Spaces:
Runtime error
Runtime error
File size: 80,127 Bytes
a728cd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 |
"""
Dataset creation tools.
Keep to-level imports clean of non-trivial imports for specific tools,
because this file is imported for various purposes
"""
import ast
import concurrent.futures
import contextlib
import hashlib
import json
import os
import shutil
import signal
import sys
import traceback
from concurrent.futures import ProcessPoolExecutor
import psutil
import pytest
import pandas as pd
import numpy as np
from tqdm import tqdm
from utils import flatten_list, remove
def parse_rst_file(filepath):
with open(filepath, 'r') as f:
input_data = f.read()
settings_overrides = {'initial_header_level': 2}
from docutils import core
document = core.publish_doctree(
source=input_data,
source_path=filepath,
settings_overrides=settings_overrides,
)
qa_pairs = []
current_section = None
current_question = ""
current_answer = ""
for node in document.traverse():
if node.__class__.__name__ == 'section':
current_section = ""
elif current_section is not None:
if node.__class__.__name__ == 'Text':
if node.astext()[-1] == "?":
if current_question:
qa_pairs.append((current_question, current_answer))
current_question = node.astext()
current_answer = ""
else:
current_answer += node.astext()
if current_answer:
qa_pairs.append((current_question, current_answer))
return {k: v for k, v in qa_pairs}
def test_scrape_dai_docs():
home = os.path.expanduser('~')
file = os.path.join(home, 'h2oai/docs/faq.rst')
qa_pairs = parse_rst_file(file)
prompt_type = 'human_bot'
from prompter import prompt_types
assert prompt_type in prompt_types
save_thing = [{"instruction": k, "output": v, 'prompt_type': prompt_type} for k, v in qa_pairs.items()]
output_file = "dai_faq.json"
with open(output_file, "wt") as f:
f.write(json.dumps(save_thing, indent=2))
def test_scrape_dai_docs_all():
"""
pytest create_data.py::test_scrape_dai_docs_all
"""
import glob
import nltk
nltk.download('punkt')
dd = {}
np.random.seed(1234)
home = os.path.expanduser('~')
files = list(glob.glob(os.path.join(home, "h2oai/docs/**/*rst")))
np.random.shuffle(files)
val_count = int(0.05 * len(files))
train_files = files[val_count:]
valid_files = files[:val_count]
things = [
("dai_docs.train.json", train_files),
("dai_docs.valid.json", valid_files)
]
for LEN in [100, 200, 500]:
for output_file, ff in things:
if output_file not in dd:
dd[output_file] = []
for f in ff:
with open(f) as input:
blob = input.read()
blob = blob.replace("~~", "")
blob = blob.replace("==", "")
blob = blob.replace("''", "")
blob = blob.replace("--", "")
blob = blob.replace("**", "")
dd[output_file].extend(get_sentences(blob, length=LEN))
for output_file, _ in things:
save_thing = [{"output": k.strip(), 'prompt_type': 'plain'} for k in dd[output_file]]
with open(output_file, "wt") as f:
f.write(json.dumps(save_thing, indent=2))
def get_sentences(blob, length):
"""
break-up input text into sentences and then output list of sentences of about length in size
:param blob:
:param length:
:return:
"""
import nltk
nltk.download('punkt')
from nltk.tokenize import sent_tokenize
sentences = sent_tokenize(blob)
my_sentences = []
my_string = ""
for sentence in sentences:
if len(my_string) + len(sentence) <= length:
if my_string:
my_string += " " + sentence
else:
my_string = sentence
else:
my_sentences.append(my_string)
my_string = ""
return my_sentences or [my_string]
def setup_dai_docs(path=None, dst="working_dir_docs", from_hf=False):
"""
Only supported if have access to source code or HF token for HF spaces and from_hf=True
:param path:
:param dst:
:param from_hf:
:return:
"""
home = os.path.expanduser('~')
if from_hf:
# assumes
from huggingface_hub import hf_hub_download
# True for case when locally already logged in with correct token, so don't have to set key
token = os.getenv('HUGGING_FACE_HUB_TOKEN', True)
path_to_zip_file = hf_hub_download('h2oai/dai_docs', 'dai_docs.zip', token=token, repo_type='dataset')
path = 'h2oai'
import zipfile
with zipfile.ZipFile(path_to_zip_file, 'r') as zip_ref:
zip_ref.extractall(path)
path = os.path.join(path, 'docs/**/*')
if path is None:
if os.path.isdir(os.path.join(home, 'h2oai')):
path = os.path.join(home, "h2oai/docs/**/*")
else:
assert os.path.isdir(os.path.join(home, 'h2oai.superclean')), '%s does not exist' % path
path = os.path.join(home, "h2oai.superclean/docs/**/*")
import glob
files = list(glob.glob(path, recursive=True))
# pandoc can't find include files
remove(dst)
os.makedirs(dst)
# copy full tree, for absolute paths in rst
for fil in files:
if os.path.isfile(fil):
shutil.copy(fil, dst)
# hack for relative path
scorers_dir = os.path.join(dst, 'scorers')
makedirs(scorers_dir)
for fil in glob.glob(os.path.join(dst, '*.frag')):
shutil.copy(fil, scorers_dir)
return dst
def rst_to_outputs(files, min_len=30, max_len=2048 // 2 - 30):
# account for sequence length (context window) including prompt and input and output
# os.system('pandoc -f rst -t plain ./expert_settings/nlp_settings.rst')
import pypandoc
basedir = os.path.abspath(os.getcwd())
outputs = []
for fil in files:
