feat: add preserve aspect ratio & fix typo
Browse files- detector/data.py +128 -49
- train.py +7 -0
detector/data.py
CHANGED
@@ -8,7 +8,7 @@ import os
|
|
8 |
import random
|
9 |
import pickle
|
10 |
import torch
|
11 |
-
import torchvision
|
12 |
import torchvision.transforms.functional as TF
|
13 |
from typing import List, Dict, Tuple
|
14 |
from torch.utils.data import Dataset, DataLoader, ConcatDataset
|
@@ -106,6 +106,50 @@ class RandomRotate(object):
|
|
106 |
return image, label
|
107 |
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
class FontDataset(Dataset):
|
110 |
def __init__(
|
111 |
self,
|
@@ -114,6 +158,7 @@ class FontDataset(Dataset):
|
|
114 |
regression_use_tanh: bool = False,
|
115 |
transforms: str = None,
|
116 |
crop_roi_bbox: bool = False,
|
|
|
117 |
):
|
118 |
"""Font dataset
|
119 |
|
@@ -121,8 +166,9 @@ class FontDataset(Dataset):
|
|
121 |
path (str): path to the dataset
|
122 |
config_path (str, optional): path to font config file. Defaults to "configs/font.yml".
|
123 |
regression_use_tanh (bool, optional): whether use tanh as regression normalization. Defaults to False.
|
124 |
-
transforms (str, optional): choose from None, 'v1', 'v2'. Defaults to None.
|
125 |
-
crop_roi_bbox (bool, optional): whether to crop text roi bbox, must be true when transform='v2'. Defaults to False.
|
|
|
126 |
"""
|
127 |
self.path = path
|
128 |
self.fonts = load_font_with_exclusion(config_path)
|
@@ -135,8 +181,72 @@ class FontDataset(Dataset):
|
|
135 |
]
|
136 |
self.images.sort()
|
137 |
|
138 |
-
if transforms == "v2":
|
139 |
-
assert
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
def __len__(self):
|
142 |
return len(self.images)
|
@@ -177,26 +287,14 @@ class FontDataset(Dataset):
|
|
177 |
with open(label_path, "rb") as f:
|
178 |
label: FontLabel = pickle.load(f)
|
179 |
|
|
|
180 |
if (self.transforms == "v1") or (self.transforms is None):
|
181 |
if self.crop_roi_bbox:
|
182 |
left, top, width, height = label.bbox
|
183 |
image = TF.crop(image, top, left, height, width)
|
184 |
label.image_width = width
|
185 |
label.image_height = height
|
186 |
-
|
187 |
-
# encode label
|
188 |
-
label = self.fontlabel2tensor(label, label_path)
|
189 |
-
|
190 |
-
# data augmentation
|
191 |
-
if self.transforms is not None:
|
192 |
-
transform = transforms.Compose(
|
193 |
-
[
|
194 |
-
RandomColorJitter(preserve=0.2),
|
195 |
-
RandomCrop(preserve=0.2),
|
196 |
-
]
|
197 |
-
)
|
198 |
-
image, label = transform((image, label))
|
199 |
-
elif self.transforms == "v2":
|
200 |
# crop from 30% to 130% of bbox
|
201 |
left, top, width, height = label.bbox
|
202 |
|
@@ -219,37 +317,14 @@ class FontDataset(Dataset):
|
|
219 |
label.image_width = width
|
220 |
label.image_height = height
|
221 |
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
transform = transforms.Compose(
|
226 |
-
[
|
227 |
-
RandomColorJitter(preserve=0.2),
|
228 |
-
RandomCrop(crop_factor=0.54, preserve=0),
|
229 |
-
RandomRotate(preserve=0.2),
|
230 |
-
]
|
231 |
-
)
|
232 |
-
image, label = transform((image, label))
|
233 |
-
|
234 |
-
transform = transforms.GaussianBlur(
|
235 |
-
random.randint(1, 3) * 2 - 1, sigma=(0.1, 5.0)
|
236 |
-
)
|
237 |
-
|
238 |
-
image = transform(image)
|
239 |
-
|
240 |
-
# resize and to tensor
|
241 |
-
transform = transforms.Compose(
|
242 |
-
[
|
243 |
-
transforms.Resize((config.INPUT_SIZE, config.INPUT_SIZE)),
