|
51 |
+
|
52 |
+
return streamer, generate_kwargs
|
53 |
+
|
54 |
+
@llm_completion_callback()
|
55 |
+
def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
|
56 |
+
streamer, generate_kwargs = self._prepare_generation(prompt)
|
57 |
+
|
58 |
t = Thread(target=self.model.generate, kwargs=generate_kwargs)
|
59 |
t.start()
|
60 |
+
|
|
|
61 |
response = ""
|
62 |
for new_token in streamer:
|
63 |
response += new_token
|
64 |
+
|
65 |
+
return CompletionResponse(text=response)
|
66 |
|
67 |
@llm_completion_callback()
|
68 |
def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:
|
69 |
+
streamer, generate_kwargs = self._prepare_generation(prompt)
|
70 |
+
|
71 |
+
t = Thread(target=self.model.generate, kwargs=generate_kwargs)
|
72 |
+
t.start()
|
73 |
+
|
74 |
+
for new_token in streamer:
|
75 |
+
yield CompletionResponse(text=new_token)
|