import sys import traceback import pickle import os import concurrent.futures from tqdm import tqdm import time from font_dataset.font import load_fonts, DSFont from font_dataset.layout import generate_font_image, TextSizeTooSmallException from font_dataset.text import CorpusGeneratorManager, UnqualifiedFontException from font_dataset.background import background_image_generator global_script_index = int(sys.argv[1]) global_script_index_total = int(sys.argv[2]) print(f"Mission {global_script_index} / {global_script_index_total}") num_workers = 32 cjk_ratio = 3 train_cnt = 100 val_cnt = 5 test_cnt = 30 train_cnt_cjk = int(train_cnt * cjk_ratio) val_cnt_cjk = int(val_cnt * cjk_ratio) test_cnt_cjk = int(test_cnt * cjk_ratio) dataset_path = "./dataset/font_img" os.makedirs(dataset_path, exist_ok=True) unqualified_log_file_name = f"unqualified_font_{time.time()}.txt" runtime_exclusion_list = [] fonts, exclusion_rule = load_fonts() corpus_manager = CorpusGeneratorManager() images = background_image_generator() def add_exclusion(font: DSFont, reason: str, dataset_base_dir: str, i: int, j: int): print(f"Excluded font: {font.path}, reason: {reason}") runtime_exclusion_list.append(font.path) with open(unqualified_log_file_name, "a+") as f: f.write(f"{font.path} # {reason}\n") for i in range(j + 1): image_file_name = f"font_{i}_img_{j}.jpg" label_file_name = f"font_{i}_img_{j}.bin" image_file_path = os.path.join(dataset_base_dir, image_file_name) label_file_path = os.path.join(dataset_base_dir, label_file_name) if os.path.exists(image_file_path): os.remove(image_file_path) if os.path.exists(label_file_path): os.remove(label_file_path) def generate_dataset(dataset_type: str, cnt: int): dataset_base_dir = os.path.join(dataset_path, dataset_type) os.makedirs(dataset_base_dir, exist_ok=True) def _generate_single(args): i, j, font = args print( f"Generating {dataset_type} font: {font.path} {i} / {len(fonts)}, image {j}" ) if exclusion_rule(font): print(f"Excluded font: {font.path}") return if font.path in runtime_exclusion_list: print(f"Excluded font: {font.path}") return while True: try: image_file_name = f"font_{i}_img_{j}.jpg" label_file_name = f"font_{i}_img_{j}.bin" image_file_path = os.path.join(dataset_base_dir, image_file_name) label_file_path = os.path.join(dataset_base_dir, label_file_name) # detect cache if os.path.exists(image_file_path) and os.path.exists(label_file_path): return im = next(images) im, label = generate_font_image( im, font, corpus_manager, ) im.save(image_file_path) pickle.dump(label, open(label_file_path, "wb")) return except UnqualifiedFontException as e: traceback.print_exc() add_exclusion(font, "unqualified font", dataset_base_dir, i, j) return except TextSizeTooSmallException as e: traceback.print_exc() continue except Exception as e: traceback.print_exc() add_exclusion(font, f"other: {repr(e)}", dataset_base_dir, i, j) return work_list = [] # divide len(fonts) into 64 parts and choose the third part for this script for i in range( (global_script_index - 1) * len(fonts) // global_script_index_total, global_script_index * len(fonts) // global_script_index_total, ): font = fonts[i] if font.language == "CJK": true_cnt = cnt * cjk_ratio else: true_cnt = cnt for j in range(true_cnt): work_list.append((i, j, font)) # with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor: # _ = list( # tqdm( # executor.map(_generate_single, work_list), # total=len(work_list), # leave=True, # desc=dataset_type, # miniters=1, # ) # ) for i in tqdm(range(len(work_list))): _generate_single(work_list[i]) generate_dataset("train", train_cnt) generate_dataset("val", val_cnt) generate_dataset("test", test_cnt)