|
244 |
-
transforms.ToTensor(),
|
245 |
-
]
|
246 |
-
)
|
247 |
-
image = transform(image)
|
248 |
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
|
|
253 |
|
254 |
# normalize label
|
255 |
if self.regression_use_tanh:
|
@@ -272,6 +347,7 @@ class FontDataModule(LightningDataModule):
|
|
272 |
val_transforms: bool = None,
|
273 |
test_transforms: bool = None,
|
274 |
crop_roi_bbox: bool = False,
|
|
|
275 |
regression_use_tanh: bool = False,
|
276 |
**kwargs,
|
277 |
):
|
@@ -288,6 +364,7 @@ class FontDataModule(LightningDataModule):
|
|
288 |
regression_use_tanh,
|
289 |
train_transforms,
|
290 |
crop_roi_bbox,
|
|
|
291 |
)
|
292 |
for train_path in train_paths
|
293 |
]
|
@@ -300,6 +377,7 @@ class FontDataModule(LightningDataModule):
|
|
300 |
regression_use_tanh,
|
301 |
val_transforms,
|
302 |
crop_roi_bbox,
|
|
|
303 |
)
|
304 |
for val_path in val_paths
|
305 |
]
|
@@ -312,6 +390,7 @@ class FontDataModule(LightningDataModule):
|
|
312 |
regression_use_tanh,
|
313 |
test_transforms,
|
314 |
crop_roi_bbox,
|
|
|
315 |
)
|
316 |
for test_path in test_paths
|
317 |
]
|
|
|
8 |
import random
|
9 |
import pickle
|
10 |
import torch
|
11 |
+
import torchvision
|
12 |
import torchvision.transforms.functional as TF
|
13 |
from typing import List, Dict, Tuple
|
14 |
from torch.utils.data import Dataset, DataLoader, ConcatDataset
|
|
|
106 |
return image, label
|
107 |
|
108 |
|
109 |
+
class RandomNoise(object):
|
110 |
+
def __init__(self, max_noise: float = 0.05, preserve: float = 0.1):
|
111 |
+
self.max_noise = max_noise
|
112 |
+
self.preserve = preserve
|
113 |
+
|
114 |
+
def __call__(self, image):
|
115 |
+
if random.random() < self.preserve:
|
116 |
+
return image
|
117 |
+
return image + torch.randn_like(image) * random.random() * self.max_noise
|
118 |
+
|
119 |
+
|
120 |
+
class RandomDownSample(object):
|
121 |
+
def __init__(self, max_ratio: float = 2, preserve: float = 0.5):
|
122 |
+
self.max_ratio = max_ratio
|
123 |
+
self.preserve = preserve
|
124 |
+
|
125 |
+
def __call__(self, image):
|
126 |
+
if random.random() < self.preserve:
|
127 |
+
return image
|
128 |
+
ratio = random.uniform(1, self.max_ratio)
|
129 |
+
return TF.resize(
|
130 |
+
image, (int(image.size[1] / ratio), int(image.size[0] / ratio))
|
131 |
+
)
|
132 |
+
|
133 |
+
|
134 |
+
class RandomCropPreserveAspectRatio(object):
|
135 |
+
def __call__(self, batch):
|
136 |
+
image, label = batch
|
137 |
+
width, height = image.size
|
138 |
+
|
139 |
+
if width == height:
|
140 |
+
return batch
|
141 |
+
|
142 |
+
if width > height:
|
143 |
+
x = random.randint(0, width - height)
|
144 |
+
image = TF.crop(image, 0, x, height, height)
|
145 |
+
label[[5, 6, 10]] = label[[5, 6, 10]] / height * width
|
146 |
+
else:
|
147 |
+
y = random.randint(0, height - width)
|
148 |
+
image = TF.crop(image, y, 0, width, width)
|
149 |
+
label[[5, 6, 10]] = label[[5, 6, 10]] / width * height
|
150 |
+
return image, label
|
151 |
+
|
152 |
+
|
153 |
class FontDataset(Dataset):
|
154 |
def __init__(
|
155 |
self,
|
|
|
158 |
regression_use_tanh: bool = False,
|
159 |
transforms: str = None,
|
160 |
crop_roi_bbox: bool = False,
|
161 |
+
preserve_aspect_ratio_by_random_crop: bool = False,
|
162 |
):
|
163 |
"""Font dataset
|
164 |
|
|
|
166 |
path (str): path to the dataset
|
167 |
config_path (str, optional): path to font config file. Defaults to "configs/font.yml".
