guymorlan commited on
Commit
cb2b5cd
·
1 Parent(s): d9b9eeb

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +241 -0
app.py ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import nn
2
+ from transformers import CanineModel, CanineForTokenClassification, CaninePreTrainedModel, CanineTokenizer
3
+ from transformers.modeling_outputs import TokenClassifierOutput
4
+ import gradio as gr
5
+
6
+
7
+ arabic_to_hebrew = {
8
+ # regular letters
9
+ "ا": "א", "أ": "א", "إ": "א", "ء": "א", "ئ": "א", "ؤ": "א",
10
+ "آ": "אא", "ى": "א", "ب": "ב", "ت": "ת", "ث": "ת'", "ج": "ג'",
11
+ "ح": "ח", "خ": "ח'", "د": "ד", "ذ": "ד'", "ر": "ר", "ز": "ז",
12
+ "س": "ס", "ش": "ש", "ص": "צ", "ض": "צ'", "ط": "ט", "ظ": "ט'",
13
+ "ع": "ע", "غ": "ע'", "ف": "פ", "ق": "ק", "ك": "כ", "ل": "ל",
14
+ "م": "מ", "ن": "נ", "ه": "ה", "و": "ו", "ي": "י", "ة": "ה",
15
+ # special characters
16
+ "،": ",", "َ": "ַ", "ُ": "ֻ", "ِ": "ִ",
17
+ }
18
+
19
+ final_letters = {
20
+ "ن": "ן", "م": "ם", "ص": "ץ", "ض": "ץ'", "ف": "ף",
21
+ }
22
+
23
+ def to_taatik(arabic):
24
+ taatik = []
25
+ for index, letter in enumerate(arabic):
26
+ if (
27
+ (index == len(arabic) - 1 or arabic[index + 1] in {" ", ".", "،"}) and
28
+ letter in final_letters
29
+ ):
30
+ taatik.append(final_letters[letter])
31
+ elif letter not in arabic_to_hebrew:
32
+ taatik.append(letter)
33
+ else:
34
+ taatik.append(arabic_to_hebrew[letter])
35
+ return taatik
36
+
37
+
38
+ class TaatikModel(CaninePreTrainedModel):
39
+ # based on CaninePreTrainedModel
40
+ # slightly modified for multilabel classification
41
+
42
+ def __init__(self, config, num_labels=7):
43
+ # Note: one label for each nikud type, plus one for the deletion flag
44
+ super().__init__(config)
45
+ config.num_labels = num_labels
46
+ self.num_labels = config.num_labels
47
+
48
+ self.canine = CanineModel(config)
49
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
50
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
51
+
52
+ # Initialize weights and apply final processing
53
+ self.post_init()
54
+
55
+ self.criterion = nn.BCEWithLogitsLoss()
56
+
57
+ def forward(
58
+ self,
59
+ input_ids=None,
60
+ attention_mask=None,
61
+ token_type_ids=None,
62
+ position_ids=None,
63
+ head_mask=None,
64
+ inputs_embeds=None,
65
+ labels=None,
66
+ output_attentions=None,
67
+ output_hidden_states=None,
68
+ ):
69
+
70
+ outputs = self.canine(
71
+ input_ids,
72
+ attention_mask=attention_mask,
73
+ token_type_ids=token_type_ids,
74
+ position_ids=position_ids,
75
+ head_mask=head_mask,
76
+ inputs_embeds=inputs_embeds,
77
+ output_attentions=output_attentions,
78
+ output_hidden_states=output_hidden_states
79
+ )
80
+
81
+ sequence_output = outputs[0]
82
+
83
+ sequence_output = self.dropout(sequence_output)
84
+ logits = self.classifier(sequence_output)
85
+
86
+ loss = None
87
+ if labels is not None:
88
+ # print(logits)
89
+ # print("-----------")
90
+ # print(labels)
91
+ loss = self.criterion(logits, labels)
92
+
93
+ return TokenClassifierOutput(
94
+ loss=loss,
95
+ logits=logits,
96
+ hidden_states=outputs.hidden_states,
97
+ attentions=outputs.attentions,
98
+ )
99
+
100
+ # tokenizer = CanineTokenizer.from_pretrained("google/canine-c")
101
+ # model = TashkeelModel.from_pretrained("google/canine-c")
102
+
103
+ tokenizer = CanineTokenizer.from_pretrained("google/canine-s")
104
+ # model = TaatikModel.from_pretrained("google/canine-s")
105
+ # model = TaatikModel.from_pretrained("./checkpoint-19034/")
106
+ model = TaatikModel.from_pretrained("guymorlan/Arabic2Taatik")
107
+
108
+
109
+ def convert_nikkud_to_harakat(nikkud):
110
+ labels = []
111
+ if "SHADDA" in nikkud:
112
+ labels.append("SHADDA")
113
+ if "TSERE" in nikkud:
114
+ labels.append("KASRA")
115
+ if "HOLAM" in nikkud:
116
+ labels.append("DAMMA")
117
+ if "PATACH" in nikkud:
118
+ labels.append("FATHA")
119
+ if "SHVA" in nikkud:
120
+ labels.append("SUKUN")
121
+ if "KUBUTZ" in nikkud:
122
+ labels.append("DAMMA")
123
+ if "HIRIQ" in nikkud:
124
+ labels.append("KASRA")
125
+ return labels
126
+
127
+ def convert_binary_to_labels(binary_labels):
128
+ labels = []
129
