Spaces:
Sleeping
Sleeping
Guillermo Uribe Vicencio
commited on
Commit
·
e6bf424
1
Parent(s):
fffc2dc
app.py
CHANGED
@@ -57,7 +57,7 @@ cdl_color_map = [{'value': 1, 'label': 'Natural vegetation', 'rgb': (233,255,190
|
|
57 |
{'value': 12, 'label': 'Sorghum', 'rgb':(255,158,15), 'qtt': 0},
|
58 |
{'value': 13, 'label': 'Other', 'rgb':(0,175,77), 'qtt': 0}]
|
59 |
|
60 |
-
def apply_color_map(rgb, color_map=cdl_color_map):
|
61 |
|
62 |
rgb_mapped = rgb.copy()
|
63 |
|
@@ -68,8 +68,8 @@ def apply_color_map(rgb, color_map=cdl_color_map):
|
|
68 |
cont = np.where((rgb[0] == map_tmp['value']) & (rgb[1] == map_tmp['value']) & (rgb[2] == map_tmp['value']), 1, 0)
|
69 |
|
70 |
print(map_tmp['label'])
|
71 |
-
|
72 |
-
map_resume.append({"label": map_tmp['label'],'qtt': sum(
|
73 |
|
74 |
return rgb_mapped
|
75 |
|
@@ -180,7 +180,7 @@ def process_rgb(input, mask, indexes):
|
|
180 |
|
181 |
return rgb
|
182 |
|
183 |
-
def inference_on_file(target_image, model, custom_test_pipeline):
|
184 |
|
185 |
target_image = target_image.name
|
186 |
time_taken=-1
|
@@ -214,7 +214,7 @@ def inference_on_file(target_image, model, custom_test_pipeline):
|
|
214 |
output = np.vstack([output[None], output[None], output[None]]).astype(np.uint8)
|
215 |
|
216 |
|
217 |
-
output=apply_color_map(output).transpose((1,2,0))
|
218 |
|
219 |
return rgb1,rgb2,rgb3,output
|
220 |
|
@@ -245,7 +245,7 @@ model = init_segmentor(config, ckpt, device='cpu')
|
|
245 |
custom_test_pipeline=process_test_pipeline(model.cfg.data.test.pipeline, None)
|
246 |
|
247 |
|
248 |
-
func = partial(inference_on_file, model=model, custom_test_pipeline=custom_test_pipeline)
|
249 |
print("")
|
250 |
bar_data = pd.DataFrame(map_resume)
|
251 |
|
@@ -271,16 +271,15 @@ with gr.Blocks() as demo:
|
|
271 |
inp3=gr.Image(image_mode='RGB', scale=10, label='T3')
|
272 |
|
273 |
with gr.Row():
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
y='qtt')
|
284 |
with gr.Column():
|
285 |
out = gr.Image(image_mode='RGB', scale=10, label='Model prediction')
|
286 |
# gr.Image(value='Legend.png', image_mode='RGB', scale=2, show_label=False)
|
|
|
57 |
{'value': 12, 'label': 'Sorghum', 'rgb':(255,158,15), 'qtt': 0},
|
58 |
{'value': 13, 'label': 'Other', 'rgb':(0,175,77), 'qtt': 0}]
|
59 |
|
60 |
+
def apply_color_map(rgb, color_map=cdl_color_map, map_resume=map_resume):
|
61 |
|
62 |
rgb_mapped = rgb.copy()
|
63 |
|
|
|
68 |
cont = np.where((rgb[0] == map_tmp['value']) & (rgb[1] == map_tmp['value']) & (rgb[2] == map_tmp['value']), 1, 0)
|
69 |
|
70 |
print(map_tmp['label'])
|
71 |
+
print("Cantidad total ", sum(cont))
|
72 |
+
map_resume.append({"label": map_tmp['label'],'qtt': sum(cont)})
|
73 |
|
74 |
return rgb_mapped
|
75 |
|
|
|
180 |
|
181 |
return rgb
|
182 |
|
183 |
+
def inference_on_file(target_image, model, custom_test_pipeline, map_resume):
|
184 |
|
185 |
target_image = target_image.name
|
186 |
time_taken=-1
|
|
|
214 |
output = np.vstack([output[None], output[None], output[None]]).astype(np.uint8)
|
215 |
|
216 |
|
217 |
+
output=apply_color_map(output,map_resume).transpose((1,2,0))
|
218 |
|
219 |
return rgb1,rgb2,rgb3,output
|
220 |
|
|
|
245 |
custom_test_pipeline=process_test_pipeline(model.cfg.data.test.pipeline, None)
|
246 |
|
247 |
|
248 |
+
func = partial(inference_on_file, model=model, custom_test_pipeline=custom_test_pipeline, map_resume=map_resume)
|
249 |
print("")
|
250 |
bar_data = pd.DataFrame(map_resume)
|
251 |
|
|
|
271 |
inp3=gr.Image(image_mode='RGB', scale=10, label='T3')
|
272 |
|
273 |
with gr.Row():
|
274 |
+
with gr.Column():
|
275 |
+
gr.BarPlot(bar_data,
|
276 |
+
x="label",
|
277 |
+
y="qtt",
|
278 |
+
title="Simple Bar Plot with made up data",
|
279 |
+
tooltip=["label", "qtt"])
|
280 |
+
gr.LinePlot(bar_data,
|
281 |
+
x='label',
|
282 |
+
y='qtt')
|
|
|
283 |
with gr.Column():
|
284 |
out = gr.Image(image_mode='RGB', scale=10, label='Model prediction')
|
285 |
# gr.Image(value='Legend.png', image_mode='RGB', scale=2, show_label=False)
|