os.chdir(basedir)
os.chdir(os.path.dirname(fil))
fil = os.path.basename(fil)
print("Processing %s" % fil, flush=True)
# out_format can be one of: asciidoc, asciidoctor, beamer, biblatex, bibtex, commonmark, commonmark_x,
# context, csljson, docbook, docbook4, docbook5, docx, dokuwiki,
# dzslides, epub, epub2, epub3, fb2, gfm, haddock, html, html4, html5, icml,
# ipynb, jats, jats_archiving, jats_articleauthoring, jats_publishing, jira,
# json, latex, man,
# markdown, markdown_github, markdown_mmd, markdown_phpextra, markdown_strict,
# mediawiki, ms, muse, native, odt, opendocument, opml, org, pdf, plain, pptx,
# revealjs, rst, rtf, s5, slideous, slidy, tei, texinfo, textile, xwiki, zimwiki
out_format = 'plain'
# avoid extra new lines injected into text
extra_args = ['--wrap=preserve', '--resource path="%s" % dst']
plain_list = []
try:
# valid for expert settings
input_rst = pypandoc.convert_file(fil, 'rst')
input_list = input_rst.split('\n``')
for input_subrst in input_list:
input_plain = pypandoc.convert_text(input_subrst, format='rst', to='plain')
plain_list.append([input_plain, fil])
except Exception as e:
print("file exception: %s %s" % (fil, str(e)), flush=True)
if not plain_list:
# if failed to process as pieces of rst, then
output = pypandoc.convert_file(fil, out_format, extra_args=extra_args, format='rst')
outputs1 = get_sentences(output, length=max_len)
for oi, output in enumerate(outputs1):
output = output.replace('\n\n', '\n')
plain_list.append([output, fil])
outputs.extend(plain_list)
# report:
# [print(len(x)) for x in outputs]
# deal with blocks longer than context size (sequence length) of 2048
new_outputs = []
num_truncated = 0
num_orig = len(outputs)
for output, fil in outputs:
if len(output) < max_len:
new_outputs.append([output, fil])
continue
outputs1 = get_sentences(output, length=max_len)
for oi, output1 in enumerate(outputs1):
output1 = output1.replace('\n\n', '\n')
new_outputs.append([output1, fil])
num_truncated += 1
print('num_orig: %s num_truncated: %s' % (num_orig, num_truncated), flush=True)
new_outputs = [[k.strip(), fil] for k, fil in new_outputs if len(k.strip()) > min_len]
return new_outputs
def test_scrape_dai_docs_all_pandoc():
"""
pytest -s -v create_data.py::test_scrape_dai_docs_all_pandoc
:return:
"""
dst = setup_dai_docs()
import glob
files = list(glob.glob(os.path.join(dst, '*rst'), recursive=True))
basedir = os.path.abspath(os.getcwd())
new_outputs = rst_to_outputs(files)
os.chdir(basedir)
remove(dst)
save_thing = [{"output": k.strip(), 'prompt_type': 'plain'} for k in new_outputs]
output_file = "dai_docs.train_cleaned.json"
with open(output_file, "wt") as f:
f.write(json.dumps(save_thing, indent=2))
def test_config_to_json():
"""
Needs to run from Driverless AI source directory.
E.g. (base) jon@gpu:~/h2oai$ pytest -s -v /data/jon/h2ogpt/create_data.py::test_config_to_json ; cp config.json /data/jon/h2ogpt/
:return:
"""
try:
# Arrange
import json
from h2oaicore.systemutils import config
toml_list = []
for k, v in config.get_meta_dict().items():
title = (v.title + ": ") if v.title else ''
comment = v.comment or ''
if not (title or comment):
continue
toml_list.extend(
[
{
'prompt_type': 'plain',
'instruction': f"<human>: What does {k} do?\n<bot>: {k.replace('_', ' ')} config.toml: {comment or title}\n<human>:".replace(
"\n", ""),
},
{
'prompt_type': 'plain',
'instruction': f"<human>: Explain {k}.\n<bot>: {k.replace('_', ' ')} config.toml: {comment or title}\n<human>:".replace(
"\n", ""),
},
{
'prompt_type': 'plain',
'instruction': f"<human>: How can I do this: {title}.\n<bot>: Set the {k.replace('_', ' ')} config.toml\n<human>:".replace(
"\n", ""),
} if title and comment else None,
{
'prompt_type': 'human_bot',
'instruction': f'Explain the following expert setting for Driverless AI',
'input': f"{k}",
'output': f"{k.replace('_', ' ')} config.toml: {comment or title}".replace("\n", ""),
},
{
'prompt_type': 'human_bot',
'instruction': f'Explain the following expert setting for Driverless AI',
'input': f"{k}",
'output': f"{k.replace('_', ' ')} config.toml: {title}{comment}".replace("\n", ""),
},
{
'prompt_type': 'human_bot',
'instruction': f'Explain the following expert setting for Driverless AI',
'input': f"{k.replace('_', ' ')}",
'output': f"{k.replace('_', ' ')} config.toml: {title}{comment}".replace("\n", ""),
},
{
'prompt_type': 'human_bot',
'instruction': f'Explain the following expert setting for Driverless AI',
'input': f"{title}",
'output': f"{k.replace('_', ' ')} config.toml: {title}{comment}".replace("\n", ""),
},
{
'prompt_type': 'human_bot',
'instruction': f'Provide a short explanation of the expert setting {k}',
'output': f"{k.replace('_', ' ')} config.toml: {comment or title}".replace("\n", ""),
},
{
'prompt_type': 'human_bot',
'instruction': f'Provide a detailed explanation of the expert setting {k}',
'output': f"{k.replace('_', ' ')} config.toml: {title}{comment}".replace("\n", ""),
},
]
)
toml_list = [x for x in toml_list if x]
with open("config.json", "wt") as f:
f.write(json.dumps(toml_list, indent=2))
except Exception as e:
print("Exception: %s" % str(e), flush=True)
