File size: 6,571 Bytes
29efa50 3cfd2df 29efa50 3cfd2df c3f3bd0 29efa50 c3f3bd0 29efa50 711eab8 91088d2 29efa50 91088d2 29efa50 c3f3bd0 29efa50 3cfd2df 29efa50 3cfd2df 29efa50 0d214da 29efa50 0d214da 29efa50 91088d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import argparse
import os
import gradio as gr
import pickle
from PIL import Image
from torchvision import transforms
from detector.model import *
from detector import config
from font_dataset.font import load_fonts
from huggingface_hub import hf_hub_download
parser = argparse.ArgumentParser()
parser.add_argument(
"-d",
"--device",
type=int,
default=0,
help="GPU devices to use (default: 0), -1 for CPU",
)
parser.add_argument(
"-c",
"--checkpoint",
type=str,
default=None,
help="Trainer checkpoint path (default: None). Use link as huggingface://<user>/<repo>/<file> for huggingface.co models, currently only supports model file in the root directory.",
)
parser.add_argument(
"-m",
"--model",
type=str,
default="resnet18",
choices=["resnet18", "resnet34", "resnet50", "resnet101", "deepfont"],
help="Model to use (default: resnet18)",
)
parser.add_argument(
"-f",
"--font-classification-only",
action="store_true",
help="Font classification only (default: False)",
)
parser.add_argument(
"-z",
"--size",
type=int,
default=512,
help="Model feature image input size (default: 512)",
)
parser.add_argument(
"-s",
"--share",
action="store_true",
help="Get public link via Gradio (default: False)",
)
parser.add_argument(
"-p",
"--port",
type=int,
default=7860,
help="Port to use for Gradio (default: 7860)",
)
parser.add_argument(
"-a",
"--address",
type=str,
default="127.0.0.1",
help="Address to use for Gradio (default: 127.0.0.1)",
)
args = parser.parse_args()
config.INPUT_SIZE = args.size
device = torch.device("cpu") if args.device == -1 else torch.device("cuda", args.device)
regression_use_tanh = False
if args.model == "resnet18":
model = ResNet18Regressor(regression_use_tanh=regression_use_tanh)
elif args.model == "resnet34":
model = ResNet34Regressor(regression_use_tanh=regression_use_tanh)
elif args.model == "resnet50":
model = ResNet50Regressor(regression_use_tanh=regression_use_tanh)
elif args.model == "resnet101":
model = ResNet101Regressor(regression_use_tanh=regression_use_tanh)
elif args.model == "deepfont":
assert args.pretrained is False
assert args.size == 105
assert args.font_classification_only is True
model = DeepFontBaseline()
else:
raise NotImplementedError()
if torch.__version__ >= "2.0" and os.name == "posix":
model = torch.compile(model)
torch._dynamo.config.suppress_errors = True
if str(args.checkpoint).startswith("huggingface://"):
args.checkpoint = args.checkpoint[14:]
user, repo, file = args.checkpoint.split("/")
repo = f"{user}/{repo}"
args.checkpoint = hf_hub_download(repo, file)
detector = FontDetector(
model=model,
lambda_font=1,
lambda_direction=1,
lambda_regression=1,
font_classification_only=args.font_classification_only,
lr=1,
betas=(1, 1),
num_warmup_iters=1,
num_iters=1e9,
num_epochs=1e9,
)
detector.load_from_checkpoint(
args.checkpoint,
map_location=device,
model=model,
lambda_font=1,
lambda_direction=1,
lambda_regression=1,
font_classification_only=args.font_classification_only,
lr=1,
betas=(1, 1),
num_warmup_iters=1,
num_iters=1e9,
num_epochs=1e9,
)
detector = detector.to(device)
detector.eval()
transform = transforms.Compose(
[
transforms.Resize((512, 512)),
transforms.ToTensor(),
]
)
def prepare_fonts(cache_path="font_demo_cache.bin"):
print("Preparing fonts ...")
if os.path.exists(cache_path):
return pickle.load(open(cache_path, "rb"))
font_list, exclusion_rule = load_fonts()
font_list = list(filter(lambda x: not exclusion_rule(x), font_list))
font_list.sort(key=lambda x: x.path)
for i in range(len(font_list)):
font_list[i].path = font_list[i].path[18:] # remove ./dataset/fonts/./ prefix
with open(cache_path, "wb") as f:
pickle.dump(font_list, f)
return font_list
font_list = prepare_fonts()
font_demo_images = []
for i in range(len(font_list)):
font_demo_images.append(Image.open(f"demo_fonts/{i}.jpg").convert("RGB"))
def recognize_font(image):
transformed_image = transform(image)
with torch.no_grad():
transformed_image = transformed_image.to(device)
output = detector(transformed_image.unsqueeze(0))
prob = output[0][: config.FONT_COUNT].softmax(dim=0)
indicies = torch.topk(prob, 9)[1]
return [
{font_list[i].path: float(prob[i]) for i in range(config.FONT_COUNT)},
*[gr.Image.update(value=font_demo_images[indicies[i]]) for i in range(9)],
*[
gr.Markdown.update(
value=f"**Font Name**: {font_list[indicies[i]].path}"
)
for i in range(9)
],
]
def generate_grid(num_columns, num_rows):
ret_images, ret_labels = [], []
with gr.Column():
for _ in range(num_rows):
with gr.Row():
for _ in range(num_columns):
with gr.Column():
ret_labels.append(gr.Markdown("**Font Name**"))
ret_images.append(gr.Image())
return ret_images, ret_labels
# fmt: off
intro = \
"""
<div align="center">
<h1>✨ Font Recognition 字体检测 ✨</h1>
</div>
Project page 项目地址: [https://github.com/JeffersonQin/YuzuMarker.FontDetection](https://github.com/JeffersonQin/YuzuMarker.FontDetection)
Upload an image to detect the font used in the image. Please make sure the text occupies most of the image area to achieve higher recognition accuracy.
上传图片以检测字体,尽量使得图片中的文字占据图片的大部分区域以获得更高的识别准确率。
Click "Run" to start the demo after uploading an image.
上传完成之后点击“Run”开始识别。
"""
# fmt: on
with gr.Blocks() as demo:
with gr.Column():
intro = gr.Markdown(intro)
with gr.Row():
inp = gr.Image(type="pil", label="Input Image")
out = gr.Label(num_top_classes=9, label="Output Font")
font_demo_images_blocks, font_demo_labels_blocks = generate_grid(3, 3)
submit_button = gr.Button(label="Submit")
submit_button.click(
fn=recognize_font,
inputs=inp,
outputs=[out, *font_demo_images_blocks, *font_demo_labels_blocks],
)
demo.launch(share=args.share, server_port=args.port, server_name=args.address)
|