|
168 |
regression_use_tanh (bool, optional): whether use tanh as regression normalization. Defaults to False.
|
169 |
+
transforms (str, optional): choose from None, 'v1', 'v2', 'v3'. Defaults to None.
|
170 |
+
crop_roi_bbox (bool, optional): whether to crop text roi bbox, must be true when transform='v2' or 'v3'. Defaults to False.
|
171 |
+
preserve_aspect_ratio_by_random_crop (bool, optional): whether to preserve aspect ratio by random cropping maximum squares. Defaults to False.
|
172 |
"""
|
173 |
self.path = path
|
174 |
self.fonts = load_font_with_exclusion(config_path)
|
|
|
181 |
]
|
182 |
self.images.sort()
|
183 |
|
184 |
+
if transforms == "v2" or transforms == "v3":
|
185 |
+
assert (
|
186 |
+
crop_roi_bbox
|
187 |
+
), "crop_roi_bbox must be true when transform='v2' or 'v3'"
|
188 |
+
|
189 |
+
if transforms is None:
|
190 |
+
label_image_transforms = []
|
191 |
+
image_transforms = [
|
192 |
+
torchvision.transforms.Resize((config.INPUT_SIZE, config.INPUT_SIZE)),
|
193 |
+
torchvision.transforms.ToTensor(),
|
194 |
+
]
|
195 |
+
elif transforms == "v1":
|
196 |
+
label_image_transforms = [
|
197 |
+
RandomColorJitter(preserve=0.2),
|
198 |
+
RandomCrop(preserve=0.2),
|
199 |
+
]
|
200 |
+
image_transforms = [
|
201 |
+
torchvision.transforms.Resize((config.INPUT_SIZE, config.INPUT_SIZE)),
|
202 |
+
torchvision.transforms.ToTensor(),
|
203 |
+
]
|
204 |
+
elif transforms == "v2":
|
205 |
+
label_image_transforms = [
|
206 |
+
RandomColorJitter(preserve=0.2),
|
207 |
+
RandomCrop(crop_factor=0.54, preserve=0),
|
208 |
+
RandomRotate(preserve=0.2),
|
209 |
+
]
|
210 |
+
image_transforms = [
|
211 |
+
torchvision.transforms.GaussianBlur(
|
212 |
+
random.randint(1, 3) * 2 - 1, sigma=(0.1, 5.0)
|
213 |
+
),
|
214 |
+
torchvision.transforms.Resize((config.INPUT_SIZE, config.INPUT_SIZE)),
|
215 |
+
torchvision.transforms.ToTensor(),
|
216 |
+
RandomNoise(max_noise=0.05, preserve=0.1),
|
217 |
+
]
|
218 |
+
elif transforms == "v3":
|
219 |
+
label_image_transforms = [
|
220 |
+
RandomColorJitter(preserve=0.2),
|
221 |
+
RandomCrop(crop_factor=0.54, preserve=0),
|
222 |
+
RandomRotate(preserve=0.2),
|
223 |
+
]
|
224 |
+
image_transforms = [
|
225 |
+
RandomDownSample(max_ratio=2, preserve=0.5),
|
226 |
+
torchvision.transforms.GaussianBlur(
|
227 |
+
random.randint(1, 3) * 2 - 1, sigma=(0.1, 5.0)
|
228 |
+
),
|
229 |
+
torchvision.transforms.Resize((config.INPUT_SIZE, config.INPUT_SIZE)),
|
230 |
+
torchvision.transforms.ToTensor(),
|
231 |
+
RandomNoise(max_noise=0.05, preserve=0.1),
|
232 |
+
torchvision.transforms.RandomHorizontalFlip(p=0.5),
|
233 |
+
]
|
234 |
+
else:
|
235 |
+
raise ValueError(f"Unknown transform: {transforms}")
|
236 |
+
|
237 |
+
if preserve_aspect_ratio_by_random_crop:
|
238 |
+
label_image_transforms.append(RandomCropPreserveAspectRatio())
|
239 |
+
|
240 |
+
if len(label_image_transforms) == 0:
|
241 |
+
self.transform_label_image = None
|
242 |
+
else:
|
243 |
+
self.transform_label_image = torchvision.transforms.Compose(
|
244 |
+
label_image_transforms
|
245 |
+
)
|
246 |
+
if len(image_transforms) == 0:
|
247 |
+
self.transform_image = None
|
248 |
+
else:
|
249 |
+