def copy_tree(src, dst, follow_symlink=False):
makedirs(dst, exist_ok=True)
for (path, dirs, files) in os.walk(src, followlinks=follow_symlink):
new_path = path.replace(src, dst)
makedirs(new_path, exist_ok=True)
for file in files:
filename = os.path.join(path, file)
new_filename = os.path.join(new_path, file)
# print("%s -> %s" % (filename, new_filename))
try:
atomic_copy(filename, new_filename)
except FileNotFoundError:
pass
def atomic_move(src, dst):
try:
shutil.move(src, dst)
except (shutil.Error, FileExistsError):
pass
remove(src)
def atomic_copy(src=None, dst=None, with_permissions=True):
if os.path.isfile(dst):
return
import uuid
my_uuid = uuid.uuid4()
dst_tmp = dst + str(my_uuid)
makedirs(os.path.dirname(dst), exist_ok=True)
if with_permissions:
shutil.copy(src, dst_tmp)
else:
shutil.copyfile(src, dst_tmp)
atomic_move(dst_tmp, dst)
remove(dst_tmp)
def makedirs(path, exist_ok=True):
"""
Avoid some inefficiency in os.makedirs()
:param path:
:param exist_ok:
:return:
"""
if os.path.isdir(path) and os.path.exists(path):
assert exist_ok, "Path already exists"
return path
os.makedirs(path, exist_ok=exist_ok)
## Download from https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_unfiltered_cleaned_split.json
## Turn into simple instruct prompt type. No context/previous conversations.
def test_prep_instruct_vicuna():
from datasets import load_dataset
filename = 'ShareGPT_unfiltered_cleaned_split.json'
if not os.path.exists(filename):
os.system(
'wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/%s' % filename)
data = load_dataset("json", data_files={"train": filename})["train"]
training_rows = []
for i in range(data.num_rows):
conversations = data[i]['conversations']
assert isinstance(conversations, list), conversations
convo = ""
for j, conv in enumerate(conversations):
# Get ready for generate.py prompt_type=human_bot
# But train with prompt_type=plain
if conv['from'] == 'human':
FROM = '<human>: '
elif conv['from'] == 'gpt':
FROM = '<bot>: '
convo += f"{FROM}" + conv['value'] + "\n"
if convo:
training_rows.append(dict(input=convo))
with open(filename + ".generate_human_bot.train_plain.json", "wt") as f:
f.write(json.dumps(training_rows, indent=2))
POSTFIX = ".generate_human_bot.train_plain.json"
# https://bair.berkeley.edu/blog/2023/04/03/koala/
OIG_DATASETS = [
"unified_chip2.jsonl",
"unified_grade_school_math_instructions.jsonl",
"unified_poetry_2_song.jsonl",
"unified_plot_screenplay_books_dialog.jsonl",
]
# hub issue: https://huggingface.co/datasets/laion/OIG/discussions/4
ALL_OIG_DATASETS = ['unified_abstract_infill.jsonl',
'unified_basic.jsonl',
'unified_canadian_parliament.jsonl',
'unified_chip2.jsonl',
'unified_conv_finqa.jsonl',
'unified_cuad.jsonl',
'unified_essays.jsonl',
'unified_flan.jsonl.gz',
'unified_grade_school_math_instructions.jsonl',
'unified_hc3_human.jsonl',
'unified_image_prompts_instructions.jsonl',
'unified_joke_explanations.jsonl',
'unified_mathqa_flanv2_kojma_cot.jsonl',
'unified_merged_code_xp3.jsonl',
'unified_multi_news.jsonl',
'unified_multi_sum.jsonl',
'unified_ni.jsonl.gz',
'unified_nq.jsonl',
'unified_openai_summarize_tldr.jsonl',
'unified_oscar_en_sample_dialog.jsonl',
'unified_p3.jsonl.gz',
'unified_plot_screenplay_books_dialog.jsonl',
'unified_poetry_2_song.jsonl',
'unified_poetry_instructions.jsonl',
'unified_rallio_safety_and_prosocial.jsonl',
'unified_rallio_soda_upgraded_2048.jsonl',
'unified_soda_dialog.jsonl',
'unified_sqlv1.jsonl',
'unified_sqlv2.jsonl',
'unified_squad_v2.jsonl',
'unified_squad_v2_more_neg.jsonl',
'unified_ul2_plus_oscar_en_sample_dialog.jsonl',
'unified_unifiedskg_instructions.jsonl',
'unified_unnatural_instructions.jsonl',
'unified_xp3_sample.jsonl']
useful_oig_files = ['unified_rallio_safety_and_prosocial.jsonl.parquet',
'unified_chip2.jsonl.parquet',
'unified_cuad.jsonl.parquet',
'unified_essays.jsonl.parquet',
'unified_flan.jsonl.gz.parquet',
'unified_grade_school_math_instructions.jsonl.parquet',
'unified_hc3_human.jsonl.parquet',
'unified_mathqa_flanv2_kojma_cot.jsonl.parquet',
'unified_merged_code_xp3.jsonl.parquet',
'unified_multi_news.jsonl.parquet',
# 'unified_multi_sum.jsonl.parquet'
'unified_ni.jsonl.gz.parquet',
'unified_openai_summarize_tldr.jsonl.parquet',
# 'unified_oscar_en_sample_dialog.jsonl.parquet', # create text containing these N words, not specific
'unified_plot_screenplay_books_dialog.jsonl.parquet',
'unified_soda_dialog.jsonl.parquet',
'unified_unnatural_instructions.jsonl.parquet',
]
@pytest.mark.parametrize("filename", OIG_DATASETS)
def test_get_small_sample_oig_data(filename):
if not os.path.exists(filename):
os.system('wget https://huggingface.co/datasets/laion/OIG/resolve/main/%s' % filename)
import json
rows = []
with open(filename, "r") as f:
for line in f.readlines():
row = json.loads(line)
rows.append(dict(input=row["text"]))
with open(filename + POSTFIX, "w") as f:
f.write(json.dumps(rows, indent=2))
@pytest.mark.parametrize("filename", ALL_OIG_DATASETS)
def test_download_useful_data_as_parquet(filename):
dest_file = filename + '.parquet'
if dest_file not in useful_oig_files:
pytest.skip('file declared not useful')
