gusgeneris commited on
Commit
53a2105
·
1 Parent(s): c24da45
Files changed (1) hide show
  1. README.md +1 -80
README.md CHANGED
@@ -1,85 +1,6 @@
1
- # Convolutional Reconstruction Model
2
-
3
- Official implementation for *CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model*.
4
-
5
- **CRM is a feed-forward model which can generate 3D textured mesh in 10 seconds.**
6
-
7
- ## [Project Page](https://ml.cs.tsinghua.edu.cn/~zhengyi/CRM/) | [Arxiv](https://arxiv.org/abs/2403.05034) | [HF-Demo](https://huggingface.co/spaces/Zhengyi/CRM) | [Weights](https://huggingface.co/Zhengyi/CRM)
8
-
9
- https://github.com/thu-ml/CRM/assets/40787266/8b325bc0-aa74-4c26-92e8-a8f0c1079382
10
-
11
- ## Try CRM 🍻
12
- * Try CRM at [Huggingface Demo](https://huggingface.co/spaces/Zhengyi/CRM).
13
- * Try CRM at [Replicate Demo](https://replicate.com/camenduru/crm). Thanks [@camenduru](https://github.com/camenduru)!
14
-
15
- ## Install
16
-
17
- ### Step 1 - Base
18
-
19
- Install package one by one, we use **python 3.9**
20
-
21
- ```bash
22
- pip install torch==1.13.0+cu117 torchvision==0.14.0+cu117 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu117
23
- pip install torch-scatter==2.1.1 -f https://data.pyg.org/whl/torch-1.13.1+cu117.html
24
- pip install kaolin==0.14.0 -f https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-1.13.1_cu117.html
25
- pip install -r requirements.txt
26
- ```
27
-
28
- besides, one by one need to install xformers manually according to the official [doc](https://github.com/facebookresearch/xformers?tab=readme-ov-file#installing-xformers) (**conda no need**), e.g.
29
-
30
- ```bash
31
- pip install ninja
32
- pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers
33
- ```
34
-
35
- ### Step 2 - Nvdiffrast
36
-
37
- Install nvdiffrast according to the official [doc](https://nvlabs.github.io/nvdiffrast/#installation), e.g.
38
-
39
- ```bash
40
- pip install git+https://github.com/NVlabs/nvdiffrast
41
- ```
42
-
43
-
44
-
45
- ## Inference
46
-
47
- We suggest gradio for a visualized inference.
48
-
49
- ```
50
- gradio app.py
51
- ```
52
-
53
- ![image](https://github.com/thu-ml/CRM/assets/40787266/4354d22a-a641-4531-8408-c761ead8b1a2)
54
-
55
- For inference in command lines, simply run
56
- ```bash
57
- CUDA_VISIBLE_DEVICES="0" python run.py --inputdir "examples/kunkun.webp"
58
- ```
59
- It will output the preprocessed image, generated 6-view images and CCMs and a 3D model in obj format.
60
-
61
- **Tips:** (1) If the result is unsatisfatory, please check whether the input image is correctly pre-processed into a grey background. Otherwise the results will be unpredictable.
62
- (2) Different from the [Huggingface Demo](https://huggingface.co/spaces/Zhengyi/CRM), this official implementation uses UV texture instead of vertex color. It has better texture than the online demo but longer generating time owing to the UV texturing.
63
-
64
- ## Todo List
65
- - [x] Release inference code.
66
- - [x] Release pretrained models.
67
- - [ ] Optimize inference code to fit in low memery GPU.
68
- - [ ] Upload training code.
69
-
70
- ## Acknowledgement
71
- - [ImageDream](https://github.com/bytedance/ImageDream)
72
- - [nvdiffrast](https://github.com/NVlabs/nvdiffrast)
73
- - [kiuikit](https://github.com/ashawkey/kiuikit)
74
- - [GET3D](https://github.com/nv-tlabs/GET3D)
75
-
76
- ## Citation
77
-
78
- ```
79
  @article{wang2024crm,
80
- title={CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model},
81
  author={Zhengyi Wang and Yikai Wang and Yifei Chen and Chendong Xiang and Shuo Chen and Dajiang Yu and Chongxuan Li and Hang Su and Jun Zhu},
82
  journal={arXiv preprint arXiv:2403.05034},
83
  year={2024}
84
  }
85
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  @article{wang2024crm,
2
+ title={Test new version},
3
  author={Zhengyi Wang and Yikai Wang and Yifei Chen and Chendong Xiang and Shuo Chen and Dajiang Yu and Chongxuan Li and Hang Su and Jun Zhu},
4
  journal={arXiv preprint arXiv:2403.05034},
5
  year={2024}
6
  }