+ if binary_labels[0] == 1:
130
+ labels.append("SHADDA")
131
+ if binary_labels[1] == 1:
132
+ labels.append("TSERE")
133
+ if binary_labels[2] == 1:
134
+ labels.append("HOLAM")
135
+ if binary_labels[3] == 1:
136
+ labels.append("PATACH")
137
+ if binary_labels[4] == 1:
138
+ labels.append("SHVA")
139
+ if binary_labels[5] == 1:
140
+ labels.append("KUBUTZ")
141
+ if binary_labels[6] == 1:
142
+ labels.append("HIRIQ")
143
+ return labels
144
+
145
+ def convert_label_names_to_chars(label):
146
+ if label == "SHADDA":
147
+ return "ّ"
148
+ if label == "TSERE":
149
+ return "ֵ"
150
+ if label == "HOLAM":
151
+ return "ֹ"
152
+ if label == "PATACH":
153
+ return "ַ"
154
+ if label == "SHVA":
155
+ return "ְ"
156
+ if label == "KUBUTZ":
157
+ return "ֻ"
158
+ if label == "HIRIQ":
159
+ return "ִ"
160
+
161
+ # for these, return arabic harakat
162
+ if label == "DAMMA":
163
+ return "ُ"
164
+ if label == "KASRA":
165
+ return "ِ"
166
+ if label == "FATHA":
167
+ return "َ"
168
+ if label == "SUKUN":
169
+ return "ْ"
170
+ return ""
171
+
172
+ def predict(input, prefix = "P "):
173
+ print(input)
174
+ input_tok = tokenizer(prefix+input, return_tensors="pt")
175
+ print(input_tok)
176
+ outputs = model(**input_tok)
177
+ print(outputs)
178
+ labels = outputs.logits.sigmoid().round().int()
179
+ labels = labels.tolist()[0][3:-1]
180
+ print(labels)
181
+ labels_hebrew = [convert_binary_to_labels(x) for x in labels]
182
+ labels_arabic = [convert_nikkud_to_harakat(x) for x in labels_hebrew]
183
+ print(f"labels_hebrew: {labels_hebrew}")
184
+ print(f"labels_arabic: {labels_arabic}")
185
+
186
+ hebrew = [[x] for x in to_taatik(input)]
187
+ print(hebrew)
188
+ arabic = [[x] for x in input]
189
+ print(arabic)
190
+
191
+ print(f"len hebrew: {len(hebrew)}")
192
+ print(f"len arabic: {len(arabic)}")
193
+ print(f"len labels_hebrew: {len(labels_hebrew)}")
194
+ print(f"len labels_arabic: {len(labels_arabic)}")
195
+ print(f"labels: {labels}")
196
+ print(f"labels_hebrew: {labels_hebrew}")
197
+ print(f"labels_arabic: {labels_arabic}")
198
+
199
+ for i in range(len(hebrew)):
200
+ hebrew[i].extend([convert_label_names_to_chars(x) for x in labels_hebrew[i]])
201
+ arabic[i].extend([convert_label_names_to_chars(x) for x in labels_arabic[i]])
202
+
203
+
204
+ hebrew = ["".join(x) for x in hebrew]
205
+ arabic = ["".join(x) for x in arabic]
206
+
207
+ # loop over hebrew, if there is a ' in the second position move it to last position
208
+ for i in range(len(hebrew)):
209
+ if len(hebrew[i]) > 1 and hebrew[i][1] == "'":
210
+ hebrew[i] = hebrew[i][0] + hebrew[i][2:] + hebrew[i][1]
211
+
212
+ hebrew = "".join(hebrew)
213
+ arabic = "".join(arabic)
214
+
215
+
216
+ return f"<p dir='rtl' style='font-size: 1.5em; font-family: Arial Unicode MS;'>{hebrew}</p><p dir='rtl' style='font-size: 1.5em; font-family: Noto;'>{arabic}</p>"
217
+
218
+ font = "Arial Unicode MS, Tahoma, sans-serif"
219
+ return f"<p dir='rtl' style='font-size: 1.5em; font-family: {font};'>{hebrew}</p><p dir='rtl' style='font-size: 1.5em; font-family: {font};'>{arabic}</p>"
220
+ return f"<p dir='rtl' style='font-size: 1.5em; font-family: Heebo;'>{hebrew}</p><p dir='rtl' style='font-size: 1.5em; font-family: Heebo;'>{arabic}</p>"
221
+
222
+ # return f"<p dir='rtl' style='font-size: 1.5em'>{hebrew}</p><p dir='rtl' style='font-size: 1.5em'>{arabic}</p>"
223
+
224
+ font_url = "<link href='https://fonts.googleapis.com/css2?family=Heebo&display=swap' rel='stylesheet'>"
225
+
226
+ with gr.Blocks(theme=gr.themes.Soft(), title="Ammiya Diacritizer") as demo:
227
+ gr.HTML("<h2><span style='color: #2563eb'>Colloquial Arabic</span></h2> Diacritizer and Hebrew Transliterator" + font_url)
228
+ with gr.Row():
229
+ with gr.Column():
230
+ input = gr.Textbox(label="Input", placeholder="Enter Arabic text", lines=1)
231
+ gr.Examples(["بديش اروح معك"], input)
232
+ btn = gr.Button(label="Analyze")
233
+ with gr.Column():
234
+ with gr.Box():
235
+ html = gr.HTML()
236
+ btn.click(predict, inputs=[input], outputs=[html])
237
+ input.submit(predict, inputs = [input], outputs=[html])
238
+
239
+ demo.load()
240
+ demo.launch()
241
+