if not os.path.exists(filename):
os.system('wget https://huggingface.co/datasets/laion/OIG/resolve/main/%s' % filename)
if not os.path.exists(dest_file):
df = pd.read_json(path_or_buf=filename, lines=True)
df.to_parquet(dest_file, index=False)
def test_merge_shuffle_small_sample_oig_data():
np.random.seed(1234)
rows = []
for filename in OIG_DATASETS:
with open(filename + POSTFIX, "r") as f:
rows.extend(json.loads(f.read()))
np.random.shuffle(rows)
with open("merged_shuffled_OIG_%s.json" % hashlib.sha256(str(OIG_DATASETS).encode()).hexdigest()[:10], "w") as f:
f.write(json.dumps(rows, indent=2))
def test_join_jsons():
files = ['config.json'] * 1 + \
['dai_docs.train_cleaned.json'] * 2 + \
['dai_faq.json'] * 3
print(files)
lst = []
[lst.extend(json.load(open(fil, 'rt'))) for fil in files]
print(len(lst))
json.dump(lst, open("merged.json", "wt"), indent=2)
@pytest.mark.parametrize("filename", ['Anthropic/hh-rlhf'])
def test_make_rlhf_good_data(filename):
from datasets import load_dataset
rows = load_dataset(filename)["train"]["chosen"]
new_rows = []
for row in rows:
if row[:2] == "\n\n":
row = row[2:]
row = row.replace("Human: ", "<human>: ")
row = row.replace("Assistant: ", "<bot>: ")
new_rows.append(dict(input=row))
with open(filename.replace("/", "_") + POSTFIX, "w") as f:
f.write(json.dumps(new_rows, indent=2))
def test_show_prompts():
files = ['config.json'] * 1 + \
['dai_docs.train_cleaned.json'] * 1 + \
['dai_faq.json'] * 1
file_points = [json.load(open(fil, 'rt')) for fil in files]
from prompter import generate_prompt
for data_points in file_points:
for data_point in data_points:
print(generate_prompt(data_point, 'plain', '', False, False, False)[0])
def test_get_open_datasets():
# HF changed things so don't get raw list of all datasets, so not have to filter, but can't do negative filter
open_tags = ['license:Apache License 2.0',
'license:mit',
'license:apache',
'license:apache2',
'license:apache-2.0',
'license:bsd',
'license:bsd-2-clause',
'license:bsd-3-clause',
'license:bsd-3-clause-clear',
'license:lgpl-2.1',
'license:lgpl-3.0',
'license:lgpl-lr',
'license:lgpl',
'license:openrail++',
'license:openrail',
'license:bigscience-bloom-rail-1.0',
# 'license:agpl-3.0',
'license:other',
'license:unknown',
# 'license:mpl-2.0', # ok, but would have to include original copyright, license, source, copies in distribution
# Attribution required:
'license:odc-by',
'license:cc-by-4.0',
'license:cc-by-3.0',
'license:cc-by-2.0',
'license:cc-by-2.5',
# 'license:cc-by-sa-4.0', # would require same license
'license:odbl',
'license:pddl',
'license:ms-pl',
'license:zlib',
]
# bad license: cc-by-nc-4.0
from huggingface_hub import list_datasets
datasets = flatten_list([[x for x in list_datasets(filter=y)] for y in open_tags])
datasets += [x for x in list_datasets(author='openai')]
# check all:
all_license_tags = set(flatten_list([[y for y in x.tags if 'license' in y] for x in datasets]))
print(len(all_license_tags))
open_datasets = [x for x in datasets if any([y in x.tags for y in open_tags]) or 'license:' not in str(x.tags)]
print('open_datasets', len(open_datasets))
all_task_tags = set(flatten_list([[y for y in x.tags if 'task' in y] for x in open_datasets]))
print('all_task_tags', len(all_task_tags))
excluded_tags = ['image', 'hate', 'tabular', 'table-', 'classification', 'retrieval',
'translation', 'identification', 'object', 'mask', 'to-text',
'face-detection', 'audio', 'voice', 'reinforcement', 'depth-est',
'forecasting', 'parsing', 'visual', 'speech', 'multiple-choice',
'slot-filling', 'irds/argsme', '-scoring', 'other', 'graph-ml',
'feature-extraction', 'keyword-spotting',
'coreference-resolution', 'segmentation',
'word-sense-disambiguation',
'lemmatization']
task_tags = [x.replace('task_categories:', '').replace('task_ids:', '')
for x in all_task_tags if not any([y in x for y in
excluded_tags])]
print('task_tags', len(task_tags))
# str(x.tags) to catch any pattern match to anything in list
open_tasked_datasets = [x for x in open_datasets if
any([y in str([x for x in x.tags if 'task' in x]) for y in task_tags]) and
not any([y in str([x for x in x.tags if 'task' in x]) for y in excluded_tags]) or
'task_categories' not in str(x.tags) and 'task_ids' not in str(x.tags)]
open_tasked_datasets = [x for x in open_tasked_datasets if not x.disabled]
open_tasked_datasets = [x for x in open_tasked_datasets if not x.gated]
open_tasked_datasets = [x for x in open_tasked_datasets if not x.private]
print('open_tasked_datasets', len(open_tasked_datasets))
sizes = list(set(flatten_list([[(y, x.id) for y in x.tags if 'size' in y] for x in open_tasked_datasets])))
languages = list(set(flatten_list([[(y, x.id) for y in x.tags if 'language:' in y] for x in open_tasked_datasets])))
open_english_tasked_datasets = [x for x in open_tasked_datasets if
'language:' not in str(x.tags) or
'language:en' in str(x.tags)]
small_open_english_tasked_datasets = [x for x in open_english_tasked_datasets if
'n<1K' in str(x.tags) or
'1K<n<10K' in str(x.tags) or
'1K0<n<100K' in str(x.tags) or
'100K<n<1M' in str(x.tags) or
'size_category' not in str(x.tags)
]
