Spaces:
Build error
Build error
File size: 14,939 Bytes
0223854 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import os
import json
import torch
import random
import gradio as gr
from glob import glob
from omegaconf import OmegaConf
from datetime import datetime
from safetensors import safe_open
from diffusers import AutoencoderKL
from diffusers import DDIMScheduler, EulerDiscreteScheduler, PNDMScheduler
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer
from animatediff.models.unet import UNet3DConditionModel
from animatediff.pipelines.pipeline_animation import AnimationPipeline
from animatediff.utils.util import save_videos_grid
from animatediff.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint
from animatediff.utils.convert_lora_safetensor_to_diffusers import convert_lora
sample_idx = 0
scheduler_dict = {
"Euler": EulerDiscreteScheduler,
"PNDM": PNDMScheduler,
"DDIM": DDIMScheduler,
}
css = """
.toolbutton {
margin-buttom: 0em 0em 0em 0em;
max-width: 2.5em;
min-width: 2.5em !important;
height: 2.5em;
}
"""
class AnimateController:
def __init__(self):
# config dirs
self.basedir = os.getcwd()
self.stable_diffusion_dir = os.path.join(self.basedir, "models", "StableDiffusion")
self.motion_module_dir = os.path.join(self.basedir, "models", "Motion_Module")
self.personalized_model_dir = os.path.join(self.basedir, "models", "DreamBooth_LoRA")
self.savedir = os.path.join(self.basedir, "samples", datetime.now().strftime("Gradio-%Y-%m-%dT%H-%M-%S"))
self.savedir_sample = os.path.join(self.savedir, "sample")
os.makedirs(self.savedir, exist_ok=True)
self.stable_diffusion_list = []
self.motion_module_list = []
self.personalized_model_list = []
self.refresh_stable_diffusion()
self.refresh_motion_module()
self.refresh_personalized_model()
# config models
self.tokenizer = None
self.text_encoder = None
self.vae = None
self.unet = None
self.pipeline = None
self.lora_model_state_dict = {}
self.inference_config = OmegaConf.load("configs/inference/inference.yaml")
def refresh_stable_diffusion(self):
self.stable_diffusion_list = glob(os.path.join(self.stable_diffusion_dir, "*/"))
def refresh_motion_module(self):
motion_module_list = glob(os.path.join(self.motion_module_dir, "*.ckpt"))
self.motion_module_list = [os.path.basename(p) for p in motion_module_list]
def refresh_personalized_model(self):
personalized_model_list = glob(os.path.join(self.personalized_model_dir, "*.safetensors"))
self.personalized_model_list = [os.path.basename(p) for p in personalized_model_list]
def update_stable_diffusion(self, stable_diffusion_dropdown):
self.tokenizer = CLIPTokenizer.from_pretrained(stable_diffusion_dropdown, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(stable_diffusion_dropdown, subfolder="text_encoder").cuda()
self.vae = AutoencoderKL.from_pretrained(stable_diffusion_dropdown, subfolder="vae").cuda()
self.unet = UNet3DConditionModel.from_pretrained_2d(stable_diffusion_dropdown, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(self.inference_config.unet_additional_kwargs)).cuda()
return gr.Dropdown.update()
def update_motion_module(self, motion_module_dropdown):
if self.unet is None:
gr.Info(f"Please select a pretrained model path.")
return gr.Dropdown.update(value=None)
else:
motion_module_dropdown = os.path.join(self.motion_module_dir, motion_module_dropdown)
motion_module_state_dict = torch.load(motion_module_dropdown, map_location="cpu")
missing, unexpected = self.unet.load_state_dict(motion_module_state_dict, strict=False)
assert len(unexpected) == 0
return gr.Dropdown.update()
def update_base_model(self, base_model_dropdown):
if self.unet is None:
gr.Info(f"Please select a pretrained model path.")
