import tempfile import torch import yaml from basicsr.archs.stylegan2_arch import StyleGAN2Discriminator from basicsr.data.paired_image_dataset import PairedImageDataset from basicsr.losses.losses import GANLoss, L1Loss, PerceptualLoss from gfpgan.archs.arcface_arch import ResNetArcFace from gfpgan.archs.gfpganv1_arch import FacialComponentDiscriminator, GFPGANv1 from gfpgan.models.gfpgan_model import GFPGANModel def test_gfpgan_model(): with open('tests/data/test_gfpgan_model.yml', mode='r') as f: opt = yaml.load(f, Loader=yaml.FullLoader) # build model model = GFPGANModel(opt) # test attributes assert model.__class__.__name__ == 'GFPGANModel' assert isinstance(model.net_g, GFPGANv1) # generator assert isinstance(model.net_d, StyleGAN2Discriminator) # discriminator # facial component discriminators assert isinstance(model.net_d_left_eye, FacialComponentDiscriminator) assert isinstance(model.net_d_right_eye, FacialComponentDiscriminator) assert isinstance(model.net_d_mouth, FacialComponentDiscriminator) # identity network assert isinstance(model.network_identity, ResNetArcFace) # losses assert isinstance(model.cri_pix, L1Loss) assert isinstance(model.cri_perceptual, PerceptualLoss) assert isinstance(model.cri_gan, GANLoss) assert isinstance(model.cri_l1, L1Loss) # optimizer assert isinstance(model.optimizers[0], torch.optim.Adam) assert isinstance(model.optimizers[1], torch.optim.Adam) # prepare data gt = torch.rand((1, 3, 512, 512), dtype=torch.float32) lq = torch.rand((1, 3, 512, 512), dtype=torch.float32) loc_left_eye = torch.rand((1, 4), dtype=torch.float32) loc_right_eye = torch.rand((1, 4), dtype=torch.float32) loc_mouth = torch.rand((1, 4), dtype=torch.float32) data = dict(gt=gt, lq=lq, loc_left_eye=loc_left_eye, loc_right_eye=loc_right_eye, loc_mouth=loc_mouth) model.feed_data(data) # check data shape assert model.lq.shape == (1, 3, 512, 512) assert model.gt.shape == (1, 3, 512, 512) assert model.loc_left_eyes.shape == (1, 4) assert model.loc_right_eyes.shape == (1, 4) assert model.loc_mouths.shape == (1, 4) # ----------------- test optimize_parameters -------------------- # model.feed_data(data) model.optimize_parameters(1) assert model.output.shape == (1, 3, 512, 512) assert isinstance(model.log_dict, dict) # check returned keys expected_keys = [ 'l_g_pix', 'l_g_percep', 'l_g_style', 'l_g_gan', 'l_g_gan_left_eye', 'l_g_gan_right_eye', 'l_g_gan_mouth', 'l_g_comp_style_loss', 'l_identity', 'l_d', 'real_score', 'fake_score', 'l_d_r1', 'l_d_left_eye', 'l_d_right_eye', 'l_d_mouth' ] assert set(expected_keys).issubset(set(model.log_dict.keys())) # ----------------- remove pyramid_loss_weight-------------------- # model.feed_data(data) model.optimize_parameters(100000) # large than remove_pyramid_loss = 50000 assert model.output.shape == (1, 3, 512, 512) assert isinstance(model.log_dict, dict) # check returned keys expected_keys = [ 'l_g_pix', 'l_g_percep', 'l_g_style', 'l_g_gan', 'l_g_gan_left_eye', 'l_g_gan_right_eye', 'l_g_gan_mouth', 'l_g_comp_style_loss', 'l_identity', 'l_d', 'real_score', 'fake_score', 'l_d_r1', 'l_d_left_eye', 'l_d_right_eye', 'l_d_mouth' ] assert set(expected_keys).issubset(set(model.log_dict.keys())) # ----------------- test save -------------------- # with tempfile.TemporaryDirectory() as tmpdir: model.opt['path']['models'] = tmpdir model.opt['path']['training_states'] = tmpdir model.save(0, 1) # ----------------- test the test function -------------------- # model.test() assert model.output.shape == (1, 3, 512, 512) # delete net_g_ema model.__delattr__('net_g_ema') model.test() assert model.output.shape == (1, 3, 512, 512) assert model.net_g.training is True # should back to training mode after testing # ----------------- test nondist_validation -------------------- # # construct dataloader dataset_opt = dict( name='Demo', dataroot_gt='tests/data/gt', dataroot_lq='tests/data/gt', io_backend=dict(type='disk'), scale=4, phase='val') dataset = PairedImageDataset(dataset_opt) dataloader = torch.utils.data.DataLoader(dataset=dataset, batch_size=1, shuffle=False, num_workers=0) assert model.is_train is True with tempfile.TemporaryDirectory() as tmpdir: model.opt['path']['visualization'] = tmpdir model.nondist_validation(dataloader, 1, None, save_img=True) assert model.is_train is True # check metric_results assert 'psnr' in model.metric_results assert isinstance(model.metric_results['psnr'], float) # validation with tempfile.TemporaryDirectory() as tmpdir: model.opt['is_train'] = False model.opt['val']['suffix'] = 'test' model.opt['path']['visualization'] = tmpdir model.opt['val']['pbar'] = True model.nondist_validation(dataloader, 1, None, save_img=True) # check metric_results assert 'psnr' in model.metric_results assert isinstance(model.metric_results['psnr'], float) # if opt['val']['suffix'] is None model.opt['val']['suffix'] = None model.opt['name'] = 'demo' model.opt['path']['visualization'] = tmpdir model.nondist_validation(dataloader, 1, None, save_img=True) # check metric_results assert 'psnr' in model.metric_results assert isinstance(model.metric_results['psnr'], float)