Spaces:
Runtime error
Runtime error
File size: 135,365 Bytes
dcd2001 5f5e828 2ce9a1a dcd2001 edf6dca 2ce9a1a dcd2001 b368114 dcd2001 edf6dca dcd2001 edf6dca dcd2001 2ce9a1a dcd2001 b368114 dcd2001 edf6dca dcd2001 b368114 dcd2001 2ce9a1a dcd2001 82934e3 dcd2001 b368114 2ce9a1a dcd2001 2ce9a1a dcd2001 b368114 dcd2001 2ce9a1a dcd2001 2ce9a1a dcd2001 2ce9a1a dcd2001 edf6dca dcd2001 edf6dca dcd2001 b368114 dcd2001 5a3fd3e dcd2001 2ce9a1a dcd2001 b368114 dcd2001 2ce9a1a dcd2001 b368114 dcd2001 2ce9a1a dcd2001 2ce9a1a dcd2001 2ce9a1a dcd2001 b368114 edf6dca 2ce9a1a dcd2001 b368114 dcd2001 2ce9a1a dcd2001 2ce9a1a dcd2001 b368114 dcd2001 2ce9a1a dcd2001 82934e3 dcd2001 82934e3 dcd2001 edf6dca dcd2001 edf6dca dcd2001 2ce9a1a dcd2001 b368114 dcd2001 edf6dca b64f5c9 2ce9a1a b64f5c9 edf6dca b64f5c9 2ce9a1a edf6dca 2ce9a1a edf6dca 2ce9a1a edf6dca dcd2001 b368114 dcd2001 b368114 dcd2001 edf6dca dcd2001 b368114 dcd2001 b368114 dcd2001 2ce9a1a dcd2001 2ce9a1a dcd2001 2ce9a1a dcd2001 2ce9a1a dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 b368114 dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 edf6dca dcd2001 2ce9a1a dcd2001 2ce9a1a dcd2001 b368114 dcd2001 edf6dca dcd2001 2ce9a1a dcd2001 b368114 dcd2001 2ce9a1a dcd2001 2ce9a1a dcd2001 b368114 2ce9a1a dcd2001 2ce9a1a dcd2001 2ce9a1a dcd2001 b368114 dcd2001 2ce9a1a dcd2001 2ce9a1a dcd2001 b368114 edf6dca dcd2001 b368114 edf6dca dcd2001 b368114 dcd2001 b368114 dcd2001 b64f5c9 dcd2001 b368114 dcd2001 b368114 dcd2001 edf6dca dcd2001 2ce9a1a dcd2001 b368114 dcd2001 2ce9a1a dcd2001 b368114 dcd2001 2ce9a1a dcd2001 b64f5c9 dcd2001 edf6dca dcd2001 2ce9a1a dcd2001 2ce9a1a dcd2001 2ce9a1a dcd2001 b368114 dcd2001 b368114 dcd2001 2ce9a1a dcd2001 2ce9a1a dcd2001 2ce9a1a dcd2001 2ce9a1a dcd2001 edf6dca dcd2001 edf6dca dcd2001 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 |
import ast
import copy
import functools
import glob
import inspect
import queue
import sys
import os
import time
import traceback
import typing
import warnings
from datetime import datetime
import filelock
import requests
import psutil
from requests import ConnectTimeout, JSONDecodeError
from urllib3.exceptions import ConnectTimeoutError, MaxRetryError, ConnectionError
from requests.exceptions import ConnectionError as ConnectionError2
from requests.exceptions import ReadTimeout as ReadTimeout2
if os.path.dirname(os.path.abspath(__file__)) not in sys.path:
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1'
os.environ['BITSANDBYTES_NOWELCOME'] = '1'
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
from evaluate_params import eval_func_param_names, no_default_param_names
from enums import DocumentSubset, LangChainMode, no_lora_str, model_token_mapping, no_model_str, source_prefix, \
source_postfix, LangChainAction, LangChainAgent, DocumentChoice
from loaders import get_loaders
from utils import set_seed, clear_torch_cache, save_generate_output, NullContext, wrapped_partial, EThread, get_githash, \
import_matplotlib, get_device, makedirs, get_kwargs, start_faulthandler, get_hf_server, FakeTokenizer, remove, \
have_langchain, set_openai, load_collection_enum
start_faulthandler()
import_matplotlib()
SEED = 1236
set_seed(SEED)
from typing import Union
import fire
import torch
from transformers import GenerationConfig, AutoModel, TextIteratorStreamer
from prompter import Prompter, inv_prompt_type_to_model_lower, non_hf_types, PromptType, get_prompt, generate_prompt
from stopping import get_stopping
langchain_actions = [x.value for x in list(LangChainAction)]
langchain_agents_list = [x.value for x in list(LangChainAgent)]
scratch_base_dir = '/tmp/'
def main(
load_8bit: bool = False,
load_4bit: bool = False,
load_half: bool = True,
load_gptq: str = '',
use_safetensors: bool = False,
use_gpu_id: bool = True,
base_model: str = '',
tokenizer_base_model: str = '',
lora_weights: str = "",
gpu_id: int = 0,
compile_model: bool = True,
use_cache: bool = None,
inference_server: str = "",
prompt_type: Union[int, str] = None,
prompt_dict: typing.Dict = None,
model_lock: typing.List[typing.Dict[str, str]] = None,
model_lock_columns: int = None,
fail_if_cannot_connect: bool = False,
# input to generation
temperature: float = None,
top_p: float = None,
top_k: int = None,
num_beams: int = None,
repetition_penalty: float = None,
num_return_sequences: int = None,
do_sample: bool = None,
max_new_tokens: int = None,
min_new_tokens: int = None,
early_stopping: Union[bool, str] = None,
max_time: float = None,
memory_restriction_level: int = None,
debug: bool = False,
save_dir: str = None,
share: bool = False,
local_files_only: bool = False,
resume_download: bool = True,
use_auth_token: Union[str, bool] = False,
trust_remote_code: Union[str, bool] = True,
offload_folder: str = "offline_folder",
src_lang: str = "English",
tgt_lang: str = "Russian",
cli: bool = False,
cli_loop: bool = True,
gradio: bool = True,
gradio_offline_level: int = 0,
chat: bool = True,
chat_context: bool = False,
stream_output: bool = True,
show_examples: bool = None,
verbose: bool = False,
h2ocolors: bool = True,
dark: bool = False, # light tends to be best
height: int = 600,
show_lora: bool = True,
login_mode_if_model0: bool = False,
block_gradio_exit: bool = True,
concurrency_count: int = 1,
api_open: bool = False,
allow_api: bool = True,
input_lines: int = 1,
gradio_size: str = None,
auth: typing.List[typing.Tuple[str, str]] = None,
max_max_time=None,
max_max_new_tokens=None,
sanitize_user_prompt: bool = False,
sanitize_bot_response: bool = False,
extra_model_options: typing.List[str] = [],
extra_lora_options: typing.List[str] = [],
extra_server_options: typing.List[str] = [],
score_model: str = 'auto',
eval_filename: str = None,
eval_prompts_only_num: int = 0,
eval_prompts_only_seed: int = 1234,
eval_as_output: bool = False,
langchain_mode: str = None,
langchain_action: str = LangChainAction.QUERY.value,
langchain_agents: list = [],
force_langchain_evaluate: bool = False,
langchain_modes: list = [x.value for x in list(LangChainMode)],
visible_langchain_modes: list = ['UserData', 'MyData'],
# WIP:
# visible_langchain_actions: list = langchain_actions.copy(),
visible_langchain_actions: list = [LangChainAction.QUERY.value, LangChainAction.SUMMARIZE_MAP.value],
visible_langchain_agents: list = langchain_agents_list.copy(),
document_subset: str = DocumentSubset.Relevant.name,
document_choice: list = [DocumentChoice.ALL.value],
user_path: str = None,
langchain_mode_paths: dict = {'UserData': None},
detect_user_path_changes_every_query: bool = False,
use_llm_if_no_docs: bool = False,
load_db_if_exists: bool = True,
keep_sources_in_context: bool = False,
db_type: str = 'chroma',
use_openai_embedding: bool = False,
use_openai_model: bool = False,
hf_embedding_model: str = None,
cut_distance: float = 1.64,
add_chat_history_to_context: bool = True,
allow_upload_to_user_data: bool = True,
reload_langchain_state: bool = True,
allow_upload_to_my_data: bool = True,
enable_url_upload: bool = True,
enable_text_upload: bool = True,
enable_sources_list: bool = True,
chunk: bool = True,
chunk_size: int = 512,
top_k_docs: int = None,
reverse_docs: bool = True,
auto_reduce_chunks: bool = True,
max_chunks: int = 100,
n_jobs: int = -1,
enable_captions: bool = True,
captions_model: str = "Salesforce/blip-image-captioning-base",
pre_load_caption_model: bool = False,
caption_gpu: bool = True,
enable_ocr: bool = False,
enable_pdf_ocr: str = 'auto',
):
"""
:param load_8bit: load model in 8-bit using bitsandbytes
:param load_4bit: load model in 4-bit using bitsandbytes
:param load_half: load model in float16
:param load_gptq: to load model with GPTQ, put model_basename here, e.g. gptq_model-4bit--1g
:param use_safetensors: to use safetensors version (assumes file/HF points to safe tensors version)
:param use_gpu_id: whether to control devices with gpu_id. If False, then spread across GPUs
:param base_model: model HF-type name. If use --base_model to preload model, cannot unload in gradio in models tab
:param tokenizer_base_model: tokenizer HF-type name. Usually not required, inferred from base_model.
:param lora_weights: LORA weights path/HF link
:param gpu_id: if use_gpu_id, then use gpu_id for cuda device ID, or auto mode if gpu_id != -1
:param compile_model Whether to compile the model
:param use_cache: Whether to use caching in model (some models fail when multiple threads use)
:param inference_server: Consume base_model as type of model at this address
Address can be text-generation-server hosting that base_model
e.g. python generate.py --inference_server="http://192.168.1.46:6112" --base_model=h2oai/h2ogpt-oasst1-512-12b
Or Address can be "openai_chat" or "openai" for OpenAI API
e.g. python generate.py --inference_server="openai_chat" --base_model=gpt-3.5-turbo
e.g. python generate.py --inference_server="openai" --base_model=text-davinci-003
Or Address can be "vllm:IP:port" or "vllm:IP:port" for OpenAI-compliant vLLM endpoint
Note: vllm_chat not supported by vLLM project.
:param prompt_type: type of prompt, usually matched to fine-tuned model or plain for foundational model
:param prompt_dict: If prompt_type=custom, then expects (some) items returned by get_prompt(..., return_dict=True)
:param model_lock: Lock models to specific combinations, for ease of use and extending to many models
Only used if gradio = True
List of dicts, each dict has base_model, tokenizer_base_model, lora_weights, inference_server, prompt_type, and prompt_dict
If all models have same prompt_type, and prompt_dict, can still specify that once in CLI outside model_lock as default for dict
Can specify model_lock instead of those items on CLI
As with CLI itself, base_model can infer prompt_type and prompt_dict if in prompter.py.
Also, tokenizer_base_model and lora_weights are optional.
Also, inference_server is optional if loading model from local system.
All models provided will automatically appear in compare model mode
Model loading-unloading and related choices will be disabled. Model/lora/server adding will be disabled
:param model_lock_columns: How many columns to show if locking models (and so showing all at once)
If None, then defaults to up to 3
if -1, then all goes into 1 row
Maximum value is 4 due to non-dynamic gradio rendering elements
:param fail_if_cannot_connect: if doing model locking (e.g. with many models), fail if True. Otherwise ignore.
Useful when many endpoints and want to just see what works, but still have to wait for timeout.
:param temperature: generation temperature
:param top_p: generation top_p
:param top_k: generation top_k
:param num_beams: generation number of beams
:param repetition_penalty: generation repetition penalty
:param num_return_sequences: generation number of sequences (1 forced for chat)
:param do_sample: generation sample
:param max_new_tokens: generation max new tokens
:param min_new_tokens: generation min tokens
:param early_stopping: generation early stopping
:param max_time: maximum time to allow for generation
:param memory_restriction_level: 0 = no restriction to tokens or model, 1 = some restrictions on token 2 = HF like restriction 3 = very low memory case
:param debug: enable debug mode
:param save_dir: directory chat data is saved to
:param share: whether to share the gradio app with sharable URL
:param local_files_only: whether to only use local files instead of doing to HF for models
:param resume_download: whether to resume downloads from HF for models
:param use_auth_token: whether to use HF auth token (requires CLI did huggingface-cli login before)
:param trust_remote_code: whether to use trust any code needed for HF model
:param offload_folder: path for spilling model onto disk
:param src_lang: source languages to include if doing translation (None = all)
:param tgt_lang: target languages to include if doing translation (None = all)
:param cli: whether to use CLI (non-gradio) interface.
:param cli_loop: whether to loop for CLI (False usually only for testing)
:param gradio: whether to enable gradio, or to enable benchmark mode
:param gradio_offline_level: > 0, then change fonts so full offline
== 1 means backend won't need internet for fonts, but front-end UI might if font not cached
== 2 means backend and frontend don't need internet to download any fonts.
Note: Some things always disabled include HF telemetry, gradio telemetry, chromadb posthog that involve uploading.
This option further disables google fonts for downloading, which is less intrusive than uploading,
but still required in air-gapped case. The fonts don't look as nice as google fonts, but ensure full offline behavior.
Also set --share=False to avoid sharing a gradio live link.