# 'aeslc' : email_body, subject -> summarization?
# load_dataset(open_tasked_datasets[0].id).data['train'].to_pandas()
ids = [x.id for x in small_open_english_tasked_datasets]
# sanity checks
# https://bair.berkeley.edu/blog/2023/04/03/koala/
assert 'alespalla/chatbot_instruction_prompts' in ids
assert 'laion/OIG' in ids
assert 'openai/webgpt_comparisons' in ids
assert 'openai/summarize_from_feedback' in ids
assert 'Anthropic/hh-rlhf' in ids
# useful but not allowed for commercial purposes:
# https://huggingface.co/datasets/squad
print('open_english_tasked_datasets: ', ids, flush=True)
exclude_ids = ['allenai/nllb', # translation only
'hf-internal-testing/fixtures_image_utils', # testing
'allenai/c4', # search-url
'agemagician/uniref50', # unknown
'huggingface-course/documentation-images', # images
'smilegate-ai/kor_unsmile', # korean
'MohamedRashad/ChatGPT-prompts', # ChatGPT/LearnGPT/https://www.emergentmind.com/
'humarin/chatgpt-paraphrases', # Paraphrase using ChatGPT
'Jeska/vaccinchat', # not useful
'alespalla/chatbot_instruction_prompts', # mixes alpaca
'allenai/prosocial-dialog',
# already exlucded, but wrongly in other datasets that say more permissive license
'AlekseyKorshuk/persona-chat', # low quality
'bavard/personachat_truecased', # low quality
'adamlin/daily_dialog', # medium quality conversations
'adamlin/FewShotWoz', # low quality
'benjaminbeilharz/better_daily_dialog', # low quality
'benjaminbeilharz/daily_dialog_w_turn_templates', # low
'benjaminbeilharz/empathetic_dialogues_for_lm', # low
'GEM-submissions/GEM__bart_base_schema_guided_dialog__1645547915', # NA
'ia-bentebib/conv_ai_2_fr', # low fr
'ia-bentebib/daily_dialog_fr', # low fr
'ia-bentebib/dialog_re_fr', # low fr
'ia-bentebib/empathetic_dialogues_fr', # low fr
'roskoN/dailydialog', # low
'VadorMazer/skyrimdialogstest', # low
'bigbio/med_qa', # med specific Q/A
'biu-nlp/qa_srl2018', # low quality Q/A
'biu-nlp/qa_discourse', # low quality Q/A
'iarfmoose/qa_evaluator', # low quality Q/A
'jeopardy', # low quality Q/A -- no reasoning
'narrativeqa', # low quality Q/A
'nomic-ai/gpt4all_prompt_generations', # bad license
'nomic-ai/gpt4all_prompt_generations_with_p3', # bad license
'HuggingFaceH4/alpaca', # bad license
'tatsu-lab/alpaca', # ToS breaking
'yahma/alpaca-cleaned', # ToS breaking
'Hello-SimpleAI/HC3', # bad license
'glue', # no reasoning QA
'sahil2801/CodeAlpaca-20k', # bad license
'Short-Answer-Feedback/saf_communication_networks_english', # long Q, medium A
]
small_open_english_tasked_datasets = [x for x in small_open_english_tasked_datasets if x.id not in exclude_ids]
# some ids clearly speech related
small_open_english_tasked_datasets = [x for x in small_open_english_tasked_datasets if 'speech' not in x.id]
# HF testing
small_open_english_tasked_datasets = [x for x in small_open_english_tasked_datasets if
'hf-internal-testing' not in x.id]
small_open_english_tasked_datasets = [x for x in small_open_english_tasked_datasets if
'chinese' not in x.id]
sorted_small_open_english_tasked_datasets = sorted([(x.downloads, x) for x in small_open_english_tasked_datasets],
key=lambda x: x[0], reverse=True)
