Spaces:
Runtime error
Runtime error
reformat
Browse files
app.py
CHANGED
@@ -8,9 +8,11 @@ import pandas as pd
|
|
8 |
from datasets import load_dataset
|
9 |
from gradio_leaderboard import Leaderboard, SelectColumns, SearchColumns, ColumnFilter
|
10 |
|
11 |
-
df = pd.read_json("https://raw.githubusercontent.com/huggingface/lighteval/main/src/lighteval/tasks/tasks_table.jsonl",
|
|
|
12 |
|
13 |
-
with urllib.request.urlopen(
|
|
|
14 |
tasks_prompt_functions_raw = f.read().decode('utf-8')
|
15 |
tree = ast.parse(tasks_prompt_functions_raw)
|
16 |
tasks_prompt_functions = {}
|
@@ -22,11 +24,14 @@ with urllib.request.urlopen("https://raw.githubusercontent.com/huggingface/light
|
|
22 |
function_code = ast.get_source_segment(tasks_prompt_functions_raw, node)
|
23 |
tasks_prompt_functions[function_name] = function_code
|
24 |
|
|
|
25 |
def load_task_metadata(task_id):
|
26 |
task_row = df.iloc[task_id]
|
27 |
-
return (task_row.to_dict(),
|
|
|
28 |
tasks_prompt_functions.get(task_row["prompt_function"]), "unknown")
|
29 |
|
|
|
30 |
def load_task_examples(task_id):
|
31 |
task_row = df.iloc[task_id]
|
32 |
dataset = load_dataset(task_row["hf_repo"], task_row["hf_subset"], split="+".join(task_row["evaluation_splits"]),
|
@@ -34,9 +39,9 @@ def load_task_examples(task_id):
|
|
34 |
|
35 |
sample_data = next(dataset.iter(20))
|
36 |
# dictionary of lists to list of dictionaries
|
37 |
-
return pd.DataFrame(
|
38 |
-
|
39 |
-
|
40 |
|
41 |
|
42 |
with gr.Blocks() as demo:
|
@@ -47,10 +52,13 @@ with gr.Blocks() as demo:
|
|
47 |
with gr.TabItem("🗃️ Tasks List"):
|
48 |
Leaderboard(
|
49 |
value=df,
|
50 |
-
select_columns=SelectColumns(
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
54 |
placeholder="Search for a task by name, suite, prompt_function, hf_repo or "
|
55 |
"metric. To search by suite, for example, type 'suite:<query>'. Separate queries by \";\"",
|
56 |
label="Search"),
|
@@ -75,9 +83,10 @@ with gr.Blocks() as demo:
|
|
75 |
task_dataset_header = gr.Markdown("Examples from the HF repository")
|
76 |
task_dataset = gr.Dataframe(wrap=True)
|
77 |
|
78 |
-
gr.on(triggers=[task_inspector_selector.change], inputs=[task_inspector_selector],
|
79 |
-
|
80 |
-
|
|
|
81 |
|
82 |
if __name__ == "__main__":
|
83 |
demo.launch()
|
|
|
8 |
from datasets import load_dataset
|
9 |
from gradio_leaderboard import Leaderboard, SelectColumns, SearchColumns, ColumnFilter
|
10 |
|
11 |
+
df = pd.read_json("https://raw.githubusercontent.com/huggingface/lighteval/main/src/lighteval/tasks/tasks_table.jsonl",
|
12 |
+
lines=True).explode("suite").reset_index(drop=True)
|
13 |
|
14 |
+
with urllib.request.urlopen(
|
15 |
+
"https://raw.githubusercontent.com/huggingface/lighteval/main/src/lighteval/tasks/tasks_prompt_formatting.py") as f:
|
16 |
tasks_prompt_functions_raw = f.read().decode('utf-8')
|
17 |
tree = ast.parse(tasks_prompt_functions_raw)
|
18 |
tasks_prompt_functions = {}
|
|
|
24 |
function_code = ast.get_source_segment(tasks_prompt_functions_raw, node)
|
25 |
tasks_prompt_functions[function_name] = function_code
|
26 |
|
27 |
+
|
28 |
def load_task_metadata(task_id):
|
29 |
task_row = df.iloc[task_id]
|
30 |
+
return (task_row.to_dict(),
|
31 |
+
f"""Examples from the HF repository ([{task_row['hf_repo']}](https://huggingface.co/datasets/{task_row['hf_repo']}))""",
|
32 |
tasks_prompt_functions.get(task_row["prompt_function"]), "unknown")
|
33 |
|
34 |
+
|
35 |
def load_task_examples(task_id):
|
36 |
task_row = df.iloc[task_id]
|
37 |
dataset = load_dataset(task_row["hf_repo"], task_row["hf_subset"], split="+".join(task_row["evaluation_splits"]),
|
|
|
39 |
|
40 |
sample_data = next(dataset.iter(20))
|
41 |
# dictionary of lists to list of dictionaries
|
42 |
+
return pd.DataFrame(
|
43 |
+
dict(zip(sample_data, t if not isinstance(t, dict) and not isinstance(t, list) else json.dumps(t)))
|
44 |
+
for t in zip(*sample_data.values()))
|
45 |
|
46 |
|
47 |
with gr.Blocks() as demo:
|
|
|
52 |
with gr.TabItem("🗃️ Tasks List"):
|
53 |
Leaderboard(
|
54 |
value=df,
|
55 |
+
select_columns=SelectColumns(
|
56 |
+
default_selection=["name", "suite", "prompt_function", "hf_repo", "hf_subset", "evaluation_splits",
|
57 |
+
"metric"],
|
58 |
+
cant_deselect=["name", "suite"],
|
59 |
+
label="Columns to display"),
|
60 |
+
search_columns=SearchColumns(primary_column="name",
|
61 |
+
secondary_columns=["suite", "prompt_function", "hf_repo", "metric"],
|
62 |
placeholder="Search for a task by name, suite, prompt_function, hf_repo or "
|
63 |
"metric. To search by suite, for example, type 'suite:<query>'. Separate queries by \";\"",
|
64 |
label="Search"),
|
|
|
83 |
task_dataset_header = gr.Markdown("Examples from the HF repository")
|
84 |
task_dataset = gr.Dataframe(wrap=True)
|
85 |
|
86 |
+
gr.on(triggers=[task_inspector_selector.change], inputs=[task_inspector_selector],
|
87 |
+
outputs=[task_metadata, task_dataset_header, task_prompt_function], fn=load_task_metadata)
|
88 |
+
gr.on(triggers=[task_inspector_selector.change], inputs=[task_inspector_selector], outputs=[task_dataset],
|
89 |
+
fn=load_task_examples)
|
90 |
|
91 |
if __name__ == "__main__":
|
92 |
demo.launch()
|