:param chat: whether to enable chat mode with chat history
:param chat_context: whether to use extra helpful context if human_bot
:param stream_output: whether to stream output
:param show_examples: whether to show clickable examples in gradio
:param verbose: whether to show verbose prints
:param h2ocolors: whether to use H2O.ai theme
:param dark: whether to use dark mode for UI by default (still controlled in UI)
:param height: height of chat window
:param show_lora: whether to show LORA options in UI (expert so can be hard to understand)
:param login_mode_if_model0: set to True to load --base_model after client logs in, to be able to free GPU memory when model is swapped
:param block_gradio_exit: whether to block gradio exit (used for testing)
:param concurrency_count: gradio concurrency count (1 is optimal for LLMs)
:param api_open: If False, don't let API calls skip gradio queue
:param allow_api: whether to allow API calls at all to gradio server
:param input_lines: how many input lines to show for chat box (>1 forces shift-enter for submit, else enter is submit)
:param gradio_size: Overall size of text and spaces: "xsmall", "small", "medium", "large".
Small useful for many chatbots in model_lock mode
:param auth: gradio auth for launcher in form [(user1, pass1), (user2, pass2), ...]
e.g. --auth=[('jon','password')] with no spaces
:param max_max_time: Maximum max_time for gradio slider
:param max_max_new_tokens: Maximum max_new_tokens for gradio slider
:param sanitize_user_prompt: whether to remove profanity from user input (slows down input processing)
:param sanitize_bot_response: whether to remove profanity and repeat lines from bot output (about 2x slower generation for long streaming cases due to better_profanity being slow)
:param extra_model_options: extra models to show in list in gradio
:param extra_lora_options: extra LORA to show in list in gradio
:param extra_server_options: extra servers to show in list in gradio
:param score_model: which model to score responses
None: no response scoring
'auto': auto mode, '' (no model) for CPU, 'OpenAssistant/reward-model-deberta-v3-large-v2' for GPU,
because on CPU takes too much compute just for scoring response
:param eval_filename: json file to use for evaluation, if None is sharegpt
:param eval_prompts_only_num: for no gradio benchmark, if using eval_filename prompts for eval instead of examples
:param eval_prompts_only_seed: for no gradio benchmark, seed for eval_filename sampling
:param eval_as_output: for no gradio benchmark, whether to test eval_filename output itself
:param langchain_mode: Data source to include. Choose "UserData" to only consume files from make_db.py.
None: auto mode, check if langchain package exists, at least do LLM if so, else Disabled
WARNING: wiki_full requires extra data processing via read_wiki_full.py and requires really good workstation to generate db, unless already present.
:param langchain_action: Mode langchain operations in on documents.
Query: Make query of document(s)
Summarize or Summarize_map_reduce: Summarize document(s) via map_reduce
Summarize_all: Summarize document(s) using entire document at once
Summarize_refine: Summarize document(s) using entire document, and try to refine before returning summary
:param langchain_agents: Which agents to use
'search': Use Web Search as context for LLM response, e.g. SERP if have SERPAPI_API_KEY in env
:param force_langchain_evaluate: Whether to force langchain LLM use even if not doing langchain, mostly for testing.
:param user_path: user path to glob from to generate db for vector search, for 'UserData' langchain mode.
If already have db, any new/changed files are added automatically if path set, does not have to be same path used for prior db sources
:param langchain_mode_paths: dict of langchain_mode keys and disk path values to use for source of documents
E.g. "{'UserData2': 'userpath2'}"
Can be None even if existing DB, to avoid new documents being added from that path, source links that are on disk still work.
If user_path is not None, that path is used for 'UserData' instead of the value in this dict
:param detect_user_path_changes_every_query: whether to detect if any files changed or added every similarity search (by file hashes).
Expensive for large number of files, so not done by default. By default only detect changes during db loading.
:param langchain_modes: names of collections/dbs to potentially have
:param visible_langchain_modes: dbs to generate at launch to be ready for LLM
Can be up to ['wiki', 'wiki_full', 'UserData', 'MyData', 'github h2oGPT', 'DriverlessAI docs']
But wiki_full is expensive and requires preparation
To allow scratch space only live in session, add 'MyData' to list
Default: If only want to consume local files, e.g. prepared by make_db.py, only include ['UserData']
If have own user modes, need to add these here or add in UI.
A state file is stored in visible_langchain_modes.pkl containing last UI-selected values of:
langchain_modes, visible_langchain_modes, and langchain_mode_paths
Delete the file if you want to start fresh,
but in any case the user_path passed in CLI is used for UserData even if was None or different
:param visible_langchain_actions: Which actions to allow
:param visible_langchain_agents: Which agents to allow
:param document_subset: Default document choice when taking subset of collection
:param document_choice: Chosen document(s) by internal name, 'All' means use all docs
:param use_llm_if_no_docs: Whether to use LLM even if no documents, when langchain_mode=UserData or MyData or custom
:param load_db_if_exists: Whether to load chroma db if exists or re-generate db
:param keep_sources_in_context: Whether to keep url sources in context, not helpful usually
:param db_type: 'faiss' for in-memory or 'chroma' or 'weaviate' for persisted on disk
:param use_openai_embedding: Whether to use OpenAI embeddings for vector db
:param use_openai_model: Whether to use OpenAI model for use with vector db
:param hf_embedding_model: Which HF embedding model to use for vector db
Default is instructor-large with 768 parameters per embedding if have GPUs, else all-MiniLM-L6-v2 if no GPUs
Can also choose simpler model with 384 parameters per embedding: "sentence-transformers/all-MiniLM-L6-v2"
Can also choose even better embedding with 1024 parameters: 'hkunlp/instructor-xl'
We support automatically changing of embeddings for chroma, with a backup of db made if this is done
:param cut_distance: Distance to cut off references with larger distances when showing references.
1.64 is good to avoid dropping references for all-MiniLM-L6-v2, but instructor-large will always show excessive references.
For all-MiniLM-L6-v2, a value of 1.5 can push out even more references, or a large value of 100 can avoid any loss of references.
:param add_chat_history_to_context: Include chat context when performing action
Not supported yet for openai_chat when using document collection instead of LLM
Also not supported when using CLI mode
:param allow_upload_to_user_data: Whether to allow file uploads to update shared vector db (UserData or custom user dbs)
:param reload_langchain_state: Whether to reload visible_langchain_modes.pkl file that contains any new user collections.
:param allow_upload_to_my_data: Whether to allow file uploads to update scratch vector db
:param enable_url_upload: Whether to allow upload from URL
:param enable_text_upload: Whether to allow upload of text
:param enable_sources_list: Whether to allow list (or download for non-shared db) of list of sources for chosen db
:param chunk: Whether to chunk data (True unless know data is already optimally chunked)
:param chunk_size: Size of chunks, with typically top-4 passed to LLM, so needs to be in context length
:param top_k_docs: number of chunks to give LLM
:param reverse_docs: whether to reverse docs order so most relevant is closest to question.
Best choice for sufficiently smart model, and truncation occurs for oldest context, so best then too.
But smaller 6_9 models fail to use newest context and can get stuck on old information.
:param auto_reduce_chunks: Whether to automatically reduce top_k_docs to fit context given prompt
:param max_chunks: If top_k_docs=-1, maximum number of chunks to allow
:param n_jobs: Number of processors to use when consuming documents (-1 = all, is default)
:param enable_captions: Whether to support captions using BLIP for image files as documents, then preloads that model
:param captions_model: Which model to use for captions.
captions_model: str = "Salesforce/blip-image-captioning-base", # continue capable
captions_model: str = "Salesforce/blip2-flan-t5-xl", # question/answer capable, 16GB state
captions_model: str = "Salesforce/blip2-flan-t5-xxl", # question/answer capable, 60GB state
Note: opt-based blip2 are not permissive license due to opt and Meta license restrictions
Disabled for CPU since BLIP requires CUDA
:param pre_load_caption_model: Whether to preload caption model, or load after forking parallel doc loader
parallel loading disabled if preload and have images, to prevent deadlocking on cuda context
Recommended if using larger caption model
:param caption_gpu: If support caption, then use GPU if exists
:param enable_ocr: Whether to support OCR on images
:param enable_pdf_ocr: 'auto' means only use OCR if normal text extraction fails. Useful for pure image-based PDFs with text
'on' means always do OCR as additional parsing of same documents
'off' means don't do OCR (e.g. because it's slow even if 'auto' only would trigger if nothing else worked)
:return:
"""
if base_model is None:
base_model = ''
if tokenizer_base_model is None:
tokenizer_base_model = ''
if lora_weights is None:
lora_weights = ''
if inference_server is None:
inference_server = ''
# listen to env if set
model_lock = os.getenv('model_lock', str(model_lock))
model_lock = ast.literal_eval(model_lock)
if model_lock:
assert gradio, "model_lock only supported for gradio=True"
if len(model_lock) > 1:
assert chat, "model_lock only works for multiple models for chat=True"
assert not cli, "model_lock only supported for cli=False"
assert not (not cli and not gradio), "model_lock only supported for eval (cli=gradio=False)"
assert not base_model, "Don't specify model_lock and base_model"
assert not tokenizer_base_model, "Don't specify model_lock and tokenizer_base_model"
assert not lora_weights, "Don't specify model_lock and lora_weights"
assert not inference_server, "Don't specify model_lock and inference_server"
# assert not prompt_type, "Don't specify model_lock and prompt_type"
# assert not prompt_dict, "Don't specify model_lock and prompt_dict"
n_jobs = int(os.getenv('n_jobs', str(n_jobs)))
is_hf = bool(int(os.getenv("HUGGINGFACE_SPACES", '0')))
is_gpth2oai = bool(int(os.getenv("GPT_H2O_AI", '0')))
is_public = is_hf or is_gpth2oai # multi-user case with fixed model and disclaimer
if memory_restriction_level is None:
memory_restriction_level = 2 if is_hf else 0 # 2 assumes run on 24GB consumer GPU
else:
assert 0 <= memory_restriction_level <= 3, "Bad memory_restriction_level=%s" % memory_restriction_level
if is_public and os.getenv('n_jobs') is None:
n_jobs = max(1, min(os.cpu_count() // 2, 8))
admin_pass = os.getenv("ADMIN_PASS")
# will sometimes appear in UI or sometimes actual generation, but maybe better than empty result
# but becomes unrecoverable sometimes if raise, so just be silent for now
raise_generate_gpu_exceptions = True
# allow set token directly
use_auth_token = os.environ.get("HUGGINGFACE_API_TOKEN", use_auth_token)
allow_upload_to_user_data = bool(
int(os.environ.get("allow_upload_to_user_data", str(int(allow_upload_to_user_data)))))
allow_upload_to_my_data = bool(int(os.environ.get("allow_upload_to_my_data", str(int(allow_upload_to_my_data)))))
height = int(os.environ.get("HEIGHT", height))
h2ocolors = bool(int(os.getenv('h2ocolors', h2ocolors)))
# allow enabling langchain via ENV
# FIRST PLACE where LangChain referenced, but no imports related to it
langchain_mode = os.environ.get("LANGCHAIN_MODE", langchain_mode)
if langchain_mode is not None:
assert langchain_mode in langchain_modes, "Invalid langchain_mode %s" % langchain_mode
visible_langchain_modes = ast.literal_eval(os.environ.get("visible_langchain_modes", str(visible_langchain_modes)))
if langchain_mode not in visible_langchain_modes and langchain_mode in langchain_modes:
if langchain_mode is not None:
visible_langchain_modes += [langchain_mode]
# update
if isinstance(langchain_mode_paths, str):
langchain_mode_paths = ast.literal_eval(langchain_mode_paths)
assert isinstance(langchain_mode_paths, dict)
if user_path:
langchain_mode_paths['UserData'] = user_path
makedirs(user_path)
if is_public:
allow_upload_to_user_data = False
if LangChainMode.USER_DATA.value in visible_langchain_modes:
visible_langchain_modes.remove(LangChainMode.USER_DATA.value)
# in-place, for non-scratch dbs
if allow_upload_to_user_data:
update_langchain(langchain_modes, visible_langchain_modes, langchain_mode_paths, '')
# always listen to CLI-passed user_path if passed
if user_path:
langchain_mode_paths['UserData'] = user_path
assert langchain_action in langchain_actions, "Invalid langchain_action %s" % langchain_action
assert len(
set(langchain_agents).difference(langchain_agents_list)) == 0, "Invalid langchain_agents %s" % langchain_agents
# if specifically chose not to show My or User Data, disable upload, so gradio elements are simpler
if LangChainMode.MY_DATA.value not in visible_langchain_modes:
allow_upload_to_my_data = False
if LangChainMode.USER_DATA.value not in visible_langchain_modes:
allow_upload_to_user_data = False
# auto-set langchain_mode
if have_langchain and langchain_mode is None:
# start in chat mode, in case just want to chat and don't want to get "No documents to query" by default.
langchain_mode = LangChainMode.LLM.value
if allow_upload_to_user_data and not is_public and langchain_mode_paths['UserData']:
print("Auto set langchain_mode=%s. Could use UserData instead." % langchain_mode, flush=True)
elif allow_upload_to_my_data:
print("Auto set langchain_mode=%s. Could use MyData instead."