# NOTES:
# Run like pytest -s -v create_data.py::test_get_open_datasets &> getdata9.log
# See what needs config passed and add:
# grep 'load_dataset(' getdata9.log|grep -v data_id|less -S
# grep "pip install" getdata9.log
# NOTE: Some datasets have default config, but others are there. Don't know how to access them.
"""
https://huggingface.co/datasets/wikihow/blob/main/wikihow.py
https://github.com/mahnazkoupaee/WikiHow-Dataset
https://ucsb.box.com/s/ap23l8gafpezf4tq3wapr6u8241zz358
https://ucsb.app.box.com/s/ap23l8gafpezf4tq3wapr6u8241zz358
"""
"""
# some ambiguous or non-commercial datasets
https://github.com/PhoebusSi/alpaca-CoT
"""
timeout = 3 * 60
# laion/OIG takes longer
for num_downloads, dataset in sorted_small_open_english_tasked_datasets:
data_id = dataset.id
func = do_one
args = (data_id, num_downloads)
kwargs = {}
with ProcessPoolExecutor(max_workers=1) as executor:
future = executor.submit(func, *args, **kwargs)
try:
future.result(timeout=timeout)
except concurrent.futures.TimeoutError:
print("\n\ndata_id %s timeout\n\n" % data_id, flush=True)
for child in psutil.Process(os.getpid()).children(recursive=True):
os.kill(child.pid, signal.SIGINT)
os.kill(child.pid, signal.SIGTERM)
os.kill(child.pid, signal.SIGKILL)
def do_one(data_id, num_downloads):
from datasets import load_dataset
out_file = "data_%s.parquet" % str(data_id.replace('/', '_'))
if os.path.isfile(out_file) and os.path.getsize(out_file) > 1024 ** 3:
return
try:
print("Loading data_id %s num_downloads: %s" % (data_id, num_downloads), flush=True)
avail_list = None
try:
data = load_dataset(data_id, 'foobar')
except Exception as e:
if 'Available: ' in str(e):
avail_list = ast.literal_eval(str(e).split('Available:')[1].strip())
else:
avail_list = None
if avail_list is None:
avail_list = [None]
print("%s avail_list: %s" % (data_id, avail_list), flush=True)
for name in avail_list:
out_file = "data_%s_%s.parquet" % (str(data_id.replace('/', '_')), str(name))
if os.path.isfile(out_file):
continue
data = load_dataset(data_id, name)
column_names_dict = data.column_names
column_names = column_names_dict[list(column_names_dict.keys())[0]]
print("Processing data_id %s num_downloads: %s columns: %s" % (data_id, num_downloads, column_names),
flush=True)
data_dict = data.data
col_dict = data.num_columns
first_col = list(col_dict.keys())[0]
if 'train' in data_dict:
df = data['train'].to_pandas()
else:
df = data[first_col].to_pandas()
# csv has issues with escaping chars, even for datasets I know I want
df.to_parquet(out_file, index=False)
except Exception as e:
t, v, tb = sys.exc_info()
ex = ''.join(traceback.format_exception(t, v, tb))
print("Exception: %s %s" % (data_id, ex), flush=True)
def test_otherlic():
from huggingface_hub import list_datasets
lic = ['license:odc-by',
'license:cc-by-4.0',
'license:cc-by-3.0',
'license:cc-by-2.0',
'license:cc-by-2.5',
'license:cc-by-sa-4.0',
'license:odbl',
'license:pddl',
'license:ms-pl',
'license:zlib',
]
datasets = flatten_list([[x for x in list_datasets(filter=y) if 'translation' not in str(x.tags)] for y in lic])
print(len(datasets))
# These useful datasets are determined based upon data sample, column types, and uniqueness compared to larger datasets like Pile
# grep columns getdata13.log|grep -v "\['image'\]"|sort|uniq|grep -v tokens|grep -v "'image'"|grep -v embedding|grep dialog
useful = ['Dahoas/instruct-human-assistant-prompt',
'Dahoas/first-instruct-human-assistant-prompt',
'knkarthick/dialogsum', # summary of conversation
'McGill-NLP/FaithDial', # medium quality
'Zaid/quac_expanded', # medium quality context + QA
'0-hero/OIG-small-chip2', # medium
'alistvt/coqa-flat', # QA medium
'AnonymousSub/MedQuAD_47441_Question_Answer_Pairs', # QA medium
'Anthropic/hh-rlhf', # high quality # similar to Dahoas/full-hh-rlhf
'arjunth2001/online_privacy_qna', # good quality QA
'Dahoas/instruct_helpful_preferences', # medium quality instruct
'Dahoas/rl-prompt-dataset', # medium chat
'Dahoas/rm-static', # medium chat
'Dahoas/static-hh', # medium chat # HuggingFaceH4/self_instruct
'Dahoas/synthetic-instruct-gptj-pairwise', # medium chat
'eli5', # QA if prompt ELI5
'gsm8k', # QA (various)
'guanaco/guanaco', # prompt/response
'kastan/rlhf-qa-comparisons', # good QA
'kastan/rlhf-qa-conditional-generation-v2', # prompt answer
'OllieStanley/humaneval-mbpp-codegen-qa', # code QA, but started from words, so better than other code QA
'OllieStanley/humaneval-mbpp-testgen-qa', # code QA
'Graverman/Instruct-to-Code', # code QA
'openai/summarize_from_feedback', # summarize
'relbert/analogy_questions', # analogy QA
'yitingxie/rlhf-reward-datasets', # prompt, chosen, rejected.