self.transform_image = torchvision.transforms.Compose(image_transforms)
|
250 |
|
251 |
def __len__(self):
|
252 |
return len(self.images)
|
|
|
287 |
with open(label_path, "rb") as f:
|
288 |
label: FontLabel = pickle.load(f)
|
289 |
|
290 |
+
# preparation
|
291 |
if (self.transforms == "v1") or (self.transforms is None):
|
292 |
if self.crop_roi_bbox:
|
293 |
left, top, width, height = label.bbox
|
294 |
image = TF.crop(image, top, left, height, width)
|
295 |
label.image_width = width
|
296 |
label.image_height = height
|
297 |
+
elif self.transforms == "v2" or self.transforms == "v3":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
# crop from 30% to 130% of bbox
|
299 |
left, top, width, height = label.bbox
|
300 |
|
|
|
317 |
label.image_width = width
|
318 |
label.image_height = height
|
319 |
|
320 |
+
# encode label
|
321 |
+
label = self.fontlabel2tensor(label, label_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
+
# transform
|
324 |
+
if self.transform_label_image is not None:
|
325 |
+
image, label = self.transform_label_image((image, label))
|
326 |
+
if self.transform_image is not None:
|
327 |
+
image = self.transform_image(image)
|
328 |
|
329 |
# normalize label
|
330 |
if self.regression_use_tanh:
|
|
|
347 |
val_transforms: bool = None,
|
348 |
test_transforms: bool = None,
|
349 |
crop_roi_bbox: bool = False,
|
350 |
+
preserve_aspect_ratio_by_random_crop: bool = False,
|
351 |
regression_use_tanh: bool = False,
|
352 |
**kwargs,
|
353 |
):
|
|
|
364 |
regression_use_tanh,
|
365 |
train_transforms,
|
366 |
crop_roi_bbox,
|
367 |
+
preserve_aspect_ratio_by_random_crop,
|
368 |
)
|
369 |
for train_path in train_paths
|
370 |
]
|
|
|
377 |
regression_use_tanh,
|
378 |
val_transforms,
|
379 |
crop_roi_bbox,
|
380 |
+
preserve_aspect_ratio_by_random_crop,
|
381 |
)
|
382 |
for val_path in val_paths
|
383 |
]
|
|
|
390 |
regression_use_tanh,
|
391 |
test_transforms,
|
392 |
crop_roi_bbox,
|
393 |
+
preserve_aspect_ratio_by_random_crop,
|
394 |
)
|
395 |
for test_path in test_paths
|
396 |
]
|
train.py
CHANGED
@@ -103,6 +103,12 @@ parser.add_argument(
|
|
103 |
default="high",
|
104 |
help="Tensor core precision (default: high)",
|
105 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
args = parser.parse_args()
|
108 |
|
@@ -149,6 +155,7 @@ data_module = FontDataModule(
|
|
149 |
regression_use_tanh=regression_use_tanh,
|
150 |
train_transforms=args.augmentation,
|
151 |
crop_roi_bbox=args.crop_roi_bbox,
|
|
|
152 |
)
|
153 |
|
154 |
num_iters = data_module.get_train_num_iter(num_device) * num_epochs
|
|
|
103 |
default="high",
|
104 |
help="Tensor core precision (default: high)",
|
105 |
)
|
106 |
+
parser.add_argument(
|
107 |
+
"-r",
|
108 |
+
"--preserve-aspect-ratio",
|
109 |
+
action="store_true",
|
110 |
+
help="Preserve aspect ratio (default: False)",
|
111 |
+
)
|
112 |
|
113 |
args = parser.parse_args()
|
114 |
|
|
|
155 |
regression_use_tanh=regression_use_tanh,
|
156 |
train_transforms=args.augmentation,
|
157 |
crop_roi_bbox=args.crop_roi_bbox,
|
158 |
+
preserve_aspect_ratio_by_random_crop=args.preserve_aspect_ratio,
|
159 |
)
|
160 |
|
161 |
num_iters = data_module.get_train_num_iter(num_device) * num_epochs
|