" To allow UserData to pull files from disk,"
" set user_path or langchain_mode_paths, and ensure allow_upload_to_user_data=True" % langchain_mode,
flush=True)
else:
raise RuntimeError("Please pass --langchain_mode=<chosen mode> out of %s" % langchain_modes)
if not have_langchain and langchain_mode not in [None, LangChainMode.DISABLED.value, LangChainMode.LLM.value]:
raise RuntimeError("Asked for LangChain mode but langchain python package cannot be found.")
if langchain_mode is None:
# if not set yet, disable
langchain_mode = LangChainMode.DISABLED.value
print("Auto set langchain_mode=%s Have langchain package: %s" % (langchain_mode, have_langchain), flush=True)
if is_public:
allow_upload_to_user_data = False
input_lines = 1 # ensure set, for ease of use
temperature = 0.2 if temperature is None else temperature
top_p = 0.85 if top_p is None else top_p
top_k = 70 if top_k is None else top_k
if is_hf:
do_sample = True if do_sample is None else do_sample
top_k_docs = 3 if top_k_docs is None else top_k_docs
else:
# by default don't sample, too chatty
do_sample = False if do_sample is None else do_sample
top_k_docs = 4 if top_k_docs is None else top_k_docs
if memory_restriction_level == 2:
if not base_model and not inference_server and not model_lock:
base_model = 'h2oai/h2ogpt-oasst1-512-12b'
# don't set load_8bit if passed base_model, doesn't always work so can't just override
load_8bit = True
load_4bit = False # FIXME - consider using 4-bit instead of 8-bit
elif not inference_server:
top_k_docs = 10 if top_k_docs is None else top_k_docs
if memory_restriction_level >= 2:
load_8bit = True
load_4bit = False # FIXME - consider using 4-bit instead of 8-bit
if hf_embedding_model is None:
hf_embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
top_k_docs = 3 if top_k_docs is None else top_k_docs
if top_k_docs is None:
top_k_docs = 3
if is_public:
if not max_time:
max_time = 60 * 2
if not max_max_time:
max_max_time = max_time
if not max_new_tokens:
max_new_tokens = 256
if not max_max_new_tokens:
max_max_new_tokens = 256
else:
if not max_max_time:
max_max_time = 60 * 20
if not max_max_new_tokens:
max_max_new_tokens = 512
if is_hf:
# must override share if in spaces
share = False
if not max_time:
max_time = 60 * 1
if not max_max_time:
max_max_time = max_time
# HF accounted for later in get_max_max_new_tokens()
save_dir = os.getenv('SAVE_DIR', save_dir)
score_model = os.getenv('SCORE_MODEL', score_model)
if str(score_model) == 'None':
score_model = ''
concurrency_count = int(os.getenv('CONCURRENCY_COUNT', concurrency_count))
api_open = bool(int(os.getenv('API_OPEN', str(int(api_open)))))
allow_api = bool(int(os.getenv('ALLOW_API', str(int(allow_api)))))
n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0
if n_gpus == 0:
enable_captions = False
gpu_id = None
load_8bit = False
load_4bit = False
load_half = False
load_gptq = ''
use_safetensors = False
use_gpu_id = False
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = False
torch.set_default_dtype(torch.float32)
if psutil.virtual_memory().available < 94 * 1024 ** 3 and not inference_server and not model_lock:
# 12B uses ~94GB
# 6.9B uses ~47GB
base_model = 'h2oai/h2ogpt-oig-oasst1-512-6_9b' if not base_model else base_model
if hf_embedding_model is None:
# if no GPUs, use simpler embedding model to avoid cost in time
hf_embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
if score_model == 'auto':
score_model = ''
else:
if score_model == 'auto':
score_model = 'OpenAssistant/reward-model-deberta-v3-large-v2'
if hf_embedding_model is None:
# if still None, then set default
hf_embedding_model = 'hkunlp/instructor-large'
# get defaults
if base_model:
model_lower = base_model.lower()
elif model_lock:
# have 0th model be thought of as normal model
assert len(model_lock) > 0 and model_lock[0]['base_model']
model_lower = model_lock[0]['base_model'].lower()
else:
model_lower = ''
if not gradio:
# force, else not single response like want to look at
stream_output = False
# else prompt removal can mess up output
chat = False
# hard-coded defaults
first_para = False
text_limit = None
if offload_folder:
makedirs(offload_folder)
placeholder_instruction, placeholder_input, \
stream_output, show_examples, \
prompt_type, prompt_dict, \
temperature, top_p, top_k, num_beams, \
max_new_tokens, min_new_tokens, early_stopping, max_time, \
repetition_penalty, num_return_sequences, \
do_sample, \
src_lang, tgt_lang, \
examples, \
task_info = \
get_generate_params(model_lower,
chat,
stream_output, show_examples,
prompt_type, prompt_dict,
temperature, top_p, top_k, num_beams,
max_new_tokens, min_new_tokens, early_stopping, max_time,
repetition_penalty, num_return_sequences,
do_sample,
top_k_docs,
chunk,
chunk_size,
verbose,
)
git_hash = get_githash() if is_public or os.getenv('GET_GITHASH') else "GET_GITHASH"
locals_dict = locals()
locals_print = '\n'.join(['%s: %s' % (k, v) for k, v in locals_dict.items()])
if verbose:
print(f"Generating model with params:\n{locals_print}", flush=True)
print("Command: %s\nHash: %s" % (str(' '.join(sys.argv)), git_hash), flush=True)
if langchain_mode != "Disabled":
# SECOND PLACE where LangChain referenced, but all imports are kept local so not required
from gpt_langchain import prep_langchain, get_some_dbs_from_hf
if is_hf:
get_some_dbs_from_hf()
dbs = {}
for langchain_mode1 in visible_langchain_modes:
if langchain_mode1 in ['MyData']: # FIXME: Remove other custom temp dbs
# don't use what is on disk, remove it instead
for gpath1 in glob.glob(os.path.join(scratch_base_dir, 'db_dir_%s*' % langchain_mode1)):
if os.path.isdir(gpath1):
print("Removing old MyData: %s" % gpath1, flush=True)
remove(gpath1)
continue
if langchain_mode1 in ['All']:
# FIXME: All should be avoided until scans over each db, shouldn't be separate db
continue
persist_directory1 = 'db_dir_%s' % langchain_mode1 # single place, no special names for each case
try:
db = prep_langchain(persist_directory1,
load_db_if_exists,
db_type, use_openai_embedding,
langchain_mode1, langchain_mode_paths,
hf_embedding_model,
kwargs_make_db=locals())
finally:
# in case updated embeddings or created new embeddings
clear_torch_cache()
dbs[langchain_mode1] = db
# remove None db's so can just rely upon k in dbs for if hav db
dbs = {k: v for k, v in dbs.items() if v is not None}
else:
dbs = {}
# import control
if os.environ.get("TEST_LANGCHAIN_IMPORT"):
assert 'gpt_langchain' not in sys.modules, "Dev bug, import of langchain when should not have"
assert 'langchain' not in sys.modules, "Dev bug, import of langchain when should not have"
model_state_none = dict(model=None, tokenizer=None, device=None,
base_model=None, tokenizer_base_model=None, lora_weights=None,
inference_server=None, prompt_type=None, prompt_dict=None)
my_db_state0 = {LangChainMode.MY_DATA.value: [None, None]}
selection_docs_state0 = dict(visible_langchain_modes=visible_langchain_modes,
langchain_mode_paths=langchain_mode_paths,
langchain_modes=langchain_modes)
selection_docs_state = selection_docs_state0
langchain_modes0 = langchain_modes
langchain_mode_paths0 = langchain_mode_paths
visible_langchain_modes0 = visible_langchain_modes
if cli:
from cli import run_cli
return run_cli(**get_kwargs(run_cli, exclude_names=['model_state0'], **locals()))
elif not gradio:
from eval import run_eval
return run_eval(**get_kwargs(run_eval, exclude_names=['model_state0'], **locals()))
elif gradio:
# imported here so don't require gradio to run generate
from gradio_runner import go_gradio
# get default model
model_states = []
model_list = [dict(base_model=base_model, tokenizer_base_model=tokenizer_base_model, lora_weights=lora_weights,
inference_server=inference_server, prompt_type=prompt_type, prompt_dict=prompt_dict)]
model_list0 = copy.deepcopy(model_list) # just strings, safe to deepcopy
model_state0 = model_state_none.copy()
assert len(model_state_none) == len(model_state0)
if model_lock:
model_list = model_lock
for model_dict in reversed(model_list):
# do reverse, so first is default base_model etc., so some logic works in go_gradio() more easily
# handles defaults user didn't have to pass
model_dict['base_model'] = base_model1 = model_dict.get('base_model', '')
model_dict['tokenizer_base_model'] = tokenizer_base_model1 = model_dict.get('tokenizer_base_model', '')
model_dict['lora_weights'] = lora_weights1 = model_dict.get('lora_weights', '')
model_dict['inference_server'] = inference_server1 = model_dict.get('inference_server', '')
prompt_type1 = model_dict.get('prompt_type', model_list0[0]['prompt_type']) # don't use mutated value
# try to infer, ignore empty initial state leading to get_generate_params -> 'plain'
if model_dict.get('prompt_type') is None:
model_lower1 = base_model1.lower()
if model_lower1 in inv_prompt_type_to_model_lower:
prompt_type1 = inv_prompt_type_to_model_lower[model_lower1]
prompt_dict1, error0 = get_prompt(prompt_type1, '',
chat=False, context='', reduced=False, making_context=False,
return_dict=True)
else:
prompt_dict1 = prompt_dict
else:
prompt_dict1 = prompt_dict
model_dict['prompt_type'] = prompt_type1
model_dict['prompt_dict'] = prompt_dict1 = model_dict.get('prompt_dict', prompt_dict1)
all_kwargs = locals().copy()
all_kwargs.update(dict(base_model=base_model1, tokenizer_base_model=tokenizer_base_model1,
lora_weights=lora_weights1, inference_server=inference_server1))
if base_model1 and not login_mode_if_model0:
model0, tokenizer0, device = get_model(reward_type=False,
**get_kwargs(get_model, exclude_names=['reward_type'],
**all_kwargs))
else:
# if empty model, then don't load anything, just get gradio up
model0, tokenizer0, device = None, None, None
if model0 is None:
if fail_if_cannot_connect:
raise RuntimeError("Could not connect, see logs")
# skip
if isinstance(model_lock, list):
model_lock.remove(model_dict)
continue
model_state_trial = dict(model=model0, tokenizer=tokenizer0, device=device)
model_state_trial.update(model_dict)
assert len(model_state_none) == len(model_state_trial)
print("Model %s" % model_dict, flush=True)
if model_lock:
# last in iteration will be first
model_states.insert(0, model_state_trial)
# fill model_state0 so go_gradio() easier, manage model_states separately
model_state0 = model_state_trial.copy()
else:
model_state0 = model_state_trial.copy()
assert len(model_state_none) == len(model_state0)
# get score model
all_kwargs = locals().copy()
smodel, stokenizer, sdevice = get_score_model(reward_type=True,
**get_kwargs(get_score_model, exclude_names=['reward_type'],
**all_kwargs))
score_model_state0 = dict(model=smodel, tokenizer=stokenizer, device=sdevice,
base_model=score_model, tokenizer_base_model='', lora_weights='',
inference_server='', prompt_type='', prompt_dict='')
if enable_captions:
if pre_load_caption_model:
from image_captions import H2OImageCaptionLoader
caption_loader = H2OImageCaptionLoader(caption_gpu=caption_gpu).load_model()
else:
caption_loader = 'gpu' if caption_gpu else 'cpu'
else:
caption_loader = False
# assume gradio needs everything
go_gradio(**locals())
def get_config(base_model,
use_auth_token=False,
trust_remote_code=True,
offload_folder=None,
triton_attn=False,
long_sequence=True,
return_model=False,
raise_exception=False,
):
from accelerate import init_empty_weights
with init_empty_weights():
from transformers import AutoConfig
try:
config = AutoConfig.from_pretrained(base_model, use_auth_token=use_auth_token,
trust_remote_code=trust_remote_code,
offload_folder=offload_folder)
except OSError as e:
if raise_exception:
raise
if 'not a local folder and is not a valid model identifier listed on' in str(
e) or '404 Client Error' in str(e):
# e.g. llama, gpjt, etc.
# e.g. HF TGI but not model on HF or private etc.
# HF TGI server only should really require prompt_type, not HF model state
return None, None
else:
raise
if triton_attn and 'mpt-' in base_model.lower():
config.attn_config['attn_impl'] = 'triton'
if long_sequence:
if 'mpt-7b-storywriter' in base_model.lower():
config.update({"max_seq_len": 83968})
if 'mosaicml/mpt-7b-chat' in base_model.lower():
config.update({"max_seq_len": 4096})
if 'mpt-30b' in base_model.lower():
config.update({"max_seq_len": 2 * 8192})
if return_model and \
issubclass(config.__class__, tuple(AutoModel._model_mapping.keys())):
model = AutoModel.from_config(
config,
trust_remote_code=trust_remote_code,
)
else:
# can't infer
model = None
if 'falcon' in base_model.lower():
config.use_cache = False
return config, model
def get_non_lora_model(base_model, model_loader, load_half,
load_gptq, use_safetensors,
model_kwargs, reward_type,
config, model,
gpu_id=0,
):
"""
Ensure model gets on correct device
"""
if model is not None:
# NOTE: Can specify max_memory={0: max_mem, 1: max_mem}, to shard model
# NOTE: Some models require avoiding sharding some layers,
# then would pass no_split_module_classes and give list of those layers.
from accelerate import infer_auto_device_map
device_map = infer_auto_device_map(
model,
dtype=torch.float16 if load_half else torch.float32,
)
if hasattr(model, 'model'):
device_map_model = infer_auto_device_map(
model.model,
dtype=torch.float16 if load_half else torch.float32,
)
device_map.update(device_map_model)
else:
device_map = "auto"
n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0
if n_gpus > 0:
if gpu_id >= 0:
# FIXME: If really distributes model, tend to get things like: ValueError: gpt_neox.embed_in.weight doesn't have any device set.
