Spaces:
Runtime error
Runtime error
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import faiss
|
3 |
+
import torch
|
4 |
+
from torchvision.transforms import (
|
5 |
+
Compose,
|
6 |
+
Resize,
|
7 |
+
ToTensor,
|
8 |
+
Normalize,
|
9 |
+
InterpolationMode,
|
10 |
+
)
|
11 |
+
from PIL import Image
|
12 |
+
import gradio as gr
|
13 |
+
|
14 |
+
(ys,) = np.load("embs.npz").values()
|
15 |
+
model = torch.load(
|
16 |
+
"style-extractor-v0.2.0.ckpt",
|
17 |
+
map_location="cpu",
|
18 |
+
)
|
19 |
+
with open("urls.txt") as f:
|
20 |
+
urls = f.read().splitlines()
|
21 |
+
assert len(urls) == len(ys)
|
22 |
+
d = ys.shape[1]
|
23 |
+
index = faiss.IndexFlatL2(d)
|
24 |
+
index.is_trained
|
25 |
+
index.add(ys)
|
26 |
+
tf = Compose(
|
27 |
+
[
|
28 |
+
Resize(
|
29 |
+
size=336,
|
30 |
+
interpolation=InterpolationMode.BICUBIC,
|
31 |
+
max_size=None,
|
32 |
+
antialias=True,
|
33 |
+
),
|
34 |
+
ToTensor(),
|
35 |
+
Normalize(mean=[0.4850, 0.4560, 0.4060], std=[0.2290, 0.2240, 0.2250]),
|
36 |
+
]
|
37 |
+
)
|
38 |
+
|
39 |
+
|
40 |
+
def get_emb(im: Image):
|
41 |
+
model.eval()
|
42 |
+
with torch.no_grad():
|
43 |
+
return model(tf(im).unsqueeze(0))
|
44 |
+
|
45 |
+
|
46 |
+
n_outputs = 50
|
47 |
+
row_size = 5
|
48 |
+
|
49 |
+
|
50 |
+
def f(im):
|
51 |
+
D, I = index.search(get_emb(im), n_outputs)
|
52 |
+
return [f"Distance: {d}\n![]({urls[i]})" for d, i in zip(D[0], I[0])]
|
53 |
+
|
54 |
+
|
55 |
+
with gr.Blocks() as demo:
|
56 |
+
gr.Markdown(
|
57 |
+
"# Style Similarity Search\n\nFind artworks with a similar style from a small database (10k artists * 6img/artist)"
|
58 |
+
)
|
59 |
+
img = gr.Image(type="pil", label="Query", height=500)
|
60 |
+
btn = gr.Button(variant="primary", value="search")
|
61 |
+
outputs = []
|
62 |
+
for i in range(-(n_outputs // (-row_size))):
|
63 |
+
with gr.Row():
|
64 |
+
for _ in range(min(row_size, n_outputs - i * row_size)):
|
65 |
+
outputs.append(gr.Markdown(label=f"#{len(outputs) + 1}"))
|
66 |
+
btn.click(f, img, outputs)
|
67 |
+
demo.launch()
|