3dart / pipelines.py
gusgeneris's picture
First
c24da45
raw
history blame
8.7 kB
import torch
from libs.base_utils import do_resize_content
from imagedream.ldm.util import (
instantiate_from_config,
get_obj_from_str,
)
from omegaconf import OmegaConf
from PIL import Image
import PIL
import rembg
class TwoStagePipeline(object):
def __init__(
self,
stage1_model_config,
stage2_model_config,
stage1_sampler_config,
stage2_sampler_config,
device="cuda",
dtype=torch.float16,
resize_rate=1,
) -> None:
"""
only for two stage generate process.
- the first stage was condition on single pixel image, gererate multi-view pixel image, based on the v2pp config
- the second stage was condition on multiview pixel image generated by the first stage, generate the final image, based on the stage2-test config
"""
self.resize_rate = resize_rate
self.stage1_model = instantiate_from_config(OmegaConf.load(stage1_model_config.config).model)
self.stage1_model.load_state_dict(torch.load(stage1_model_config.resume, map_location="cpu"), strict=False)
self.stage1_model = self.stage1_model.to(device).to(dtype)
self.stage2_model = instantiate_from_config(OmegaConf.load(stage2_model_config.config).model)
sd = torch.load(stage2_model_config.resume, map_location="cpu")
self.stage2_model.load_state_dict(sd, strict=False)
self.stage2_model = self.stage2_model.to(device).to(dtype)
self.stage1_model.device = device
self.stage2_model.device = device
self.device = device
self.dtype = dtype
self.stage1_sampler = get_obj_from_str(stage1_sampler_config.target)(
self.stage1_model, device=device, dtype=dtype, **stage1_sampler_config.params
)
self.stage2_sampler = get_obj_from_str(stage2_sampler_config.target)(
self.stage2_model, device=device, dtype=dtype, **stage2_sampler_config.params
)
def stage1_sample(
self,
pixel_img,
prompt="3D assets",
neg_texts="uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear.",
step=50,
scale=5,
ddim_eta=0.0,
):
if type(pixel_img) == str:
pixel_img = Image.open(pixel_img)
if isinstance(pixel_img, Image.Image):
if pixel_img.mode == "RGBA":
background = Image.new('RGBA', pixel_img.size, (0, 0, 0, 0))
pixel_img = Image.alpha_composite(background, pixel_img).convert("RGB")
else:
pixel_img = pixel_img.convert("RGB")
else:
raise
uc = self.stage1_sampler.model.get_learned_conditioning([neg_texts]).to(self.device)
stage1_images = self.stage1_sampler.i2i(
self.stage1_sampler.model,
self.stage1_sampler.size,
prompt,
uc=uc,
sampler=self.stage1_sampler.sampler,
ip=pixel_img,
step=step,
scale=scale,
batch_size=self.stage1_sampler.batch_size,
ddim_eta=ddim_eta,
dtype=self.stage1_sampler.dtype,
device=self.stage1_sampler.device,
camera=self.stage1_sampler.camera,
num_frames=self.stage1_sampler.num_frames,
pixel_control=(self.stage1_sampler.mode == "pixel"),
transform=self.stage1_sampler.image_transform,
offset_noise=self.stage1_sampler.offset_noise,
)
stage1_images = [Image.fromarray(img) for img in stage1_images]
stage1_images.pop(self.stage1_sampler.ref_position)
return stage1_images
def stage2_sample(self, pixel_img, stage1_images, scale=5, step=50):
if type(pixel_img) == str:
pixel_img = Image.open(pixel_img)
if isinstance(pixel_img, Image.Image):
if pixel_img.mode == "RGBA":
background = Image.new('RGBA', pixel_img.size, (0, 0, 0, 0))
pixel_img = Image.alpha_composite(background, pixel_img).convert("RGB")
else:
pixel_img = pixel_img.convert("RGB")
else:
raise
stage2_images = self.stage2_sampler.i2iStage2(
self.stage2_sampler.model,
self.stage2_sampler.size,
"3D assets",
self.stage2_sampler.uc,
self.stage2_sampler.sampler,
pixel_images=stage1_images,
ip=pixel_img,
step=step,
scale=scale,
batch_size=self.stage2_sampler.batch_size,
ddim_eta=0.0,
dtype=self.stage2_sampler.dtype,
device=self.stage2_sampler.device,
camera=self.stage2_sampler.camera,
num_frames=self.stage2_sampler.num_frames,
pixel_control=(self.stage2_sampler.mode == "pixel"),
transform=self.stage2_sampler.image_transform,
offset_noise=self.stage2_sampler.offset_noise,
)
stage2_images = [Image.fromarray(img) for img in stage2_images]
return stage2_images
def set_seed(self, seed):
self.stage1_sampler.seed = seed
self.stage2_sampler.seed = seed
def __call__(self, pixel_img, prompt="3D assets", scale=5, step=50):
pixel_img = do_resize_content(pixel_img, self.resize_rate)
stage1_images = self.stage1_sample(pixel_img, prompt, scale=scale, step=step)
stage2_images = self.stage2_sample(pixel_img, stage1_images, scale=scale, step=step)
return {
"ref_img": pixel_img,
"stage1_images": stage1_images,
"stage2_images": stage2_images,
}
rembg_session = rembg.new_session()
def expand_to_square(image, bg_color=(0, 0, 0, 0)):
# expand image to 1:1
width, height = image.size
if width == height:
return image
new_size = (max(width, height), max(width, height))
new_image = Image.new("RGBA", new_size, bg_color)
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
new_image.paste(image, paste_position)
return new_image
def remove_background(
image: PIL.Image.Image,
rembg_session = None,
force: bool = False,
**rembg_kwargs,
) -> PIL.Image.Image:
do_remove = True
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
# explain why current do not rm bg
print("alhpa channl not enpty, skip remove background, using alpha channel as mask")
background = Image.new("RGBA", image.size, (0, 0, 0, 0))
image = Image.alpha_composite(background, image)
do_remove = False
do_remove = do_remove or force
if do_remove:
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
return image
def do_resize_content(original_image: Image, scale_rate):
# resize image content wile retain the original image size
if scale_rate != 1:
# Calculate the new size after rescaling
new_size = tuple(int(dim * scale_rate) for dim in original_image.size)
# Resize the image while maintaining the aspect ratio
resized_image = original_image.resize(new_size)
# Create a new image with the original size and black background
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0))
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2)
padded_image.paste(resized_image, paste_position)
return padded_image
else:
return original_image
def add_background(image, bg_color=(255, 255, 255)):
# given an RGBA image, alpha channel is used as mask to add background color
background = Image.new("RGBA", image.size, bg_color)
return Image.alpha_composite(background, image)
def preprocess_image(image, background_choice, foreground_ratio, backgroud_color):
"""
input image is a pil image in RGBA, return RGB image
"""
print(background_choice)
if background_choice == "Alpha as mask":
background = Image.new("RGBA", image.size, (0, 0, 0, 0))
image = Image.alpha_composite(background, image)
else:
image = remove_background(image, rembg_session, force_remove=True)
image = do_resize_content(image, foreground_ratio)
image = expand_to_square(image)
image = add_background(image, backgroud_color)
return image.convert("RGB")