# So avoid for now, just put on first GPU, unless score_model, put on last
if reward_type:
device_map = {'': n_gpus - 1}
else:
device_map = {'': min(n_gpus - 1, gpu_id)}
if gpu_id == -1:
device_map = {'': 'cuda'}
else:
device_map = {'': 'cpu'}
model_kwargs['load_in_8bit'] = False
model_kwargs['load_in_4bit'] = False
print('device_map: %s' % device_map, flush=True)
load_in_8bit = model_kwargs.get('load_in_8bit', False)
load_in_4bit = model_kwargs.get('load_in_4bit', False)
model_kwargs['device_map'] = device_map
model_kwargs['use_safetensors'] = use_safetensors
pop_unused_model_kwargs(model_kwargs)
if load_gptq:
model_kwargs.pop('torch_dtype', None)
model_kwargs.pop('device_map')
model = model_loader(
model_name_or_path=base_model,
model_basename=load_gptq,
**model_kwargs,
)
elif load_in_8bit or load_in_4bit or not load_half:
model = model_loader(
base_model,
config=config,
**model_kwargs,
)
else:
model = model_loader(
base_model,
config=config,
**model_kwargs,
).half()
return model
def get_client_from_inference_server(inference_server, base_model=None, raise_connection_exception=False):
inference_server, headers = get_hf_server(inference_server)
# preload client since slow for gradio case especially
from gradio_utils.grclient import GradioClient
gr_client = None
hf_client = None
if headers is None:
try:
print("GR Client Begin: %s %s" % (inference_server, base_model), flush=True)
# first do sanity check if alive, else gradio client takes too long by default
requests.get(inference_server, timeout=int(os.getenv('REQUEST_TIMEOUT', '30')))
gr_client = GradioClient(inference_server)
print("GR Client End: %s" % inference_server, flush=True)
except (OSError, ValueError) as e:
# Occurs when wrong endpoint and should have been HF client, so don't hard raise, just move to HF
gr_client = None
print("GR Client Failed %s %s: %s" % (inference_server, base_model, str(e)), flush=True)
except (ConnectTimeoutError, ConnectTimeout, MaxRetryError, ConnectionError, ConnectionError2,
JSONDecodeError, ReadTimeout2, KeyError) as e:
t, v, tb = sys.exc_info()
ex = ''.join(traceback.format_exception(t, v, tb))
print("GR Client Failed %s %s: %s" % (inference_server, base_model, str(ex)), flush=True)
if raise_connection_exception:
raise
if gr_client is None:
res = None
from text_generation import Client as HFClient
print("HF Client Begin: %s %s" % (inference_server, base_model))
try:
hf_client = HFClient(inference_server, headers=headers, timeout=int(os.getenv('REQUEST_TIMEOUT', '30')))
# quick check valid TGI endpoint
res = hf_client.generate('What?', max_new_tokens=1)
hf_client = HFClient(inference_server, headers=headers, timeout=300)
except (ConnectTimeoutError, ConnectTimeout, MaxRetryError, ConnectionError, ConnectionError2,
JSONDecodeError, ReadTimeout2, KeyError) as e:
hf_client = None
t, v, tb = sys.exc_info()
ex = ''.join(traceback.format_exception(t, v, tb))
print("HF Client Failed %s %s: %s" % (inference_server, base_model, str(ex)))
if raise_connection_exception:
raise
print("HF Client End: %s %s : %s" % (inference_server, base_model, res))
return inference_server, gr_client, hf_client
def get_model(
load_8bit: bool = False,
load_4bit: bool = False,
load_half: bool = True,
load_gptq: str = '',
use_safetensors: bool = False,
use_gpu_id: bool = True,
base_model: str = '',
inference_server: str = "",
tokenizer_base_model: str = '',
lora_weights: str = "",
gpu_id: int = 0,
reward_type: bool = None,
local_files_only: bool = False,
resume_download: bool = True,
use_auth_token: Union[str, bool] = False,
trust_remote_code: bool = True,
offload_folder: str = None,
compile_model: bool = True,
verbose: bool = False,
):
"""
:param load_8bit: load model in 8-bit, not supported by all models
:param load_4bit: load model in 4-bit, not supported by all models
:param load_half: load model in 16-bit
:param load_gptq: GPTQ model_basename
:param use_safetensors: use safetensors file
:param use_gpu_id: Use torch infer of optimal placement of layers on devices (for non-lora case)
For non-LORA case, False will spread shards across multiple GPUs, but this can lead to cuda:x cuda:y mismatches
So it is not the default
:param base_model: name/path of base model
:param inference_server: whether base_model is hosted locally ('') or via http (url)
:param tokenizer_base_model: name/path of tokenizer
:param lora_weights: name/path
:param gpu_id: which GPU (0..n_gpus-1) or allow all GPUs if relevant (-1)
:param reward_type: reward type model for sequence classification
:param local_files_only: use local files instead of from HF
:param resume_download: resume downloads from HF
:param use_auth_token: assumes user did on CLI `huggingface-cli login` to access private repo
:param trust_remote_code: trust code needed by model
:param offload_folder: offload folder
:param compile_model: whether to compile torch model
:param verbose:
:return:
"""
print("Starting get_model: %s %s" % (base_model, inference_server), flush=True)
triton_attn = False
long_sequence = True
config_kwargs = dict(use_auth_token=use_auth_token,
trust_remote_code=trust_remote_code,
offload_folder=offload_folder,
triton_attn=triton_attn,
long_sequence=long_sequence)
config, _ = get_config(base_model, **config_kwargs, raise_exception=False)
if base_model in non_hf_types:
assert config is None, "Expected config None for %s" % base_model
llama_type_from_config = 'llama' in str(config).lower()
llama_type_from_name = "llama" in base_model.lower()
llama_type = llama_type_from_config or llama_type_from_name
if "xgen" in base_model.lower():
llama_type = False
if llama_type:
if verbose:
print("Detected as llama type from"
" config (%s) or name (%s)" % (llama_type_from_config, llama_type_from_name), flush=True)
model_loader, tokenizer_loader = get_loaders(model_name=base_model, reward_type=reward_type, llama_type=llama_type,
load_gptq=load_gptq)
tokenizer_kwargs = dict(local_files_only=local_files_only,
resume_download=resume_download,
use_auth_token=use_auth_token,
trust_remote_code=trust_remote_code,
offload_folder=offload_folder,
padding_side='left',
config=config,
)
if not tokenizer_base_model:
tokenizer_base_model = base_model
if config is not None and tokenizer_loader is not None and not isinstance(tokenizer_loader, str):
tokenizer = tokenizer_loader.from_pretrained(tokenizer_base_model, **tokenizer_kwargs)
# sets raw (no cushion) limit
set_model_max_len(config, tokenizer, verbose=False)
# if using fake tokenizer, not really accurate when lots of numbers, give a bit of buffer, else get:
# Generation Failed: Input validation error: `inputs` must have less than 2048 tokens. Given: 2233
tokenizer.model_max_length = tokenizer.model_max_length - 50
else:
tokenizer = FakeTokenizer()
if isinstance(inference_server, str) and inference_server.startswith("http"):
inference_server, gr_client, hf_client = get_client_from_inference_server(inference_server,
base_model=base_model)
client = gr_client or hf_client
# Don't return None, None for model, tokenizer so triggers
return client, tokenizer, 'http'
if isinstance(inference_server, str) and (
inference_server.startswith('openai') or inference_server.startswith('vllm')):
if inference_server.startswith('openai'):
assert os.getenv('OPENAI_API_KEY'), "Set environment for OPENAI_API_KEY"
# Don't return None, None for model, tokenizer so triggers
# include small token cushion
tokenizer = FakeTokenizer(model_max_length=model_token_mapping[base_model] - 50)
return inference_server, tokenizer, inference_server
assert not inference_server, "Malformed inference_server=%s" % inference_server
if base_model in non_hf_types:
from gpt4all_llm import get_model_tokenizer_gpt4all
model, tokenizer, device = get_model_tokenizer_gpt4all(base_model)
return model, tokenizer, device
# get local torch-HF model
return get_hf_model(load_8bit=load_8bit,
load_4bit=load_4bit,
load_half=load_half,
load_gptq=load_gptq,
use_safetensors=use_safetensors,
use_gpu_id=use_gpu_id,
base_model=base_model,
tokenizer_base_model=tokenizer_base_model,
lora_weights=lora_weights,
gpu_id=gpu_id,
reward_type=reward_type,
local_files_only=local_files_only,
resume_download=resume_download,
use_auth_token=use_auth_token,
trust_remote_code=trust_remote_code,
offload_folder=offload_folder,
compile_model=compile_model,
llama_type=llama_type,
config_kwargs=config_kwargs,
tokenizer_kwargs=tokenizer_kwargs,
verbose=verbose)
def get_hf_model(load_8bit: bool = False,
load_4bit: bool = False,
load_half: bool = True,
load_gptq: str = '',
use_safetensors: bool = False,
use_gpu_id: bool = True,
base_model: str = '',
tokenizer_base_model: str = '',
lora_weights: str = "",
gpu_id: int = 0,
reward_type: bool = None,
local_files_only: bool = False,
resume_download: bool = True,
use_auth_token: Union[str, bool] = False,
trust_remote_code: bool = True,
offload_folder: str = None,
compile_model: bool = True,
llama_type: bool = False,
config_kwargs=None,
tokenizer_kwargs=None,
verbose: bool = False,
):
assert config_kwargs is not None
assert tokenizer_kwargs is not None
if lora_weights is not None and lora_weights.strip():
if verbose:
print("Get %s lora weights" % lora_weights, flush=True)
device = get_device()
if 'gpt2' in base_model.lower():
# RuntimeError: where expected condition to be a boolean tensor, but got a tensor with dtype Half
load_8bit = False
load_4bit = False
assert base_model.strip(), (
"Please choose a base model with --base_model (CLI) or load one from Models Tab (gradio)"
)
model_loader, tokenizer_loader = get_loaders(model_name=base_model, reward_type=reward_type, llama_type=llama_type,
load_gptq=load_gptq)
config, _ = get_config(base_model, return_model=False, raise_exception=True, **config_kwargs)
if tokenizer_loader is not None and not isinstance(tokenizer_loader, str):
tokenizer = tokenizer_loader.from_pretrained(tokenizer_base_model,
**tokenizer_kwargs)
else:
tokenizer = tokenizer_loader
if isinstance(tokenizer, str):
# already a pipeline, tokenizer_loader is string for task
model = model_loader(tokenizer,
model=base_model,
device=0 if device == "cuda" else -1,
torch_dtype=torch.float16 if device == 'cuda' else torch.float32)
else:
assert device in ["cuda", "cpu", "mps"], "Unsupported device %s" % device
model_kwargs = dict(local_files_only=local_files_only,
torch_dtype=torch.float16 if device == 'cuda' else torch.float32,
resume_download=resume_download,
use_auth_token=use_auth_token,
trust_remote_code=trust_remote_code,
offload_folder=offload_folder,
)
if 'mbart-' not in base_model.lower() and 'mpt-' not in base_model.lower():
if use_gpu_id and gpu_id is not None and gpu_id >= 0 and device == 'cuda':
device_map = {"": gpu_id}
else:
device_map = "auto"
model_kwargs.update(dict(load_in_8bit=load_8bit,
load_in_4bit=load_4bit,
device_map=device_map,
))
if 'mpt-' in base_model.lower() and gpu_id is not None and gpu_id >= 0:
# MPT doesn't support spreading over GPUs
model_kwargs.update(dict(device_map={"": gpu_id} if device == 'cuda' else "cpu"))
if 'OpenAssistant/reward-model'.lower() in base_model.lower():
# FIXME: could put on other GPUs
model_kwargs['device_map'] = {"": 0} if device == 'cuda' else {"": 'cpu'}
model_kwargs.pop('torch_dtype', None)
pop_unused_model_kwargs(model_kwargs)
if not lora_weights:
# torch.device context uses twice memory for AutoGPTQ
context = NullContext if load_gptq else torch.device
with context(device):
if use_gpu_id:
config, model = get_config(base_model, return_model=True, raise_exception=True, **config_kwargs)
model = get_non_lora_model(base_model, model_loader, load_half, load_gptq, use_safetensors,
model_kwargs, reward_type,
config, model,
gpu_id=gpu_id,
)
else:
config, _ = get_config(base_model, **config_kwargs)
if load_half and not (load_8bit or load_4bit or load_gptq):
model = model_loader(
base_model,
config=config,
**model_kwargs).half()
else:
model = model_loader(
base_model,
config=config,
**model_kwargs)
elif load_8bit or load_4bit:
config, _ = get_config(base_model, **config_kwargs)
model = model_loader(
base_model,
config=config,
**model_kwargs
)
from peft import PeftModel # loads cuda, so avoid in global scope
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16 if device == 'cuda' else torch.float32,
local_files_only=local_files_only,
resume_download=resume_download,
use_auth_token=use_auth_token,
trust_remote_code=trust_remote_code,
offload_folder=offload_folder,
device_map={"": 0} if device == 'cuda' else {"": 'cpu'}, # seems to be required
)
else:
with torch.device(device):
config, _ = get_config(base_model, raise_exception=True, **config_kwargs)
model = model_loader(
base_model,
config=config,
**model_kwargs
)
from peft import PeftModel # loads cuda, so avoid in global scope
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16 if device == 'cuda' else torch.float32,
local_files_only=local_files_only,
resume_download=resume_download,
use_auth_token=use_auth_token,
trust_remote_code=trust_remote_code,
offload_folder=offload_folder,
device_map="auto",
)
if load_half and not load_gptq:
model.half()
# unwind broken decapoda-research config
if llama_type:
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if 'gpt2' in base_model.lower():
# add special tokens that otherwise all share the same id
tokenizer.add_special_tokens({'bos_token': '<bos>',
'eos_token': '<eos>',
'pad_token': '<pad>'})
if not isinstance(tokenizer, str):
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32" and compile_model:
model = torch.compile(model)
set_model_max_len(config, tokenizer, verbose=False, reward_type=reward_type)
return model, tokenizer, device
def set_model_max_len(config, tokenizer, verbose=False, reward_type=False):
if reward_type:
# limit deberta, else uses too much memory and not worth response score
tokenizer.model_max_length = 512
