Spaces:
Sleeping
Sleeping
Guillermo Uribe Vicencio
commited on
Commit
·
d604d1b
1
Parent(s):
c004616
app.py
CHANGED
@@ -254,7 +254,11 @@ simple = pd.DataFrame(
|
|
254 |
)
|
255 |
|
256 |
with gr.Blocks() as demo:
|
257 |
-
|
|
|
|
|
|
|
|
|
258 |
gr.Markdown(value='# Prithvi multi temporal crop classification')
|
259 |
gr.Markdown(value='''Prithvi is a first-of-its-kind temporal Vision transformer pretrained by the IBM and NASA team on continental US Harmonised Landsat Sentinel 2 (HLS) data. This demo showcases how the model was finetuned to classify crop and other land use categories using multi temporal data. More detailes can be found [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification).\n
|
260 |
The user needs to provide an HLS geotiff image, including 18 bands for 3 time-step, and each time-step includes the channels described above (Blue, Green, Red, Narrow NIR, SWIR, SWIR 2) in order.
|
@@ -265,31 +269,30 @@ with gr.Blocks() as demo:
|
|
265 |
btn = gr.Button("Submit")
|
266 |
|
267 |
with gr.Column():
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
btn.click(fn=func, inputs=inp, outputs=[inp1, inp2, inp3, out])
|
275 |
|
276 |
with gr.Row():
|
277 |
with gr.Column():
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
x='a',
|
288 |
-
y='b')
|
289 |
-
|
290 |
with gr.Column():
|
291 |
-
gr.
|
292 |
-
gr.Image(value='Legend.png', image_mode='RGB', show_label=False)
|
293 |
-
|
|
|
|
|
|
|
294 |
|
295 |
-
demo.launch()
|
|
|
254 |
)
|
255 |
|
256 |
with gr.Blocks() as demo:
|
257 |
+
with gr.Row():
|
258 |
+
gr.Markdown(value='# Eclipse2')
|
259 |
+
gr.Button("Input")
|
260 |
+
gr.Button("Categories")
|
261 |
+
gr.Button("X")
|
262 |
gr.Markdown(value='# Prithvi multi temporal crop classification')
|
263 |
gr.Markdown(value='''Prithvi is a first-of-its-kind temporal Vision transformer pretrained by the IBM and NASA team on continental US Harmonised Landsat Sentinel 2 (HLS) data. This demo showcases how the model was finetuned to classify crop and other land use categories using multi temporal data. More detailes can be found [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification).\n
|
264 |
The user needs to provide an HLS geotiff image, including 18 bands for 3 time-step, and each time-step includes the channels described above (Blue, Green, Red, Narrow NIR, SWIR, SWIR 2) in order.
|
|
|
269 |
btn = gr.Button("Submit")
|
270 |
|
271 |
with gr.Column():
|
272 |
+
with gr.Row():
|
273 |
+
inp1=gr.Image(image_mode='RGB', scale=10, label='T1')
|
274 |
+
inp2=gr.Image(image_mode='RGB', scale=10, label='T2')
|
275 |
+
inp3=gr.Image(image_mode='RGB', scale=10, label='T3')
|
276 |
+
|
|
|
277 |
btn.click(fn=func, inputs=inp, outputs=[inp1, inp2, inp3, out])
|
278 |
|
279 |
with gr.Row():
|
280 |
with gr.Column():
|
281 |
+
gr.BarPlot(simple,
|
282 |
+
x="a",
|
283 |
+
y="b",
|
284 |
+
title="Simple Bar Plot with made up data",
|
285 |
+
tooltip=["a", "b"],
|
286 |
+
y_lim=[20, 100],)
|
287 |
+
gr.LinePlot(simple,
|
288 |
+
x='a',
|
289 |
+
y='b')
|
|
|
|
|
|
|
290 |
with gr.Column():
|
291 |
+
out = gr.Image(image_mode='RGB', scale=10, label='Model prediction')
|
292 |
+
# gr.Image(value='Legend.png', image_mode='RGB', scale=2, show_label=False)
|
293 |
+
|
294 |
+
with gr.Row():
|
295 |
+
gr.Markdown(value='### Model prediction legend')
|
296 |
+
gr.Image(value='Legend.png', image_mode='RGB', show_label=False)
|
297 |
|
298 |
+
demo.launch()
|