Spaces:
Running
Running
File size: 1,508 Bytes
97bd8a9 f743b8c 97bd8a9 0c7f41b 97bd8a9 0c7f41b 97bd8a9 0c7f41b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
title: H2O Wave Whisper
emoji: π
colorFrom: yellow
colorTo: gray
sdk: docker
app_port: 7860
---
<div align='center'>
<h1>WaveTon</h1>
π― Wave applications
<br>
<br>
[![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg?logo=apache)](https://github.com/vopani/waveton/blob/master/LICENSE)
[![GitHub](https://img.shields.io/github/stars/vopani/waveton?color=yellowgreen&logo=github)](https://img.shields.io/github/stars/vopani/waveton?color=yellowgreen&logo=github)
[![Twitter](https://img.shields.io/twitter/follow/vopani)](https://twitter.com/vopani)
</div>
## Whisper π₯οΈ
Speech to text using OpenAI's Whisper model.
![](demo.gif)
## Setup βοΈ
1. Check the version of Python, must be Python 3.9+ but recommended to use Python 3.10+ for best experience
```commandline
python3 --version
```
2. Clone the repository
```commandline
git clone https://github.com/vopani/waveton.git
```
3. Create a virtual environment
```commandline
cd waveton/apps/deeplearning_apps/whisper
python3 -m venv venv
source venv/bin/activate
```
4. Install ffmpeg
On Linux:
```commandline
sudo apt update && sudo apt install ffmpeg
```
On Mac:
```commandline
brew install ffmpeg
```
5. Install the packages
```commandline
python3 -m pip install -U pip
python3 -m pip install -r requirements.txt
```
6. Run the application
```commandline
wave run app
```
7. View the application on your local browser: [http://localhost:10101](http://localhost:10101)
|