if hasattr(config, 'max_seq_len') and isinstance(config.max_seq_len, int):
tokenizer.model_max_length = config.max_seq_len
elif hasattr(config, 'max_position_embeddings') and isinstance(config.max_position_embeddings, int):
# help automatically limit inputs to generate
tokenizer.model_max_length = config.max_position_embeddings
else:
if verbose:
print("Could not determine model_max_length, setting to 2048", flush=True)
tokenizer.model_max_length = 2048
# for bug in HF transformers
if tokenizer.model_max_length > 100000000:
tokenizer.model_max_length = 2048
def pop_unused_model_kwargs(model_kwargs):
"""
in-place pop unused kwargs that are not dependency-upgrade friendly
no point passing in False, is default, and helps avoid needing to update requirements for new deps
:param model_kwargs:
:return:
"""
check_list = ['load_in_8bit', 'load_in_4bit']
for k in check_list:
if k in model_kwargs and not model_kwargs[k]:
model_kwargs.pop(k)
def get_score_model(score_model: str = None,
load_8bit: bool = False,
load_4bit: bool = False,
load_half: bool = True,
load_gptq: str = '',
use_gpu_id: bool = True,
base_model: str = '',
inference_server: str = '',
tokenizer_base_model: str = '',
lora_weights: str = "",
gpu_id: int = 0,
reward_type: bool = None,
local_files_only: bool = False,
resume_download: bool = True,
use_auth_token: Union[str, bool] = False,
trust_remote_code: bool = True,
offload_folder: str = None,
compile_model: bool = True,
verbose: bool = False,
):
if score_model is not None and score_model.strip():
load_8bit = False
load_4bit = False
load_half = False
load_gptq = ''
use_safetensors = False
base_model = score_model.strip()
tokenizer_base_model = ''
lora_weights = ''
inference_server = ''
llama_type = False
compile_model = False
smodel, stokenizer, sdevice = get_model(reward_type=True,
**get_kwargs(get_model, exclude_names=['reward_type'], **locals()))
else:
smodel, stokenizer, sdevice = None, None, None
return smodel, stokenizer, sdevice
def evaluate(
model_state,
my_db_state,
selection_docs_state,
# START NOTE: Examples must have same order of parameters
instruction,
iinput,
context,
stream_output,
prompt_type,
prompt_dict,
temperature,
top_p,
top_k,
num_beams,
max_new_tokens,
min_new_tokens,
early_stopping,
max_time,
repetition_penalty,
num_return_sequences,
do_sample,
chat,
instruction_nochat,
iinput_nochat,
langchain_mode,
add_chat_history_to_context,
langchain_action,
langchain_agents,
top_k_docs,
chunk,
chunk_size,
document_subset,
document_choice,
# END NOTE: Examples must have same order of parameters
src_lang=None,
tgt_lang=None,
debug=False,
concurrency_count=None,
save_dir=None,
sanitize_bot_response=False,
model_state0=None,
langchain_modes0=None,
langchain_mode_paths0=None,
visible_langchain_modes0=None,
memory_restriction_level=None,
max_max_new_tokens=None,
is_public=None,
max_max_time=None,
raise_generate_gpu_exceptions=None,
chat_context=None,
lora_weights=None,
use_llm_if_no_docs=False,
load_db_if_exists=True,
dbs=None,
detect_user_path_changes_every_query=None,
use_openai_embedding=None,
use_openai_model=None,
hf_embedding_model=None,
cut_distance=None,
db_type=None,
n_jobs=None,
first_para=None,
text_limit=None,
verbose=False,
cli=False,
reverse_docs=True,
use_cache=None,
auto_reduce_chunks=None,
max_chunks=None,
model_lock=None,
force_langchain_evaluate=None,
model_state_none=None,
):
# ensure passed these
assert concurrency_count is not None
assert memory_restriction_level is not None
assert raise_generate_gpu_exceptions is not None
assert chat_context is not None
assert use_openai_embedding is not None
assert use_openai_model is not None
assert hf_embedding_model is not None
assert db_type is not None
assert top_k_docs is not None and isinstance(top_k_docs, int)
assert chunk is not None and isinstance(chunk, bool)
assert chunk_size is not None and isinstance(chunk_size, int)
assert n_jobs is not None
assert first_para is not None
assert isinstance(add_chat_history_to_context, bool)
if selection_docs_state is not None:
langchain_modes = selection_docs_state.get('langchain_modes', langchain_modes0)
langchain_mode_paths = selection_docs_state.get('langchain_mode_paths', langchain_mode_paths0)
visible_langchain_modes = selection_docs_state.get('visible_langchain_modes', visible_langchain_modes0)
else:
langchain_modes = langchain_modes0
langchain_mode_paths = langchain_mode_paths0
visible_langchain_modes = visible_langchain_modes0
if debug:
locals_dict = locals().copy()
locals_dict.pop('model_state', None)
locals_dict.pop('model_state0', None)
locals_dict.pop('model_states', None)
print(locals_dict)
no_model_msg = "Please choose a base model with --base_model (CLI) or load in Models Tab (gradio).\n" \
"Then start New Conversation"
if model_state is None:
model_state = model_state_none.copy()
if model_state0 is None:
# e.g. for no gradio case, set dummy value, else should be set
model_state0 = model_state_none.copy()
# model_state['model] is only 'model' if should use model_state0
# model could also be None
have_model_lock = model_lock is not None
have_fresh_model = model_state['model'] not in [None, 'model', no_model_str]
# for gradio UI control, expect model_state and model_state0 to match, so if have_model_lock=True, then should have_fresh_model=True
# but gradio API control will only use nochat api etc. and won't use fresh model, so can't assert in general
# if have_model_lock:
# assert have_fresh_model, "Expected model_state and model_state0 to match if have_model_lock"
have_cli_model = model_state0['model'] not in [None, 'model', no_model_str]
if have_fresh_model:
# USE FRESH MODEL
if not have_model_lock:
# model_state0 is just one of model_state if model_lock, so don't nuke
# try to free-up original model (i.e. list was passed as reference)
if model_state0['model'] and hasattr(model_state0['model'], 'cpu'):
model_state0['model'].cpu()
model_state0['model'] = None
# try to free-up original tokenizer (i.e. list was passed as reference)
if model_state0['tokenizer']:
model_state0['tokenizer'] = None
clear_torch_cache()
chosen_model_state = model_state
elif have_cli_model:
# USE MODEL SETUP AT CLI
assert isinstance(model_state['model'], str) # expect no fresh model
chosen_model_state = model_state0
else:
raise AssertionError(no_model_msg)
# get variables
model = chosen_model_state['model']
tokenizer = chosen_model_state['tokenizer']
device = chosen_model_state['device']
base_model = chosen_model_state['base_model']
tokenizer_base_model = chosen_model_state['tokenizer_base_model']
lora_weights = chosen_model_state['lora_weights']
inference_server = chosen_model_state['inference_server']
# prefer use input from API over model state
prompt_type = prompt_type or chosen_model_state['prompt_type']
prompt_dict = prompt_dict or chosen_model_state['prompt_dict']
if base_model is None:
raise AssertionError(no_model_msg)
assert base_model.strip(), no_model_msg
assert model, "Model is missing"
assert tokenizer, "Tokenizer is missing"
# choose chat or non-chat mode
if not chat:
instruction = instruction_nochat
iinput = iinput_nochat
# in some cases, like lean nochat API, don't want to force sending prompt_type, allow default choice
model_lower = base_model.lower()
if not prompt_type and model_lower in inv_prompt_type_to_model_lower and prompt_type != 'custom':
prompt_type = inv_prompt_type_to_model_lower[model_lower]
if verbose:
print("Auto-selecting prompt_type=%s for %s" % (prompt_type, model_lower), flush=True)
assert prompt_type is not None, "prompt_type was None"
# Control generation hyperparameters
# adjust for bad inputs, e.g. in case also come from API that doesn't get constrained by gradio sliders
# below is for TGI server, not required for HF transformers
# limits are chosen similar to gradio_runner.py sliders/numbers
top_p = min(max(1e-3, top_p), 1.0 - 1e-3)
top_k = min(max(1, int(top_k)), 100)
temperature = min(max(0.01, temperature), 2.0)
# FIXME: https://github.com/h2oai/h2ogpt/issues/106
num_beams = 1 if stream_output else num_beams # See max_beams in gradio_runner
max_max_new_tokens = get_max_max_new_tokens(chosen_model_state,
memory_restriction_level=memory_restriction_level,
max_new_tokens=max_new_tokens,
max_max_new_tokens=max_max_new_tokens)
model_max_length = get_model_max_length(chosen_model_state)
max_new_tokens = min(max(1, int(max_new_tokens)), max_max_new_tokens)
min_new_tokens = min(max(0, int(min_new_tokens)), max_new_tokens)
max_time = min(max(0, max_time), max_max_time)
repetition_penalty = min(max(0.01, repetition_penalty), 3.0)
num_return_sequences = 1 if chat else min(max(1, int(num_return_sequences)), 10)
min_top_k_docs, max_top_k_docs, label_top_k_docs = get_minmax_top_k_docs(is_public)
top_k_docs = min(max(min_top_k_docs, int(top_k_docs)), max_top_k_docs)
chunk_size = min(max(128, int(chunk_size)), 2048)
if not context:
# get hidden context if have one
context = get_context(chat_context, prompt_type)
# restrict instruction, typically what has large input
from h2oai_pipeline import H2OTextGenerationPipeline
instruction, num_prompt_tokens1 = H2OTextGenerationPipeline.limit_prompt(instruction, tokenizer)
context, num_prompt_tokens2 = H2OTextGenerationPipeline.limit_prompt(context, tokenizer)
iinput, num_prompt_tokens3 = H2OTextGenerationPipeline.limit_prompt(iinput, tokenizer)
num_prompt_tokens = (num_prompt_tokens1 or 0) + (num_prompt_tokens2 or 0) + (num_prompt_tokens3 or 0)
# get prompt
prompter = Prompter(prompt_type, prompt_dict, debug=debug, chat=chat, stream_output=stream_output)
data_point = dict(context=context, instruction=instruction, input=iinput)
prompt = prompter.generate_prompt(data_point)
# THIRD PLACE where LangChain referenced, but imports only occur if enabled and have db to use
assert langchain_mode in langchain_modes, "Invalid langchain_mode %s" % langchain_mode
assert langchain_action in langchain_actions, "Invalid langchain_action %s" % langchain_action
assert len(
set(langchain_agents).difference(langchain_agents_list)) == 0, "Invalid langchain_agents %s" % langchain_agents
if dbs is not None and langchain_mode in dbs:
db = dbs[langchain_mode]
elif my_db_state is not None and langchain_mode in my_db_state:
db1 = my_db_state[langchain_mode]
if db1 is not None and len(db1) == 2:
db = db1[0]
else:
db = None
else:
db = None
do_langchain_path = langchain_mode not in [False, 'Disabled', 'LLM'] or \
base_model in non_hf_types or \
force_langchain_evaluate
if do_langchain_path:
outr = ""
# use smaller cut_distance for wiki_full since so many matches could be obtained, and often irrelevant unless close
from gpt_langchain import run_qa_db
gen_hyper_langchain = dict(do_sample=do_sample,
temperature=temperature,
repetition_penalty=repetition_penalty,
top_k=top_k,
top_p=top_p,
num_beams=num_beams,
min_new_tokens=min_new_tokens,
max_new_tokens=max_new_tokens,
early_stopping=early_stopping,
max_time=max_time,
num_return_sequences=num_return_sequences,
)
for r in run_qa_db(query=instruction,
iinput=iinput,
context=context,
model_name=base_model, model=model, tokenizer=tokenizer,
inference_server=inference_server,
stream_output=stream_output,
prompter=prompter,
use_llm_if_no_docs=use_llm_if_no_docs,
load_db_if_exists=load_db_if_exists,
db=db,
langchain_mode_paths=langchain_mode_paths,
detect_user_path_changes_every_query=detect_user_path_changes_every_query,
cut_distance=1.1 if langchain_mode in ['wiki_full'] else cut_distance,
add_chat_history_to_context=add_chat_history_to_context,
use_openai_embedding=use_openai_embedding,
use_openai_model=use_openai_model,
hf_embedding_model=hf_embedding_model,
first_para=first_para,
text_limit=text_limit,
chunk=chunk,
chunk_size=chunk_size,
langchain_mode=langchain_mode,
langchain_action=langchain_action,
langchain_agents=langchain_agents,
document_subset=document_subset,
document_choice=document_choice,
db_type=db_type,
top_k_docs=top_k_docs,
**gen_hyper_langchain,
prompt_type=prompt_type,
prompt_dict=prompt_dict,
n_jobs=n_jobs,
verbose=verbose,
cli=cli,
sanitize_bot_response=sanitize_bot_response,
reverse_docs=reverse_docs,
lora_weights=lora_weights,
auto_reduce_chunks=auto_reduce_chunks,
max_chunks=max_chunks,
):
outr, extra = r # doesn't accumulate, new answer every yield, so only save that full answer
yield dict(response=outr, sources=extra)
if save_dir:
extra_dict = gen_hyper_langchain.copy()
extra_dict.update(prompt_type=prompt_type,
inference_server=inference_server,
langchain_mode=langchain_mode,
langchain_action=langchain_action,
langchain_agents=langchain_agents,
document_subset=document_subset,
document_choice=document_choice,
num_prompt_tokens=num_prompt_tokens,
instruction=instruction,
iinput=iinput,
context=context,
)
save_generate_output(prompt=prompt,
output=outr, base_model=base_model, save_dir=save_dir,
where_from='run_qa_db',
extra_dict=extra_dict)
if verbose:
print(
'Post-Generate Langchain: %s decoded_output: %s' % (str(datetime.now()), len(outr) if outr else -1),
flush=True)
if outr or base_model in non_hf_types:
# if got no response (e.g. not showing sources and got no sources,
# so nothing to give to LLM), then slip through and ask LLM
# Or if llama/gptj, then just return since they had no response and can't go down below code path
# clear before return, since .then() never done if from API
clear_torch_cache()
return
if inference_server.startswith('vllm') or inference_server.startswith('openai') or inference_server.startswith(
'http'):
if inference_server.startswith('vllm') or inference_server.startswith('openai'):
where_from = "openai_client"
openai, inf_type = set_openai(inference_server)
terminate_response = prompter.terminate_response or []
stop_sequences = list(set(terminate_response + [prompter.PreResponse]))
stop_sequences = [x for x in stop_sequences if x]
