Spaces:
Runtime error
Runtime error
import torch | |
from libs.base_utils import do_resize_content | |
from imagedream.ldm.util import ( | |
instantiate_from_config, | |
get_obj_from_str, | |
) | |
from omegaconf import OmegaConf | |
from PIL import Image | |
import numpy as np | |
from inference import generate3d | |
from huggingface_hub import hf_hub_download | |
import json | |
import argparse | |
import shutil | |
from model import CRM | |
import PIL | |
import rembg | |
import os | |
from pipelines import TwoStagePipeline | |
rembg_session = rembg.new_session() | |
def expand_to_square(image, bg_color=(0, 0, 0, 0)): | |
# expand image to 1:1 | |
width, height = image.size | |
if width == height: | |
return image | |
new_size = (max(width, height), max(width, height)) | |
new_image = Image.new("RGBA", new_size, bg_color) | |
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2) | |
new_image.paste(image, paste_position) | |
return new_image | |
def remove_background( | |
image: PIL.Image.Image, | |
rembg_session = None, | |
force: bool = False, | |
**rembg_kwargs, | |
) -> PIL.Image.Image: | |
do_remove = True | |
if image.mode == "RGBA" and image.getextrema()[3][0] < 255: | |
# explain why current do not rm bg | |
print("alhpa channl not enpty, skip remove background, using alpha channel as mask") | |
background = Image.new("RGBA", image.size, (0, 0, 0, 0)) | |
image = Image.alpha_composite(background, image) | |
do_remove = False | |
do_remove = do_remove or force | |
if do_remove: | |
image = rembg.remove(image, session=rembg_session, **rembg_kwargs) | |
return image | |
def do_resize_content(original_image: Image, scale_rate): | |
# resize image content wile retain the original image size | |
if scale_rate != 1: | |
# Calculate the new size after rescaling | |
new_size = tuple(int(dim * scale_rate) for dim in original_image.size) | |
# Resize the image while maintaining the aspect ratio | |
resized_image = original_image.resize(new_size) | |
# Create a new image with the original size and black background | |
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0)) | |
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2) | |
padded_image.paste(resized_image, paste_position) | |
return padded_image | |
else: | |
return original_image | |
def add_background(image, bg_color=(255, 255, 255)): | |
# given an RGBA image, alpha channel is used as mask to add background color | |
background = Image.new("RGBA", image.size, bg_color) | |
return Image.alpha_composite(background, image) | |
def preprocess_image(image, background_choice, foreground_ratio, backgroud_color): | |
""" | |
input image is a pil image in RGBA, return RGB image | |
""" | |
print(background_choice) | |
if background_choice == "Alpha as mask": | |
background = Image.new("RGBA", image.size, (0, 0, 0, 0)) | |
image = Image.alpha_composite(background, image) | |
else: | |
image = remove_background(image, rembg_session, force_remove=True) | |
image = do_resize_content(image, foreground_ratio) | |
image = expand_to_square(image) | |
image = add_background(image, backgroud_color) | |
return image.convert("RGB") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--inputdir", | |
type=str, | |
default="examples/kunkun.webp", | |
help="dir for input image", | |
) | |
parser.add_argument( | |
"--scale", | |
type=float, | |
default=5.0, | |
) | |
parser.add_argument( | |
"--step", | |
type=int, | |
default=50, | |
) | |
parser.add_argument( | |
"--bg_choice", | |
type=str, | |
default="Auto Remove background", | |
help="[Auto Remove background] or [Alpha as mask]", | |
) | |
parser.add_argument( | |
"--outdir", | |
type=str, | |
default="out/", | |
) | |
args = parser.parse_args() | |
img = Image.open(args.inputdir) | |
img = preprocess_image(img, args.bg_choice, 1.0, (127, 127, 127)) | |
os.makedirs(args.outdir, exist_ok=True) | |
img.save(args.outdir+"preprocessed_image.png") | |
crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth") | |
specs = json.load(open("configs/specs_objaverse_total.json")) | |
# model = CRM(specs).to("cuda") | |
model = CRM(specs).to("cpu") | |
model.load_state_dict(torch.load(crm_path, map_location = "cpu"), strict=False) | |
stage1_config = OmegaConf.load("configs/nf7_v3_SNR_rd_size_stroke.yaml").config | |
stage2_config = OmegaConf.load("configs/stage2-v2-snr.yaml").config | |
stage2_sampler_config = stage2_config.sampler | |
stage1_sampler_config = stage1_config.sampler | |
stage1_model_config = stage1_config.models | |
stage2_model_config = stage2_config.models | |
xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth") | |
pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth") | |
stage1_model_config.resume = pixel_path | |
stage2_model_config.resume = xyz_path | |
pipeline = TwoStagePipeline( | |
stage1_model_config, | |
stage2_model_config, | |
stage1_sampler_config, | |
stage2_sampler_config, | |
) | |
rt_dict = pipeline(img, scale=args.scale, step=args.step) | |
stage1_images = rt_dict["stage1_images"] | |
stage2_images = rt_dict["stage2_images"] | |
np_imgs = np.concatenate(stage1_images, 1) | |
np_xyzs = np.concatenate(stage2_images, 1) | |
Image.fromarray(np_imgs).save(args.outdir+"pixel_images.png") | |
Image.fromarray(np_xyzs).save(args.outdir+"xyz_images.png") | |
glb_path, obj_path = generate3d(model, np_imgs, np_xyzs, "cpu") | |
shutil.copy(obj_path, args.outdir+"output3d.zip") |