Guillermo Uribe Vicencio commited on
Commit
d604d1b
·
1 Parent(s): c004616
Files changed (1) hide show
  1. app.py +26 -23
app.py CHANGED
@@ -254,7 +254,11 @@ simple = pd.DataFrame(
254
  )
255
 
256
  with gr.Blocks() as demo:
257
-
 
 
 
 
258
  gr.Markdown(value='# Prithvi multi temporal crop classification')
259
  gr.Markdown(value='''Prithvi is a first-of-its-kind temporal Vision transformer pretrained by the IBM and NASA team on continental US Harmonised Landsat Sentinel 2 (HLS) data. This demo showcases how the model was finetuned to classify crop and other land use categories using multi temporal data. More detailes can be found [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification).\n
260
  The user needs to provide an HLS geotiff image, including 18 bands for 3 time-step, and each time-step includes the channels described above (Blue, Green, Red, Narrow NIR, SWIR, SWIR 2) in order.
@@ -265,31 +269,30 @@ with gr.Blocks() as demo:
265
  btn = gr.Button("Submit")
266
 
267
  with gr.Column():
268
- inp1=gr.Image(image_mode='RGB', scale=10, label='T1')
269
- inp2=gr.Image(image_mode='RGB', scale=10, label='T2')
270
- inp3=gr.Image(image_mode='RGB', scale=10, label='T3')
271
- out = gr.Image(image_mode='RGB', scale=10, label='Model prediction')
272
- # gr.Image(value='Legend.png', image_mode='RGB', scale=2, show_label=False)
273
-
274
  btn.click(fn=func, inputs=inp, outputs=[inp1, inp2, inp3, out])
275
 
276
  with gr.Row():
277
  with gr.Column():
278
- with gr.Row():
279
- gr.BarPlot(simple,
280
- x="a",
281
- y="b",
282
- title="Simple Bar Plot with made up data",
283
- tooltip=["a", "b"],
284
- y_lim=[20, 100],)
285
- with gr.Row():
286
- gr.LinePlot(simple,
287
- x='a',
288
- y='b')
289
-
290
  with gr.Column():
291
- gr.Markdown(value='### Model prediction legend')
292
- gr.Image(value='Legend.png', image_mode='RGB', show_label=False)
293
-
 
 
 
294
 
295
- demo.launch()
 
254
  )
255
 
256
  with gr.Blocks() as demo:
257
+ with gr.Row():
258
+ gr.Markdown(value='# Eclipse2')
259
+ gr.Button("Input")
260
+ gr.Button("Categories")
261
+ gr.Button("X")
262
  gr.Markdown(value='# Prithvi multi temporal crop classification')
263
  gr.Markdown(value='''Prithvi is a first-of-its-kind temporal Vision transformer pretrained by the IBM and NASA team on continental US Harmonised Landsat Sentinel 2 (HLS) data. This demo showcases how the model was finetuned to classify crop and other land use categories using multi temporal data. More detailes can be found [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M-multi-temporal-crop-classification).\n
264
  The user needs to provide an HLS geotiff image, including 18 bands for 3 time-step, and each time-step includes the channels described above (Blue, Green, Red, Narrow NIR, SWIR, SWIR 2) in order.
 
269
  btn = gr.Button("Submit")
270
 
271
  with gr.Column():
272
+ with gr.Row():
273
+ inp1=gr.Image(image_mode='RGB', scale=10, label='T1')
274
+ inp2=gr.Image(image_mode='RGB', scale=10, label='T2')
275
+ inp3=gr.Image(image_mode='RGB', scale=10, label='T3')
276
+
 
277
  btn.click(fn=func, inputs=inp, outputs=[inp1, inp2, inp3, out])
278
 
279
  with gr.Row():
280
  with gr.Column():
281
+ gr.BarPlot(simple,
282
+ x="a",
283
+ y="b",
284
+ title="Simple Bar Plot with made up data",
285
+ tooltip=["a", "b"],
286
+ y_lim=[20, 100],)
287
+ gr.LinePlot(simple,
288
+ x='a',
289
+ y='b')
 
 
 
290
  with gr.Column():
291
+ out = gr.Image(image_mode='RGB', scale=10, label='Model prediction')
292
+ # gr.Image(value='Legend.png', image_mode='RGB', scale=2, show_label=False)
293
+
294
+ with gr.Row():
295
+ gr.Markdown(value='### Model prediction legend')
296
+ gr.Image(value='Legend.png', image_mode='RGB', show_label=False)
297
 
298
+ demo.launch()