# OpenAI will complain if ask for too many new tokens, takes it as min in some sense, wrongly so.
max_new_tokens_openai = min(max_new_tokens, model_max_length - num_prompt_tokens)
gen_server_kwargs = dict(temperature=temperature if do_sample else 0,
max_tokens=max_new_tokens_openai,
top_p=top_p if do_sample else 1,
frequency_penalty=0,
n=num_return_sequences,
presence_penalty=1.07 - repetition_penalty + 0.6, # so good default
)
if inf_type == 'vllm' or inference_server == 'openai':
response = openai.Completion.create(
model=base_model,
prompt=prompt,
**gen_server_kwargs,
stop=stop_sequences,
stream=stream_output,
)
if not stream_output:
text = response['choices'][0]['text']
yield dict(response=prompter.get_response(prompt + text, prompt=prompt,
sanitize_bot_response=sanitize_bot_response),
sources='')
else:
collected_events = []
text = ''
for event in response:
collected_events.append(event) # save the event response
event_text = event['choices'][0]['text'] # extract the text
text += event_text # append the text
yield dict(response=prompter.get_response(prompt + text, prompt=prompt,
sanitize_bot_response=sanitize_bot_response),
sources='')
elif inf_type == 'vllm_chat' or inference_server == 'openai_chat':
if inf_type == 'vllm_chat':
raise NotImplementedError('%s not supported by vLLM' % inf_type)
response = openai.ChatCompletion.create(
model=base_model,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{'role': 'user',
'content': prompt,
}
],
stream=stream_output,
**gen_server_kwargs,
)
if not stream_output:
text = response["choices"][0]["message"]["content"]
yield dict(response=prompter.get_response(prompt + text, prompt=prompt,
sanitize_bot_response=sanitize_bot_response),
sources='')
else:
text = ""
for chunk in response:
delta = chunk["choices"][0]["delta"]
if 'content' in delta:
text += delta['content']
yield dict(response=prompter.get_response(prompt + text, prompt=prompt,
sanitize_bot_response=sanitize_bot_response),
sources='')
else:
raise RuntimeError("No such OpenAI mode: %s" % inference_server)
elif inference_server.startswith('http'):
inference_server, headers = get_hf_server(inference_server)
from gradio_utils.grclient import GradioClient
from text_generation import Client as HFClient
if isinstance(model, GradioClient):
gr_client = model
hf_client = None
elif isinstance(model, HFClient):
gr_client = None
hf_client = model
else:
inference_server, gr_client, hf_client = get_client_from_inference_server(inference_server,
base_model=base_model)
# quick sanity check to avoid long timeouts, just see if can reach server
requests.get(inference_server, timeout=int(os.getenv('REQUEST_TIMEOUT_FAST', '10')))
if gr_client is not None:
# Note: h2oGPT gradio server could handle input token size issues for prompt,
# but best to handle here so send less data to server
chat_client = False
where_from = "gr_client"
client_langchain_mode = 'Disabled'
client_add_chat_history_to_context = True
client_langchain_action = LangChainAction.QUERY.value
client_langchain_agents = []
gen_server_kwargs = dict(temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
max_new_tokens=max_new_tokens,
min_new_tokens=min_new_tokens,
early_stopping=early_stopping,
max_time=max_time,
repetition_penalty=repetition_penalty,
num_return_sequences=num_return_sequences,
do_sample=do_sample,
chat=chat_client,
)
# account for gradio into gradio that handles prompting, avoid duplicating prompter prompt injection
if prompt_type in [None, '', PromptType.plain.name, PromptType.plain.value,
str(PromptType.plain.value)]:
# if our prompt is plain, assume either correct or gradio server knows different prompt type,
# so pass empty prompt_Type
gr_prompt_type = ''
gr_prompt_dict = ''
gr_prompt = prompt # already prepared prompt
gr_context = ''
gr_iinput = ''
else:
# if already have prompt_type that is not plain, None, or '', then already applied some prompting
# But assume server can handle prompting, and need to avoid double-up.
# Also assume server can do better job of using stopping.py to stop early, so avoid local prompting, let server handle
# So avoid "prompt" and let gradio server reconstruct from prompt_type we passed
# Note it's ok that prompter.get_response() has prompt+text, prompt=prompt passed,
# because just means extra processing and removal of prompt, but that has no human-bot prompting doesn't matter
# since those won't appear
gr_context = context
gr_prompt = instruction
gr_iinput = iinput
gr_prompt_type = prompt_type
gr_prompt_dict = prompt_dict
client_kwargs = dict(instruction=gr_prompt if chat_client else '', # only for chat=True
iinput=gr_iinput, # only for chat=True
context=gr_context,
# streaming output is supported, loops over and outputs each generation in streaming mode
# but leave stream_output=False for simple input/output mode
stream_output=stream_output,
**gen_server_kwargs,
prompt_type=gr_prompt_type,
prompt_dict=gr_prompt_dict,
instruction_nochat=gr_prompt if not chat_client else '',
iinput_nochat=gr_iinput, # only for chat=False
langchain_mode=client_langchain_mode,
add_chat_history_to_context=client_add_chat_history_to_context,
langchain_action=client_langchain_action,
langchain_agents=client_langchain_agents,
top_k_docs=top_k_docs,
chunk=chunk,
chunk_size=chunk_size,
document_subset=DocumentSubset.Relevant.name,
document_choice=[DocumentChoice.ALL.value],
)
api_name = '/submit_nochat_api' # NOTE: like submit_nochat but stable API for string dict passing
if not stream_output:
res = gr_client.predict(str(dict(client_kwargs)), api_name=api_name)
res_dict = ast.literal_eval(res)
text = res_dict['response']
sources = res_dict['sources']
yield dict(response=prompter.get_response(prompt + text, prompt=prompt,
sanitize_bot_response=sanitize_bot_response),
sources=sources)
else:
job = gr_client.submit(str(dict(client_kwargs)), api_name=api_name)
text = ''
sources = ''
res_dict = dict(response=text, sources=sources)
while not job.done():
outputs_list = job.communicator.job.outputs
if outputs_list:
res = job.communicator.job.outputs[-1]
res_dict = ast.literal_eval(res)
text = res_dict['response']
sources = res_dict['sources']
if gr_prompt_type == 'plain':
# then gradio server passes back full prompt + text
prompt_and_text = text
else:
prompt_and_text = prompt + text
yield dict(response=prompter.get_response(prompt_and_text, prompt=prompt,
sanitize_bot_response=sanitize_bot_response),
sources=sources)
time.sleep(0.01)
# ensure get last output to avoid race
res_all = job.outputs()
if len(res_all) > 0:
res = res_all[-1]
res_dict = ast.literal_eval(res)
text = res_dict['response']
sources = res_dict['sources']
else:
# go with old text if last call didn't work
e = job.future._exception
if e is not None:
stre = str(e)
strex = ''.join(traceback.format_tb(e.__traceback__))
else:
stre = ''
strex = ''
print("Bad final response: %s %s %s %s %s: %s %s" % (base_model, inference_server,
res_all, prompt, text, stre, strex),
flush=True)
if gr_prompt_type == 'plain':
# then gradio server passes back full prompt + text
prompt_and_text = text
else:
prompt_and_text = prompt + text
yield dict(response=prompter.get_response(prompt_and_text, prompt=prompt,
sanitize_bot_response=sanitize_bot_response),
sources=sources)
elif hf_client:
# HF inference server needs control over input tokens
where_from = "hf_client"
# prompt must include all human-bot like tokens, already added by prompt
# https://github.com/huggingface/text-generation-inference/tree/main/clients/python#types
terminate_response = prompter.terminate_response or []
stop_sequences = list(set(terminate_response + [prompter.PreResponse]))
stop_sequences = [x for x in stop_sequences if x]
gen_server_kwargs = dict(do_sample=do_sample,
max_new_tokens=max_new_tokens,
# best_of=None,
repetition_penalty=repetition_penalty,
return_full_text=True,
seed=SEED,
stop_sequences=stop_sequences,
temperature=temperature,
top_k=top_k,
top_p=top_p,
# truncate=False, # behaves oddly
# typical_p=top_p,
# watermark=False,
# decoder_input_details=False,
)
# work-around for timeout at constructor time, will be issue if multi-threading,
# so just do something reasonable or max_time if larger
# lower bound because client is re-used if multi-threading
hf_client.timeout = max(300, max_time)
if not stream_output:
text = hf_client.generate(prompt, **gen_server_kwargs).generated_text
yield dict(response=prompter.get_response(text, prompt=prompt,
sanitize_bot_response=sanitize_bot_response),
sources='')
else:
text = ""
for response in hf_client.generate_stream(prompt, **gen_server_kwargs):
if not response.token.special:
# stop_sequences
text_chunk = response.token.text
text += text_chunk
yield dict(response=prompter.get_response(prompt + text, prompt=prompt,
sanitize_bot_response=sanitize_bot_response),
sources='')
else:
raise RuntimeError("Failed to get client: %s" % inference_server)
else:
raise RuntimeError("No such inference_server %s" % inference_server)
if save_dir and text:
# save prompt + new text
extra_dict = gen_server_kwargs.copy()
extra_dict.update(dict(inference_server=inference_server, num_prompt_tokens=num_prompt_tokens))
save_generate_output(prompt=prompt, output=text, base_model=base_model, save_dir=save_dir,
where_from=where_from, extra_dict=extra_dict)
return
else:
assert not inference_server, "inferene_server=%s not supported" % inference_server
if isinstance(tokenizer, str):
# pipeline
if tokenizer == "summarization":
key = 'summary_text'
else:
raise RuntimeError("No such task type %s" % tokenizer)
# NOTE: uses max_length only
yield dict(response=model(prompt, max_length=max_new_tokens)[0][key], sources='')
if 'mbart-' in base_model.lower():
assert src_lang is not None
tokenizer.src_lang = languages_covered()[src_lang]
stopping_criteria = get_stopping(prompt_type, prompt_dict, tokenizer, device,
model_max_length=tokenizer.model_max_length)
inputs = tokenizer(prompt, return_tensors="pt")
if debug and len(inputs["input_ids"]) > 0:
print('input_ids length', len(inputs["input_ids"][0]), flush=True)
input_ids = inputs["input_ids"].to(device)
# CRITICAL LIMIT else will fail
max_max_tokens = tokenizer.model_max_length
max_input_tokens = max_max_tokens - min_new_tokens
# NOTE: Don't limit up front due to max_new_tokens, let go up to max or reach max_max_tokens in stopping.py
input_ids = input_ids[:, -max_input_tokens:]
# required for falcon if multiple threads or asyncio accesses to model during generation
if use_cache is None:
use_cache = False if 'falcon' in base_model else True
gen_config_kwargs = dict(temperature=float(temperature),
top_p=float(top_p),
top_k=top_k,
num_beams=num_beams,
do_sample=do_sample,
repetition_penalty=float(repetition_penalty),
num_return_sequences=num_return_sequences,
renormalize_logits=True,
remove_invalid_values=True,
use_cache=use_cache,
)
token_ids = ['eos_token_id', 'pad_token_id', 'bos_token_id', 'cls_token_id', 'sep_token_id']
for token_id in token_ids:
if hasattr(tokenizer, token_id) and getattr(tokenizer, token_id) is not None:
gen_config_kwargs.update({token_id: getattr(tokenizer, token_id)})
generation_config = GenerationConfig(**gen_config_kwargs)
gen_kwargs = dict(input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens, # prompt + new
min_new_tokens=min_new_tokens, # prompt + new
early_stopping=early_stopping, # False, True, "never"
max_time=max_time,
stopping_criteria=stopping_criteria,
)
if 'gpt2' in base_model.lower():
gen_kwargs.update(dict(bos_token_id=tokenizer.bos_token_id, pad_token_id=tokenizer.eos_token_id))