'yizhongw/self_instruct', # instruct (super natural & instruct)
'HuggingFaceH4/asss', # QA, big A
'kastan/rlhf-qa-conditional-generation-v2', # QA
'cosmos_qa', # context QA
'vishal-burman/c4-faqs', # QA but not so much reasoning, but alot of text
'squadshifts', # QA from context
'hotpot_qa', # QA from context
'adversarial_qa', # QA from context
'allenai/soda', # dialog -> narrative/summary
'squad_v2', # context QA
'squadshifts', # context QA
'dferndz/cSQuAD1', # context QA
'dferndz/cSQuAD2', # context QA
'din0s/msmarco-nlgen', # context QA
'domenicrosati/TruthfulQA', # common sense truthful QA -- trivia but good trivia
'hotpot_qa', # context, QA
'HuggingFaceH4/self-instruct-eval', # instruct QA, medium quality, some language reasoning
'kastan/EE_QA_for_RLHF', # context QA
'KK04/LogicInference_OA', # instruction logical QA
'lmqg/qa_squadshifts_synthetic', # context QA
'lmqg/qg_squad', # context QA
'lmqg/qg_squadshifts', # context QA
'lmqg/qg_subjqa', # context QA
'pszemraj/HC3-textgen-qa',
# QA medium, has human responses -- humans tend to provide links instead of trying to answer
'pythonist/newdata', # long context, QA, brief A
'ropes', # long background, situation, question, A
'wikitablequestions', # table -> QA
'bigscience/p3', # context QA but short answers
]
code_useful = ['0n1xus/codexglue',
'openai_humaneval',
'koutch/staqc',
]
maybe_useful = ['AlekseyKorshuk/comedy-scripts',
'openbookqa', # hard to parse, low reasoning
'qed', # reasonable QA, but low reasoning
'selqa', # candidate answers
'HuggingFaceH4/instruction-pilot-outputs-filtered',
'GBaker/MedQA-USMLE-4-options', # medical QA with long questions
'npc-engine/light-batch-summarize-dialogue', # dialog summarize, kinda low specific quality
]
summary_useful = ['austin/rheum_abstracts',
'CarperAI/openai_summarize_comparisons', # summarize chosen/rejected
'CarperAI/openai_summarize_tldr', # summarize QA
'ccdv/cnn_dailymail', # summarize news
'ccdv/govreport-summarization', # summarize high quality
'ccdv/pubmed-summarization', # summarize high quality
'duorc', # plot -> QA
'farleyknight/big_patent_5_percent', # desc -> abstract
'multi_news', # summary
'opinosis',
'SophieTr/reddit_clean',
'allenai/mup', # long text -> summary
'allenai/multi_lexsum', # long text -> summary
'big_patent',
'allenai/wcep_dense_max',
'awinml/costco_long_practice',
'GEM/xsum',
'ratishsp/newshead',
'RussianNLP/wikiomnia', # russian
'stacked-summaries/stacked-xsum-1024',
]
math_useful = [
'competition_math'
]
skipped = ['c4', # maybe useful, used for flan, but skipped due to size
]
"""
To get training data from oig:
pytest test_oig test_grade_final test_finalize_to_json
"""
human = '<human>:'
bot = '<bot>:'
def test_assemble_and_detox():
import re
from profanity_check import predict_prob
df_list = []
for data in useful_oig_files:
print("Processing %s" % data, flush=True)
df = pd.read_parquet(data)
df = df.reset_index(drop=True)
# chop up into human/bot interactions of no more than 10kB per row
text_list = df[['text']].values.ravel().tolist()
new_text = []
max_len = 2048 # uber cutoff
MAX_LEN = 2048 // 2 - 30 # max len per question/answer
for text in tqdm(text_list):
human_starts = [m.start() for m in re.finditer('<human>: ', text)]
if len(human_starts) == 1:
human_starts = [0, len(text)] # always go into for loop below
blurb = ''
for i in range(len(human_starts) - 1):
interaction = text[human_starts[i]: human_starts[i + 1]][:max_len]
blurb += interaction
if len(blurb) >= MAX_LEN:
blurb = get_sentences(blurb, length=MAX_LEN)[0]
new_text.append(blurb + "\n<human>:")
blurb = ''
if blurb:
blurb = get_sentences(blurb, length=MAX_LEN)[0]
new_text.append(blurb + "\n<human>:")
if len(new_text) > len(text_list):
print("Added %d new rows (before: %d)" % (len(new_text) - df.shape[0], df.shape[0]))
df = pd.DataFrame({"text": new_text, "source": [data] * len(new_text)})
df = df.drop_duplicates(keep='first')
print(df['text'].apply(lambda x: len(x)).describe())
assert df['text'].apply(lambda x: len(x)).max() <= 2 * max_len
# faster than better_profanity, do early
df['profanity'] = predict_prob(df['text'])
before_rows = df.shape[0]
df = df[df['profanity'] < 0.25] # drop any low quality stuff
after_rows = df.shape[0]
print("Dropped %d rows out of %d due to alt-profanity-check" % (before_rows - after_rows, before_rows))
df_list.append(df)
print("Done processing %s -> %s rows" % (data, df.shape[0]), flush=True)
print("So far have %d rows" % sum([len(x) for x in df_list]))
df_final = pd.concat(df_list)
df_final = df_final.sample(frac=1, random_state=1234).reset_index(drop=True)
df_final.to_parquet('h2oGPT.cleaned.human_bot.shorter.parquet', index=False)
def test_basic_cleaning():
# from better_profanity import profanity
# https://pypi.org/project/alt-profanity-check/
from profanity_check import predict
df_list = []
for data in useful_oig_files:
# for data in useful_oig_files[:5]:
# for data in ['unified_openai_summarize_tldr.jsonl.parquet']:
print("Processing %s" % data, flush=True)
df = pd.read_parquet(data)
df = df.reset_index(drop=True)