return gr.Dropdown.update(value=None)
else:
base_model_dropdown = os.path.join(self.personalized_model_dir, base_model_dropdown)
base_model_state_dict = {}
with safe_open(base_model_dropdown, framework="pt", device="cpu") as f:
for key in f.keys():
base_model_state_dict[key] = f.get_tensor(key)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(base_model_state_dict, self.vae.config)
self.vae.load_state_dict(converted_vae_checkpoint)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(base_model_state_dict, self.unet.config)
self.unet.load_state_dict(converted_unet_checkpoint, strict=False)
self.text_encoder = convert_ldm_clip_checkpoint(base_model_state_dict)
return gr.Dropdown.update()
def update_lora_model(self, lora_model_dropdown):
lora_model_dropdown = os.path.join(self.personalized_model_dir, lora_model_dropdown)
self.lora_model_state_dict = {}
if lora_model_dropdown == "none": pass
else:
with safe_open(lora_model_dropdown, framework="pt", device="cpu") as f:
for key in f.keys():
self.lora_model_state_dict[key] = f.get_tensor(key)
return gr.Dropdown.update()
def animate(
self,
stable_diffusion_dropdown,
motion_module_dropdown,
base_model_dropdown,
lora_alpha_slider,
prompt_textbox,
negative_prompt_textbox,
sampler_dropdown,
sample_step_slider,
width_slider,
length_slider,
height_slider,
cfg_scale_slider,
seed_textbox
):
if self.unet is None:
raise gr.Error(f"Please select a pretrained model path.")
if motion_module_dropdown == "":
raise gr.Error(f"Please select a motion module.")
if base_model_dropdown == "":
raise gr.Error(f"Please select a base DreamBooth model.")
if is_xformers_available(): self.unet.enable_xformers_memory_efficient_attention()
pipeline = AnimationPipeline(
vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer, unet=self.unet,
scheduler=scheduler_dict[sampler_dropdown](**OmegaConf.to_container(self.inference_config.noise_scheduler_kwargs))
).to("cuda")
if self.lora_model_state_dict != {}:
pipeline = convert_lora(pipeline, self.lora_model_state_dict, alpha=lora_alpha_slider)
pipeline.to("cuda")
if seed_textbox != -1 and seed_textbox != "": torch.manual_seed(int(seed_textbox))
else: torch.seed()
seed = torch.initial_seed()
sample = pipeline(
prompt_textbox,
negative_prompt = negative_prompt_textbox,
num_inference_steps = sample_step_slider,
guidance_scale = cfg_scale_slider,
width = width_slider,
height = height_slider,
video_length = length_slider,
).videos
save_sample_path = os.path.join(self.savedir_sample, f"{sample_idx}.mp4")
save_videos_grid(sample, save_sample_path)
sample_config = {
"prompt": prompt_textbox,
"n_prompt": negative_prompt_textbox,
"sampler": sampler_dropdown,
"num_inference_steps": sample_step_slider,
"guidance_scale": cfg_scale_slider,
"width": width_slider,
"height": height_slider,
"video_length": length_slider,
"seed": seed
}
json_str = json.dumps(sample_config, indent=4)
with open(os.path.join(self.savedir, "logs.json"), "a") as f:
f.write(json_str)
f.write("\n\n")
return gr.Video.update(value=save_sample_path)
controller = AnimateController()
def ui():
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# [AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning](https://arxiv.org/abs/2307.04725)
Yuwei Guo, Ceyuan Yang*, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, Bo Dai (*Corresponding Author)<br>
[Arxiv Report](https://arxiv.org/abs/2307.04725) | [Project Page](https://animatediff.github.io/) | [Github](https://github.com/guoyww/animatediff/)
"""
)
with gr.Column(variant="panel"):
gr.Markdown(
"""