elif 'mbart-' in base_model.lower():
assert tgt_lang is not None
tgt_lang = languages_covered()[tgt_lang]
gen_kwargs.update(dict(forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang]))
else:
token_ids = ['eos_token_id', 'bos_token_id', 'pad_token_id']
for token_id in token_ids:
if hasattr(tokenizer, token_id) and getattr(tokenizer, token_id) is not None:
gen_kwargs.update({token_id: getattr(tokenizer, token_id)})
decoder_kwargs = dict(skip_special_tokens=True,
clean_up_tokenization_spaces=True)
decoder = functools.partial(tokenizer.decode,
**decoder_kwargs
)
decoder_raw_kwargs = dict(skip_special_tokens=False,
clean_up_tokenization_spaces=True)
decoder_raw = functools.partial(tokenizer.decode,
**decoder_raw_kwargs
)
with torch.no_grad():
have_lora_weights = lora_weights not in [no_lora_str, '', None]
context_class_cast = NullContext if device == 'cpu' or have_lora_weights or device == 'mps' else torch.autocast
with context_class_cast(device):
# protection for gradio not keeping track of closed users,
# else hit bitsandbytes lack of thread safety:
# https://github.com/h2oai/h2ogpt/issues/104
# but only makes sense if concurrency_count == 1
context_class = NullContext # if concurrency_count > 1 else filelock.FileLock
if verbose:
print('Pre-Generate: %s' % str(datetime.now()), flush=True)
decoded_output = None
with context_class("generate.lock"):
if verbose:
print('Generate: %s' % str(datetime.now()), flush=True)
# decoded tokenized prompt can deviate from prompt due to special characters
inputs_decoded = decoder(input_ids[0])
inputs_decoded_raw = decoder_raw(input_ids[0])
if inputs_decoded == prompt:
# normal
pass
elif inputs_decoded.lstrip() == prompt.lstrip():
# sometimes extra space in front, make prompt same for prompt removal
prompt = inputs_decoded
elif inputs_decoded_raw == prompt:
# some models specify special tokens that are part of normal prompt, so can't skip them
inputs_decoded = prompt = inputs_decoded_raw
decoder = decoder_raw
decoder_kwargs = decoder_raw_kwargs
elif inputs_decoded_raw.replace("<unk> ", "").replace("<unk>", "").replace('\n', ' ').replace(' ',
'') == prompt.replace(
'\n', ' ').replace(' ', ''):
inputs_decoded = prompt = inputs_decoded_raw
decoder = decoder_raw
decoder_kwargs = decoder_raw_kwargs
else:
if verbose:
print("WARNING: Special characters in prompt", flush=True)
if stream_output:
skip_prompt = False
streamer = H2OTextIteratorStreamer(tokenizer, skip_prompt=skip_prompt, block=False,
**decoder_kwargs)
gen_kwargs.update(dict(streamer=streamer))
target = wrapped_partial(generate_with_exceptions, model.generate,
prompt=prompt, inputs_decoded=inputs_decoded,
raise_generate_gpu_exceptions=raise_generate_gpu_exceptions,
**gen_kwargs)
bucket = queue.Queue()
thread = EThread(target=target, streamer=streamer, bucket=bucket)
thread.start()
outputs = ""
try:
for new_text in streamer:
if bucket.qsize() > 0 or thread.exc:
thread.join()
outputs += new_text
yield dict(response=prompter.get_response(outputs, prompt=inputs_decoded,
sanitize_bot_response=sanitize_bot_response),
sources='')
except BaseException:
# if any exception, raise that exception if was from thread, first
if thread.exc:
raise thread.exc
raise
finally:
# clear before return, since .then() never done if from API
clear_torch_cache()
# in case no exception and didn't join with thread yet, then join
if not thread.exc:
thread.join()
# in case raise StopIteration or broke queue loop in streamer, but still have exception
if thread.exc:
raise thread.exc
decoded_output = outputs
else:
try:
outputs = model.generate(**gen_kwargs)
finally:
clear_torch_cache() # has to be here for API submit_nochat_api since.then() not called
outputs = [decoder(s) for s in outputs.sequences]
yield dict(response=prompter.get_response(outputs, prompt=inputs_decoded,
sanitize_bot_response=sanitize_bot_response), sources='')
if outputs and len(outputs) >= 1:
decoded_output = prompt + outputs[0]
if save_dir and decoded_output:
extra_dict = gen_config_kwargs.copy()
extra_dict.update(dict(num_prompt_tokens=num_prompt_tokens))
save_generate_output(prompt=prompt, output=decoded_output, base_model=base_model, save_dir=save_dir,
where_from="evaluate_%s" % str(stream_output),
extra_dict=gen_config_kwargs)
if verbose:
print('Post-Generate: %s decoded_output: %s' % (
str(datetime.now()), len(decoded_output) if decoded_output else -1), flush=True)
inputs_list_names = list(inspect.signature(evaluate).parameters)
state_names = ['model_state', 'my_db_state', 'selection_docs_state']
inputs_kwargs_list = [x for x in inputs_list_names if x not in eval_func_param_names + state_names]
def get_cutoffs(memory_restriction_level, for_context=False, model_max_length=2048):
# help to avoid errors like:
# RuntimeError: The size of tensor a (2048) must match the size of tensor b (2049) at non-singleton dimension 3
# RuntimeError: expected scalar type Half but found Float
# with - 256
if memory_restriction_level > 0:
max_length_tokenize = 768 - 256 if memory_restriction_level <= 2 else 512 - 256
else:
# at least give room for 1 paragraph output
max_length_tokenize = model_max_length - 256
cutoff_len = max_length_tokenize * 4 # if reaches limit, then can't generate new tokens
output_smallest = 30 * 4
max_prompt_length = cutoff_len - output_smallest
if for_context:
# then lower even more to avoid later chop, since just estimate tokens in context bot
max_prompt_length = max(64, int(max_prompt_length * 0.8))
return cutoff_len, output_smallest, max_length_tokenize, max_prompt_length
class H2OTextIteratorStreamer(TextIteratorStreamer):
"""
normally, timeout required for now to handle exceptions, else get()
but with H2O version of TextIteratorStreamer, loop over block to handle
"""
def __init__(self, tokenizer, skip_prompt: bool = False, timeout: typing.Optional[float] = None,
block=True, **decode_kwargs):
super().__init__(tokenizer, skip_prompt, **decode_kwargs)
self.text_queue = queue.Queue()
self.stop_signal = None
self.do_stop = False
self.timeout = timeout
self.block = block
def on_finalized_text(self, text: str, stream_end: bool = False):
"""Put the new text in the queue. If the stream is ending, also put a stop signal in the queue."""
self.text_queue.put(text, timeout=self.timeout)
if stream_end:
self.text_queue.put(self.stop_signal, timeout=self.timeout)
def __iter__(self):
return self
def __next__(self):
while True:
try:
value = self.stop_signal # value looks unused in pycharm, not true
if self.do_stop:
print("hit stop", flush=True)
# could raise or break, maybe best to raise and make parent see if any exception in thread
self.clear_queue()
self.do_stop = False
raise StopIteration()
# break
value = self.text_queue.get(block=self.block, timeout=self.timeout)
break
except queue.Empty:
time.sleep(0.01)
if value == self.stop_signal:
self.clear_queue()
self.do_stop = False
raise StopIteration()
else:
return value
def clear_queue(self):
# make sure streamer is reusable after stop hit
with self.text_queue.mutex:
self.text_queue.queue.clear()
def generate_with_exceptions(func, *args, prompt='', inputs_decoded='', raise_generate_gpu_exceptions=True, **kwargs):
try:
func(*args, **kwargs)
except torch.cuda.OutOfMemoryError as e:
print("GPU OOM 2: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)),
flush=True)
if 'input_ids' in kwargs:
if kwargs['input_ids'] is not None:
kwargs['input_ids'].cpu()
kwargs['input_ids'] = None
traceback.print_exc()
clear_torch_cache()
return
except (Exception, RuntimeError) as e:
if 'Expected all tensors to be on the same device' in str(e) or \
'expected scalar type Half but found Float' in str(e) or \
'probability tensor contains either' in str(e) or \
'cublasLt ran into an error!' in str(e) or \
'mat1 and mat2 shapes cannot be multiplied' in str(e):
print(
"GPU Error: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)),
flush=True)
traceback.print_exc()
clear_torch_cache()
if raise_generate_gpu_exceptions:
raise
return
else:
clear_torch_cache()
if raise_generate_gpu_exceptions:
raise
def get_generate_params(model_lower,
chat,
stream_output, show_examples,
prompt_type, prompt_dict,
temperature, top_p, top_k, num_beams,
max_new_tokens, min_new_tokens, early_stopping, max_time,
repetition_penalty, num_return_sequences,
do_sample,
top_k_docs, chunk, chunk_size,
verbose):
use_defaults = False
use_default_examples = True
examples = []
task_info = 'LLM'
if model_lower:
print(f"Using Model {model_lower}", flush=True)
else:
if verbose:
print("No model defined yet", flush=True)
min_new_tokens = min_new_tokens if min_new_tokens is not None else 0
early_stopping = early_stopping if early_stopping is not None else False
max_time_defaults = 60 * 3
max_time = max_time if max_time is not None else max_time_defaults
if not prompt_type and model_lower in inv_prompt_type_to_model_lower and prompt_type != 'custom':
prompt_type = inv_prompt_type_to_model_lower[model_lower]
if verbose:
print("Auto-selecting prompt_type=%s for %s" % (prompt_type, model_lower), flush=True)
# examples at first don't include chat, instruction_nochat, iinput_nochat, added at end
if show_examples is None:
if chat:
show_examples = False
else:
show_examples = True
summarize_example1 = """Jeff: Can I train a ? Transformers model on Amazon SageMaker?
Philipp: Sure you can use the new Hugging Face Deep Learning Container.
Jeff: ok.
Jeff: and how can I get started?
Jeff: where can I find documentation?
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face"""
use_placeholder_instruction_as_example = False
if 'bart-large-cnn-samsum' in model_lower or 'flan-t5-base-samsum' in model_lower:
placeholder_instruction = summarize_example1
placeholder_input = ""
use_defaults = True
use_default_examples = False
use_placeholder_instruction_as_example = True
task_info = "Summarization"
elif 't5-' in model_lower or 't5' == model_lower or 'flan-' in model_lower:
placeholder_instruction = "The square root of x is the cube root of y. What is y to the power of 2, if x = 4?"
placeholder_input = ""
use_defaults = True
use_default_examples = True
task_info = "Multi-Task: Q/A, translation, Chain-of-Thought, Logical Reasoning, Summarization, etc. Best to use task prefix as trained on, e.g. `translate English to German: ` (space after colon)"
elif 'mbart-' in model_lower:
placeholder_instruction = "The girl has long hair."
placeholder_input = ""
use_defaults = True
use_default_examples = False
use_placeholder_instruction_as_example = True
elif 'gpt2' in model_lower:
placeholder_instruction = "The sky is"
placeholder_input = ""
prompt_type = prompt_type or 'plain'
use_default_examples = True # some will be odd "continuations" but can be ok
use_placeholder_instruction_as_example = True
task_info = "Auto-complete phrase, code, etc."
use_defaults = True
else:
if chat:
placeholder_instruction = ""
else:
placeholder_instruction = "Give detailed answer for whether Einstein or Newton is smarter."
placeholder_input = ""
if model_lower in inv_prompt_type_to_model_lower:
if prompt_type != 'custom':
prompt_type = inv_prompt_type_to_model_lower[model_lower]
elif model_lower:
# default is plain, because might rely upon trust_remote_code to handle prompting
prompt_type = prompt_type or 'plain'
else:
prompt_type = ''
task_info = "No task"
if prompt_type == 'instruct':
task_info = "Answer question or follow imperative as instruction with optionally input."
elif prompt_type == 'plain':
task_info = "Auto-complete phrase, code, etc."
