Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
6 |
+
|
7 |
+
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
8 |
+
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
9 |
+
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
model.to(device)
|
12 |
+
|
13 |
+
def process_document(image):
|
14 |
+
# prepare encoder inputs
|
15 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
16 |
+
|
17 |
+
# prepare decoder inputs
|
18 |
+
task_prompt = "<s_cord-v2>"
|
19 |
+
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
20 |
+
|
21 |
+
# generate answer
|
22 |
+
outputs = model.generate(
|
23 |
+
pixel_values.to(device),
|
24 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
25 |
+
max_length=model.decoder.config.max_position_embeddings,
|
26 |
+
early_stopping=True,
|
27 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
28 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
29 |
+
use_cache=True,
|
30 |
+
num_beams=1,
|
31 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
32 |
+
return_dict_in_generate=True,
|
33 |
+
)
|
34 |
+
|
35 |
+
# postprocess
|
36 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
37 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
38 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
39 |
+
|
40 |
+
return processor.token2json(sequence)
|
41 |
+
|
42 |
+
description = "Gradio Demo for Donut, an instance of `VisionEncoderDecoderModel` fine-tuned on CORD (document parsing). To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
|
43 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2111.15664' target='_blank'>Donut: OCR-free Document Understanding Transformer</a> | <a href='https://github.com/clovaai/donut' target='_blank'>Github Repo</a></p>"
|
44 |
+
|
45 |
+
demo = gr.Interface(
|
46 |
+
fn=process_document,
|
47 |
+
inputs="image",
|
48 |
+
outputs="json",
|
49 |
+
title="Demo: Donut 🍩 for Document Parsing",
|
50 |
+
description=description,
|
51 |
+
article=article,
|
52 |
+
enable_queue=True,
|
53 |
+
examples=[["example.png"], ["example_2.png"], ["example_3.png"]],
|
54 |
+
cache_examples=False)
|
55 |
+
|
56 |
+
demo.launch()
|