### 1. Model checkpoints (select pretrained model path first).
"""
)
with gr.Row():
stable_diffusion_dropdown = gr.Dropdown(
label="Pretrained Model Path",
choices=controller.stable_diffusion_list,
interactive=True,
)
stable_diffusion_dropdown.change(fn=controller.update_stable_diffusion, inputs=[stable_diffusion_dropdown], outputs=[stable_diffusion_dropdown])
stable_diffusion_refresh_button = gr.Button(value="\U0001F503", elem_classes="toolbutton")
def update_stable_diffusion():
controller.refresh_stable_diffusion()
return gr.Dropdown.update(choices=controller.stable_diffusion_list)
stable_diffusion_refresh_button.click(fn=update_stable_diffusion, inputs=[], outputs=[stable_diffusion_dropdown])
with gr.Row():
motion_module_dropdown = gr.Dropdown(
label="Select motion module",
choices=controller.motion_module_list,
interactive=True,
)
motion_module_dropdown.change(fn=controller.update_motion_module, inputs=[motion_module_dropdown], outputs=[motion_module_dropdown])
motion_module_refresh_button = gr.Button(value="\U0001F503", elem_classes="toolbutton")
def update_motion_module():
controller.refresh_motion_module()
return gr.Dropdown.update(choices=controller.motion_module_list)
motion_module_refresh_button.click(fn=update_motion_module, inputs=[], outputs=[motion_module_dropdown])
base_model_dropdown = gr.Dropdown(
label="Select base Dreambooth model (required)",
choices=controller.personalized_model_list,
interactive=True,
)
base_model_dropdown.change(fn=controller.update_base_model, inputs=[base_model_dropdown], outputs=[base_model_dropdown])
lora_model_dropdown = gr.Dropdown(
label="Select LoRA model (optional)",
choices=["none"] + controller.personalized_model_list,
value="none",
interactive=True,
)
lora_model_dropdown.change(fn=controller.update_lora_model, inputs=[lora_model_dropdown], outputs=[lora_model_dropdown])
lora_alpha_slider = gr.Slider(label="LoRA alpha", value=0.8, minimum=0, maximum=2, interactive=True)
personalized_refresh_button = gr.Button(value="\U0001F503", elem_classes="toolbutton")
def update_personalized_model():
controller.refresh_personalized_model()
return [
gr.Dropdown.update(choices=controller.personalized_model_list),
gr.Dropdown.update(choices=["none"] + controller.personalized_model_list)
]
personalized_refresh_button.click(fn=update_personalized_model, inputs=[], outputs=[base_model_dropdown, lora_model_dropdown])
with gr.Column(variant="panel"):
gr.Markdown(
"""
### 2. Configs for AnimateDiff.
"""
)
prompt_textbox = gr.Textbox(label="Prompt", lines=2)
negative_prompt_textbox = gr.Textbox(label="Negative prompt", lines=2)
with gr.Row().style(equal_height=False):
with gr.Column():
with gr.Row():
sampler_dropdown = gr.Dropdown(label="Sampling method", choices=list(scheduler_dict.keys()), value=list(scheduler_dict.keys())[0])
sample_step_slider = gr.Slider(label="Sampling steps", value=25, minimum=10, maximum=100, step=1)
width_slider = gr.Slider(label="Width", value=512, minimum=256, maximum=1024, step=64)
height_slider = gr.Slider(label="Height", value=512, minimum=256, maximum=1024, step=64)
length_slider = gr.Slider(label="Animation length", value=16, minimum=8, maximum=24, step=1)
cfg_scale_slider = gr.Slider(label="CFG Scale", value=7.5, minimum=0, maximum=20)
with gr.Row():
seed_textbox = gr.Textbox(label="Seed", value=-1)
seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton")
seed_button.click(fn=lambda: gr.Textbox.update(value=random.randint(1, 1e8)), inputs=[], outputs=[seed_textbox])
generate_button = gr.Button(value="Generate", variant='primary')
result_video = gr.Video(label="Generated Animation", interactive=False)
generate_button.click(
fn=controller.animate,
inputs=[
stable_diffusion_dropdown,
motion_module_dropdown,
base_model_dropdown,
lora_alpha_slider,
prompt_textbox,
negative_prompt_textbox,
sampler_dropdown,
sample_step_slider,
width_slider,
length_slider,
height_slider,
cfg_scale_slider,
seed_textbox,
],
outputs=[result_video]
)
return demo
if __name__ == "__main__":
demo = ui()
demo.launch(share=True)
|