elif prompt_type == 'human_bot':
if chat:
task_info = "Chat (Shift-Enter to give question/imperative, input concatenated with instruction)"
else:
task_info = "Ask question/imperative (input concatenated with instruction)"
# revert to plain if still nothing
prompt_type = prompt_type or 'plain'
if use_defaults:
temperature = 1.0 if temperature is None else temperature
top_p = 1.0 if top_p is None else top_p
top_k = 40 if top_k is None else top_k
num_beams = num_beams or 1
max_new_tokens = max_new_tokens or 128
repetition_penalty = repetition_penalty or 1.07
num_return_sequences = min(num_beams, num_return_sequences or 1)
do_sample = False if do_sample is None else do_sample
else:
temperature = 0.1 if temperature is None else temperature
top_p = 0.75 if top_p is None else top_p
top_k = 40 if top_k is None else top_k
num_beams = num_beams or 1
max_new_tokens = max_new_tokens or 256
repetition_penalty = repetition_penalty or 1.07
num_return_sequences = min(num_beams, num_return_sequences or 1)
do_sample = False if do_sample is None else do_sample
# doesn't include chat, instruction_nochat, iinput_nochat, added later
params_list = ["",
stream_output,
prompt_type, prompt_dict,
temperature, top_p, top_k, num_beams,
max_new_tokens, min_new_tokens,
early_stopping, max_time, repetition_penalty, num_return_sequences, do_sample]
if use_placeholder_instruction_as_example:
examples += [[placeholder_instruction, ''] + params_list]
if use_default_examples:
examples += [
["Translate English to French", "Good morning"] + params_list,
["Give detailed answer for whether Einstein or Newton is smarter.", ''] + params_list,
["Explain in detailed list, all the best practices for coding in python.", ''] + params_list,
[
"Create a markdown table with 3 rows for the primary colors, and 2 columns, with color name and hex codes.",
''] + params_list,
['Translate to German: My name is Arthur', ''] + params_list,
["Please answer to the following question. Who is going to be the next Ballon d'or?", ''] + params_list,
['Can Geoffrey Hinton have a conversation with George Washington? Give the rationale before answering.',
''] + params_list,
['Please answer the following question. What is the boiling point of Nitrogen?', ''] + params_list,
['Answer the following yes/no question. Can you write a whole Haiku in a single tweet?', ''] + params_list,
["Simplify the following expression: (False or False and True). Explain your answer.", ''] + params_list,
[
"Premise: At my age you will probably have learnt one lesson. Hypothesis: It's not certain how many lessons you'll learn by your thirties. Does the premise entail the hypothesis?",
''] + params_list,
['The square root of x is the cube root of y. What is y to the power of 2, if x = 4?', ''] + params_list,
[
'Answer the following question by reasoning step by step. The cafeteria had 23 apples. If they used 20 for lunch, and bought 6 more, how many apple do they have?',
''] + params_list,
["""def area_of_rectangle(a: float, b: float):
\"\"\"Return the area of the rectangle.\"\"\"""", ''] + params_list,
["""# a function in native python:
def mean(a):
return sum(a)/len(a)
# the same function using numpy:
import numpy as np
def mean(a):""", ''] + params_list,
["""X = np.random.randn(100, 100)
y = np.random.randint(0, 1, 100)
# fit random forest classifier with 20 estimators""", ''] + params_list,
]
# add summary example
examples += [
[summarize_example1, 'Summarize' if prompt_type not in ['plain', 'instruct_simple'] else ''] + params_list]
src_lang = "English"
tgt_lang = "Russian"
# move to correct position
for example in examples:
example += [chat, '', '', LangChainMode.DISABLED.value, True, LangChainAction.QUERY.value, [],
top_k_docs, chunk, chunk_size, DocumentSubset.Relevant.name, []
]
# adjust examples if non-chat mode
if not chat:
example[eval_func_param_names.index('instruction_nochat')] = example[
eval_func_param_names.index('instruction')]
example[eval_func_param_names.index('instruction')] = ''
example[eval_func_param_names.index('iinput_nochat')] = example[eval_func_param_names.index('iinput')]
example[eval_func_param_names.index('iinput')] = ''
assert len(example) == len(eval_func_param_names), "Wrong example: %s %s" % (
len(example), len(eval_func_param_names))
if prompt_type == PromptType.custom.name and not prompt_dict:
raise ValueError("Unexpected to get non-empty prompt_dict=%s for prompt_type=%s" % (prompt_dict, prompt_type))
# get prompt_dict from prompt_type, so user can see in UI etc., or for custom do nothing except check format
prompt_dict, error0 = get_prompt(prompt_type, prompt_dict,
chat=False, context='', reduced=False, making_context=False, return_dict=True)
if error0:
raise RuntimeError("Prompt wrong: %s" % error0)
return placeholder_instruction, placeholder_input, \
stream_output, show_examples, \
prompt_type, prompt_dict, \
temperature, top_p, top_k, num_beams, \
max_new_tokens, min_new_tokens, early_stopping, max_time, \
repetition_penalty, num_return_sequences, \
do_sample, \
src_lang, tgt_lang, \
examples, \
task_info
def languages_covered():
# https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt#languages-covered
covered = """Arabic (ar_AR), Czech (cs_CZ), German (de_DE), English (en_XX), Spanish (es_XX), Estonian (et_EE), Finnish (fi_FI), French (fr_XX), Gujarati (gu_IN), Hindi (hi_IN), Italian (it_IT), Japanese (ja_XX), Kazakh (kk_KZ), Korean (ko_KR), Lithuanian (lt_LT), Latvian (lv_LV), Burmese (my_MM), Nepali (ne_NP), Dutch (nl_XX), Romanian (ro_RO), Russian (ru_RU), Sinhala (si_LK), Turkish (tr_TR), Vietnamese (vi_VN), Chinese (zh_CN), Afrikaans (af_ZA), Azerbaijani (az_AZ), Bengali (bn_IN), Persian (fa_IR), Hebrew (he_IL), Croatian (hr_HR), Indonesian (id_ID), Georgian (ka_GE), Khmer (km_KH), Macedonian (mk_MK), Malayalam (ml_IN), Mongolian (mn_MN), Marathi (mr_IN), Polish (pl_PL), Pashto (ps_AF), Portuguese (pt_XX), Swedish (sv_SE), Swahili (sw_KE), Tamil (ta_IN), Telugu (te_IN), Thai (th_TH), Tagalog (tl_XX), Ukrainian (uk_UA), Urdu (ur_PK), Xhosa (xh_ZA), Galician (gl_ES), Slovene (sl_SI)"""
covered = covered.split(', ')
covered = {x.split(' ')[0]: x.split(' ')[1].replace(')', '').replace('(', '') for x in covered}
return covered
def get_context(chat_context, prompt_type):
if chat_context and prompt_type == 'human_bot':
context0 = """<bot>: I am an intelligent, helpful, truthful, and fair assistant named h2oGPT, who will give accurate, balanced, and reliable responses. I will not respond with I don't know or I don't understand.
<human>: I am a human person seeking useful assistance and request all questions be answered completely, and typically expect detailed responses. Give answers in numbered list format if several distinct but related items are being listed."""
else:
context0 = ''
return context0
def score_qa(smodel, stokenizer, max_length_tokenize, question, answer, cutoff_len):
question = question[-cutoff_len:]
answer = answer[-cutoff_len:]
inputs = stokenizer(question, answer,
return_tensors="pt",
truncation=True,
max_length=max_length_tokenize).to(smodel.device)
try:
score = torch.sigmoid(smodel(**inputs.to(smodel.device)).logits[0].float()).cpu().detach().numpy()[0]
except torch.cuda.OutOfMemoryError as e:
print("GPU OOM 3: question: %s answer: %s exception: %s" % (question, answer, str(e)), flush=True)
del inputs
traceback.print_exc()
clear_torch_cache()
return 'Response Score: GPU OOM'
except (Exception, RuntimeError) as e:
if 'Expected all tensors to be on the same device' in str(e) or \
'expected scalar type Half but found Float' in str(e) or \
'probability tensor contains either' in str(e) or \
'cublasLt ran into an error!' in str(e) or \
'device-side assert triggered' in str(e):
print("GPU Error: question: %s answer: %s exception: %s" % (question, answer, str(e)),
flush=True)
traceback.print_exc()
clear_torch_cache()
return 'Response Score: GPU Error'
else:
raise
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
return score
def check_locals(**kwargs):
# ensure everything in evaluate is here
can_skip_because_locally_generated = no_default_param_names + [
# get_model:
'reward_type'
]
for k in eval_func_param_names:
if k in can_skip_because_locally_generated:
continue
assert k in kwargs, "Missing %s" % k
for k in inputs_kwargs_list:
if k in can_skip_because_locally_generated:
continue
assert k in kwargs, "Missing %s" % k
for k in list(inspect.signature(get_model).parameters):
if k in can_skip_because_locally_generated:
continue
assert k in kwargs, "Missing %s" % k
def get_model_max_length(model_state):
if not isinstance(model_state['tokenizer'], (str, type(None))):
return model_state['tokenizer'].model_max_length
else:
return 2048
def get_max_max_new_tokens(model_state, **kwargs):
if not isinstance(model_state['tokenizer'], (str, type(None))):
max_max_new_tokens = model_state['tokenizer'].model_max_length
else:
max_max_new_tokens = None
if kwargs['max_max_new_tokens'] is not None and max_max_new_tokens is not None:
return min(max_max_new_tokens, kwargs['max_max_new_tokens'])
elif kwargs['max_max_new_tokens'] is not None:
return kwargs['max_max_new_tokens']
elif kwargs['memory_restriction_level'] == 1:
return 768
elif kwargs['memory_restriction_level'] == 2:
return 512
elif kwargs['memory_restriction_level'] >= 3:
return 256
else:
# FIXME: Need to update after new model loaded, so user can control with slider
return 2048
def get_minmax_top_k_docs(is_public):
if is_public:
min_top_k_docs = 1
max_top_k_docs = 3
label_top_k_docs = "Number of document chunks"
else:
min_top_k_docs = -1
max_top_k_docs = 100
label_top_k_docs = "Number of document chunks (-1 = auto fill model context)"
return min_top_k_docs, max_top_k_docs, label_top_k_docs
def history_to_context(history, langchain_mode1,
add_chat_history_to_context,
prompt_type1, prompt_dict1, chat1, model_max_length1,
memory_restriction_level1, keep_sources_in_context1):
"""
consumes all history up to (but not including) latest history item that is presumed to be an [instruction, None] pair
:param history:
:param langchain_mode1:
:param add_chat_history_to_context:
:param prompt_type1:
:param prompt_dict1:
:param chat1:
:param model_max_length1:
:param memory_restriction_level1:
:param keep_sources_in_context1:
:return:
"""
# ensure output will be unique to models
_, _, _, max_prompt_length = get_cutoffs(memory_restriction_level1,
for_context=True, model_max_length=model_max_length1)
context1 = ''
if max_prompt_length is not None and add_chat_history_to_context:
context1 = ''
# - 1 below because current instruction already in history from user()
for histi in range(0, len(history) - 1):
data_point = dict(instruction=history[histi][0], input='', output=history[histi][1])
prompt, pre_response, terminate_response, chat_sep, chat_turn_sep = generate_prompt(data_point,
prompt_type1,
prompt_dict1,
chat1,
reduced=True,
making_context=True)
# md -> back to text, maybe not super important if model trained enough
if not keep_sources_in_context1 and langchain_mode1 != 'Disabled' and prompt.find(source_prefix) >= 0:
# FIXME: This is relatively slow even for small amount of text, like 0.3s each history item
import re
prompt = re.sub(f'{re.escape(source_prefix)}.*?{re.escape(source_postfix)}', '', prompt,
flags=re.DOTALL)
if prompt.endswith('\n<p>'):
prompt = prompt[:-4]
prompt = prompt.replace('<br>', chat_turn_sep)
if not prompt.endswith(chat_turn_sep):
prompt += chat_turn_sep
# most recent first, add older if can
# only include desired chat history
if len(prompt + context1) > max_prompt_length:
break
context1 += prompt
_, pre_response, terminate_response, chat_sep, chat_turn_sep = generate_prompt({}, prompt_type1, prompt_dict1,
chat1, reduced=True,
making_context=True)
if context1 and not context1.endswith(chat_turn_sep):
context1 += chat_turn_sep # ensure if terminates abruptly, then human continues on next line
return context1
def update_langchain(langchain_modes, visible_langchain_modes, langchain_mode_paths, extra):
# update from saved state on disk
langchain_modes_from_file, visible_langchain_modes_from_file, langchain_mode_paths_from_file = \
load_collection_enum(extra)
visible_langchain_modes_temp = visible_langchain_modes.copy() + visible_langchain_modes_from_file
visible_langchain_modes.clear() # don't lose original reference
[visible_langchain_modes.append(x) for x in visible_langchain_modes_temp if x not in visible_langchain_modes]
langchain_mode_paths.update(langchain_mode_paths_from_file)
langchain_modes_temp = langchain_modes.copy() + langchain_modes_from_file
langchain_modes.clear() # don't lose original reference
[langchain_modes.append(x) for x in langchain_modes_temp if x not in langchain_modes]
def entrypoint_main():
"""
Examples:
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 --master_port=1234 generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights=lora-alpaca_6B
python generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights='lora-alpaca_6B'
python generate.py --base_model='EleutherAI/gpt-neox-20b' --lora_weights='lora-alpaca_20B'
# generate without lora weights, no prompt
python generate.py --base_model='EleutherAI/gpt-neox-20b' --prompt_type='plain'
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq'
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq' --lora_weights='lora_20B_daifaq'
# OpenChatKit settings:
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0
python generate.py --base_model='distilgpt2' --prompt_type='plain' --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0 --share=False
python generate.py --base_model='t5-large' --prompt_type='simple_instruct'
python generate.py --base_model='philschmid/bart-large-cnn-samsum'
python generate.py --base_model='philschmid/flan-t5-base-samsum'
python generate.py --base_model='facebook/mbart-large-50-many-to-many-mmt'
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot' --lora_weights='GPT-NeoXT-Chat-Base-20B.merged.json.8_epochs.57b2892c53df5b8cefac45f84d019cace803ef26.28'
must have 4*48GB GPU and run without 8bit in order for sharding to work with use_gpu_id=False
can also pass --prompt_type='human_bot' and model can somewhat handle instructions without being instruct tuned
python generate.py --base_model=decapoda-research/llama-65b-hf --load_8bit=False --use_gpu_id=False --prompt_type='human_bot'
python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6_9b
"""
fire.Fire(main)
if __name__ == "__main__":
entrypoint_main()
|