Spaces:
Runtime error
Runtime error
guimcc
commited on
Commit
·
fe7ff55
1
Parent(s):
0ff9fca
New App
Browse files
app.py
CHANGED
@@ -1,4 +1,189 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import SegformerForSemanticSegmentation, SegformerImageProcessor
|
3 |
+
from torchvision.transforms import ColorJitter, functional as F
|
4 |
+
from PIL import Image, ImageDraw, ImageFont
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from datasets import load_dataset
|
9 |
+
import evaluate
|
10 |
|
11 |
+
# Define the device
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
+
# Load the models
|
15 |
+
original_model_id = "guimCC/segformer-v0-gta"
|
16 |
+
lora_model_id = "guimCC/segformer-v0-gta-cityscapes"
|
17 |
+
|
18 |
+
original_model = SegformerForSemanticSegmentation.from_pretrained(original_model_id).to(device)
|
19 |
+
lora_model = SegformerForSemanticSegmentation.from_pretrained(lora_model_id).to(device)
|
20 |
+
|
21 |
+
# Load the dataset and slice it
|
22 |
+
dataset = load_dataset("Chris1/cityscapes", split="validation")
|
23 |
+
sampled_dataset = [dataset[i] for i in range(10)] # Select the first 10 examples
|
24 |
+
|
25 |
+
# Define your custom image processor
|
26 |
+
jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1)
|
27 |
+
|
28 |
+
# Initialize mIoU metric
|
29 |
+
metric = evaluate.load("mean_iou")
|
30 |
+
|
31 |
+
# Define id2label and processor if not already defined
|
32 |
+
id2label = {
|
33 |
+
0: 'road', 1: 'sidewalk', 2: 'building', 3: 'wall', 4: 'fence', 5: 'pole',
|
34 |
+
6: 'traffic light', 7: 'traffic sign', 8: 'vegetation', 9: 'terrain',
|
35 |
+
10: 'sky', 11: 'person', 12: 'rider', 13: 'car', 14: 'truck', 15: 'bus',
|
36 |
+
16: 'train', 17: 'motorcycle', 18: 'bicycle', 19: 'ignore'
|
37 |
+
}
|
38 |
+
processor = SegformerImageProcessor()
|
39 |
+
|
40 |
+
# Cityscapes color palette
|
41 |
+
palette = np.array([
|
42 |
+
[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153],
|
43 |
+
[153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152],
|
44 |
+
[70, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70],
|
45 |
+
[0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32], [0, 0, 0]
|
46 |
+
])
|
47 |
+
|
48 |
+
def handle_grayscale_image(image):
|
49 |
+
np_image = np.array(image)
|
50 |
+
if np_image.ndim == 2: # Grayscale image
|
51 |
+
np_image = np.tile(np.expand_dims(np_image, -1), (1, 1, 3))
|
52 |
+
return Image.fromarray(np_image)
|
53 |
+
|
54 |
+
def preprocess_image(image):
|
55 |
+
image = handle_grayscale_image(image)
|
56 |
+
image = jitter(image) # Apply color jitter
|
57 |
+
pixel_values = F.to_tensor(image).unsqueeze(0) # Convert to tensor and add batch dimension
|
58 |
+
return pixel_values.to(device)
|
59 |
+
|
60 |
+
def postprocess_predictions(logits):
|
61 |
+
logits = logits.squeeze().detach().cpu().numpy()
|
62 |
+
segmentation = np.argmax(logits, axis=0).astype(np.uint8) # Convert to 8-bit integer
|
63 |
+
return segmentation
|
64 |
+
|
65 |
+
def compute_miou(logits, labels):
|
66 |
+
with torch.no_grad():
|
67 |
+
logits_tensor = torch.from_numpy(logits)
|
68 |
+
# Scale the logits to the size of the label
|
69 |
+
logits_tensor = nn.functional.interpolate(
|
70 |
+
logits_tensor,
|
71 |
+
size=labels.shape[-2:],
|
72 |
+
mode="bilinear",
|
73 |
+
align_corners=False,
|
74 |
+
).argmax(dim=1)
|
75 |
+
|
76 |
+
pred_labels = logits_tensor.detach().cpu().numpy()
|
77 |
+
|
78 |
+
# Ensure the shapes of pred_labels and labels match
|
79 |
+
if pred_labels.shape != labels.shape:
|
80 |
+
labels = np.resize(labels, pred_labels.shape)
|
81 |
+
|
82 |
+
pred_labels = [pred_labels] # Wrap in a list
|
83 |
+
labels = [labels] # Wrap in a list
|
84 |
+
|
85 |
+
metrics = metric.compute(
|
86 |
+
predictions=pred_labels,
|
87 |
+
references=labels,
|
88 |
+
num_labels=len(id2label),
|
89 |
+
ignore_index=19,
|
90 |
+
reduce_labels=processor.do_reduce_labels,
|
91 |
+
)
|
92 |
