Guillermo Uribe Vicencio commited on
Commit
e6bf424
·
1 Parent(s): fffc2dc
Files changed (1) hide show
  1. app.py +15 -16
app.py CHANGED
@@ -57,7 +57,7 @@ cdl_color_map = [{'value': 1, 'label': 'Natural vegetation', 'rgb': (233,255,190
57
  {'value': 12, 'label': 'Sorghum', 'rgb':(255,158,15), 'qtt': 0},
58
  {'value': 13, 'label': 'Other', 'rgb':(0,175,77), 'qtt': 0}]
59
 
60
- def apply_color_map(rgb, color_map=cdl_color_map):
61
 
62
  rgb_mapped = rgb.copy()
63
 
@@ -68,8 +68,8 @@ def apply_color_map(rgb, color_map=cdl_color_map):
68
  cont = np.where((rgb[0] == map_tmp['value']) & (rgb[1] == map_tmp['value']) & (rgb[2] == map_tmp['value']), 1, 0)
69
 
70
  print(map_tmp['label'])
71
- #print("Cantidad total ", sum(sum(cont)))
72
- map_resume.append({"label": map_tmp['label'],'qtt': sum(sum(cont))})
73
 
74
  return rgb_mapped
75
 
@@ -180,7 +180,7 @@ def process_rgb(input, mask, indexes):
180
 
181
  return rgb
182
 
183
- def inference_on_file(target_image, model, custom_test_pipeline):
184
 
185
  target_image = target_image.name
186
  time_taken=-1
@@ -214,7 +214,7 @@ def inference_on_file(target_image, model, custom_test_pipeline):
214
  output = np.vstack([output[None], output[None], output[None]]).astype(np.uint8)
215
 
216
 
217
- output=apply_color_map(output).transpose((1,2,0))
218
 
219
  return rgb1,rgb2,rgb3,output
220
 
@@ -245,7 +245,7 @@ model = init_segmentor(config, ckpt, device='cpu')
245
  custom_test_pipeline=process_test_pipeline(model.cfg.data.test.pipeline, None)
246
 
247
 
248
- func = partial(inference_on_file, model=model, custom_test_pipeline=custom_test_pipeline)
249
  print("")
250
  bar_data = pd.DataFrame(map_resume)
251
 
@@ -271,16 +271,15 @@ with gr.Blocks() as demo:
271
  inp3=gr.Image(image_mode='RGB', scale=10, label='T3')
272
 
273
  with gr.Row():
274
- if len(map_resume) > 1:
275
- with gr.Column():
276
- gr.BarPlot(bar_data,
277
- x="label",
278
- y="qtt",
279
- title="Simple Bar Plot with made up data",
280
- tooltip=["label", "qtt"])
281
- gr.LinePlot(bar_data,
282
- x='label',
283
- y='qtt')
284
  with gr.Column():
285
  out = gr.Image(image_mode='RGB', scale=10, label='Model prediction')
286
  # gr.Image(value='Legend.png', image_mode='RGB', scale=2, show_label=False)
 
57
  {'value': 12, 'label': 'Sorghum', 'rgb':(255,158,15), 'qtt': 0},
58
  {'value': 13, 'label': 'Other', 'rgb':(0,175,77), 'qtt': 0}]
59
 
60
+ def apply_color_map(rgb, color_map=cdl_color_map, map_resume=map_resume):
61
 
62
  rgb_mapped = rgb.copy()
63
 
 
68
  cont = np.where((rgb[0] == map_tmp['value']) & (rgb[1] == map_tmp['value']) & (rgb[2] == map_tmp['value']), 1, 0)
69
 
70
  print(map_tmp['label'])
71
+ print("Cantidad total ", sum(cont))
72
+ map_resume.append({"label": map_tmp['label'],'qtt': sum(cont)})
73
 
74
  return rgb_mapped
75
 
 
180
 
181
  return rgb
182
 
183
+ def inference_on_file(target_image, model, custom_test_pipeline, map_resume):
184
 
185
  target_image = target_image.name
186
  time_taken=-1
 
214
  output = np.vstack([output[None], output[None], output[None]]).astype(np.uint8)
215
 
216
 
217
+ output=apply_color_map(output,map_resume).transpose((1,2,0))
218
 
219
  return rgb1,rgb2,rgb3,output
220
 
 
245
  custom_test_pipeline=process_test_pipeline(model.cfg.data.test.pipeline, None)
246
 
247
 
248
+ func = partial(inference_on_file, model=model, custom_test_pipeline=custom_test_pipeline, map_resume=map_resume)
249
  print("")
250
  bar_data = pd.DataFrame(map_resume)
251
 
 
271
  inp3=gr.Image(image_mode='RGB', scale=10, label='T3')
272
 
273
  with gr.Row():
274
+ with gr.Column():
275
+ gr.BarPlot(bar_data,
276
+ x="label",
277
+ y="qtt",
278
+ title="Simple Bar Plot with made up data",
279
+ tooltip=["label", "qtt"])
280
+ gr.LinePlot(bar_data,
281
+ x='label',
282
+ y='qtt')
 
283
  with gr.Column():
284
  out = gr.Image(image_mode='RGB', scale=10, label='Model prediction')
285
  # gr.Image(value='Legend.png', image_mode='RGB', scale=2, show_label=False)