+
|
93 |
+
return metrics['mean_iou']
|
94 |
+
|
95 |
+
|
96 |
+
def apply_color_palette(segmentation):
|
97 |
+
colored_segmentation = palette[segmentation]
|
98 |
+
return Image.fromarray(colored_segmentation.astype(np.uint8))
|
99 |
+
|
100 |
+
def create_legend():
|
101 |
+
# Define font and its size
|
102 |
+
try:
|
103 |
+
font = ImageFont.truetype("arial.ttf", 15)
|
104 |
+
except IOError:
|
105 |
+
font = ImageFont.load_default()
|
106 |
+
|
107 |
+
# Calculate legend dimensions
|
108 |
+
num_classes = len(id2label)
|
109 |
+
legend_height = 20 * ((num_classes + 1) // 2) # Two items per row
|
110 |
+
legend_width = 250
|
111 |
+
|
112 |
+
# Create a blank image for the legend
|
113 |
+
legend = Image.new("RGB", (legend_width, legend_height), (255, 255, 255))
|
114 |
+
draw = ImageDraw.Draw(legend)
|
115 |
+
|
116 |
+
# Draw each color and its label
|
117 |
+
for i, (class_id, class_name) in enumerate(id2label.items()):
|
118 |
+
color = tuple(palette[class_id])
|
119 |
+
x = (i % 2) * 120
|
120 |
+
y = (i // 2) * 20
|
121 |
+
draw.rectangle([x, y, x + 20, y + 20], fill=color)
|
122 |
+
draw.text((x + 30, y + 5), class_name, fill=(0, 0, 0), font=font)
|
123 |
+
|
124 |
+
return legend
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
def inference(index, a):
|
129 |
+
"""Run inference on the input image with both models."""
|
130 |
+
image = sampled_dataset[index]['image'] # Fetch image from the sampled dataset
|
131 |
+
pixel_values = preprocess_image(image)
|
132 |
+
|
133 |
+
# Original model inference
|
134 |
+
with torch.no_grad():
|
135 |
+
original_outputs = original_model(pixel_values=pixel_values)
|
136 |
+
original_segmentation = postprocess_predictions(original_outputs.logits)
|
137 |
+
|
138 |
+
# LoRA model inference
|
139 |
+
with torch.no_grad():
|
140 |
+
lora_outputs = lora_model(pixel_values=pixel_values)
|
141 |
+
lora_segmentation = postprocess_predictions(lora_outputs.logits)
|
142 |
+
|
143 |
+
# Compute mIoU
|
144 |
+
true_labels = np.array(sampled_dataset[index]['semantic_segmentation'])
|
145 |
+
original_miou = compute_miou(original_outputs.logits.detach().cpu().numpy(), true_labels)
|
146 |
+
lora_miou = compute_miou(lora_outputs.logits.detach().cpu().numpy(), true_labels)
|
147 |
+
# original_miou = 0
|
148 |
+
# lora_miou = 0
|
149 |
+
|
150 |
+
# Apply color palette
|
151 |
+
original_segmentation_image = apply_color_palette(original_segmentation)
|
152 |
+
lora_segmentation_image = apply_color_palette(lora_segmentation)
|
153 |
+
|
154 |
+
# Create legend
|
155 |
+
legend = create_legend()
|
156 |
+
|
157 |
+
# Return the original image, the segmentations, and mIoU
|
158 |
+
return (
|
159 |
+
image,
|
160 |
+
original_segmentation_image,
|
161 |
+
lora_segmentation_image,
|
162 |
+
legend,
|
163 |
+
f"Original Model mIoU: {original_miou:.2f}",
|
164 |
+
f"LoRA Model mIoU: {lora_miou:.2f}"
|
165 |
+
)
|
166 |
+
|
167 |
+
# Create a list of image options for the user to select from
|
168 |
+
image_options = [(f"Image {i}", i) for i in range(len(sampled_dataset))]
|
169 |
+
|
170 |
+
# Create the Gradio interface
|
171 |
+
iface = gr.Interface(
|
172 |
+
fn=inference,
|
173 |
+
inputs=[
|
174 |
+
gr.Dropdown(label="Select Image", choices=image_options),
|
175 |
+
gr.Image(type="pil", label="Legend", value=create_legend)
|
176 |
+
],
|
177 |
+
outputs=[
|
178 |
+
gr.Image(type="pil", label="Selected Image"),
|
179 |
+
gr.Image(type="pil", label="Original Model Output"),
|
180 |
+
gr.Image(type="pil", label="LoRA Model Output"),
|
181 |
+
gr.Textbox(label="Original Model mIoU"),
|
182 |
+
gr.Textbox(label="LoRA Model mIoU")
|
183 |
+
],
|
184 |
+
title="Segformer Cityscapes Inference",
|
185 |
+
description="Select an image from the Cityscapes dataset to see the segmentation results from both the original and fine-tuned Segformer models.",
|
186 |
+
)
|
187 |
+
|
188 |
+
# Launch the interface
|
189 |
+
iface.launch()
|