# NOTE: Not correct if multiple human-bot interactions, but those dialogs even more desired
# avg_chars = len(df['text'][0])/(df['text'][0].count(human)+df['text'][0].count(bot))
df['avg_words'] = df['text'].apply(lambda x: x.count(' ') / (x.count(human) + x.count(bot)) / 2.0)
df['avg_bot_words'] = df['text'].apply(lambda x: x.split(bot)[1].count(' ') / x.count(bot))
# df['bad_words'] = df['text'].apply(lambda x: profanity.contains_profanity(x))
# low_quality_patterns = ['Write the rest of this wikipedia article']
res = predict(df['text'])
df['bad_words'] = res
df = df.reset_index(drop=True)
df = df[df['bad_words'] == 0]
df = df[['text', 'avg_words', 'avg_bot_words']]
df = df.drop_duplicates(keep='first')
print(df[df['avg_words'] == df['avg_words'].max()]['text'].values)
median_words = np.median(df['avg_words'])
min_words_per_entity = max(30, 0.8 * median_words)
max_words_per_entity = 2048 # too hard to learn from for now
df = df[df['avg_words'] > min_words_per_entity]
df = df[df['avg_words'] < max_words_per_entity]
min_words_per_entity = max(20, 0.5 * median_words) # bot should say stuff for now
max_words_per_entity = 2048 # too hard to learn from for now
df = df[df['avg_bot_words'] > min_words_per_entity]
df = df[df['avg_bot_words'] < max_words_per_entity]
df_list.append(df)
print("Done processing %s -> %s rows" % (data, df.shape[0]), flush=True)
df_final = pd.concat(df_list)
df_final.to_parquet('h2oGPT.cleaned.human_bot.parquet', index=False)
from joblib import Parallel, delayed, effective_n_jobs
from sklearn.utils import gen_even_slices
from sklearn.utils.validation import _num_samples
def parallel_apply(df, func, n_jobs=-1, **kwargs):
""" Pandas apply in parallel using joblib.
Uses sklearn.utils to partition input evenly.
Args:
df: Pandas DataFrame, Series, or any other object that supports slicing and apply.
func: Callable to apply
n_jobs: Desired number of workers. Default value -1 means use all available cores.
**kwargs: Any additional parameters will be supplied to the apply function
Returns:
Same as for normal Pandas DataFrame.apply()
"""
if effective_n_jobs(n_jobs) == 1:
return df.apply(func, **kwargs)
else:
ret = Parallel(n_jobs=n_jobs)(
delayed(type(df).apply)(df[s], func, **kwargs)
for s in gen_even_slices(_num_samples(df), effective_n_jobs(n_jobs)))
return pd.concat(ret)
def add_better_profanity_flag(df):
from better_profanity import profanity
df['better_profanity'] = parallel_apply(
df['text'],
lambda x: profanity.contains_profanity(x),
n_jobs=-1,
)
return df
def add_textstat_grade(df):
import textstat
def myfunc(x):
return textstat.flesch_kincaid_grade(x) # simple grade
if False:
import dask.dataframe as dd
# 40 seconds for 1000 rows, but have 1,787,799 rows
ddata = dd.from_pandas(df, npartitions=120)
df['flesch_grade'] = ddata['text'].apply(myfunc).compute()
if True:
# fast way
df['flesch_grade'] = parallel_apply(df['text'], myfunc, n_jobs=-1)
return df
def add_deberta_grade(df):
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
reward_name = "OpenAssistant/reward-model-deberta-v3-large-v2"
rank_model, tokenizer = AutoModelForSequenceClassification.from_pretrained(
reward_name), AutoTokenizer.from_pretrained(reward_name)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
rank_model.to(device)
def get_question(x):
return x.replace('<human>: ', '').split('<bot>:')[0]
def get_answer(x):
try:
answer = x.split('<bot>: ')[1].split('<human>:')[0].replace('<bot>: ', '')
except:
answer = x.split('<bot>:')[1].split('<human>:')[0].replace('<bot>:', '')
return answer
df['question'] = parallel_apply(df['text'], get_question, n_jobs=-1)
df['answer'] = parallel_apply(df['text'], get_answer, n_jobs=-1)
from datasets import Dataset
from transformers import pipeline
from transformers.pipelines.pt_utils import KeyPairDataset
import tqdm
pipe = pipeline(
"text-classification",
model=reward_name,
device="cuda:0" if torch.cuda.is_available() else "cpu"
)
start = 0
batch_size = 64 * 16
micro_batch = orig_micro_batch = 16
end = 0
import socket
checkpoint = "grades.%s.pkl" % socket.gethostname()
grades = []
import pickle
if os.path.exists(checkpoint):
with open(checkpoint, "rb") as f:
start, grades = pickle.loads(f.read())
last_oom = 0
while end < df.shape[0]:
# manual batching to handle OOM more gracefully
end = min(start + batch_size, df.shape[0])
if start == end:
break
dataset = Dataset.from_pandas(df.iloc[start:end, :])
try:
grades.extend([
x['score'] for x in tqdm.tqdm(
pipe(KeyPairDataset(dataset, "question", "answer"), batch_size=micro_batch)
)
])
except torch.cuda.OutOfMemoryError:
last_oom = start
micro_batch = max(1, micro_batch // 2)
print("OOM - retrying with micro_batch=%d" % micro_batch)
continue
if last_oom == start:
micro_batch = orig_micro_batch
print("Returning to micro_batch=%d" % micro_batch)
assert len(grades) == end
start = end
with open(checkpoint, "wb") as f:
f.write(pickle.dumps((end, grades)))
print("%d/%d" % (end, df.shape[0]))
df['grade_deberta'] = grades
if os.path.exists(checkpoint):
os.remove(checkpoint)
return df
def test_chop_by_lengths():
file = "h2oGPT.cleaned.human_bot.shorter.parquet"
df = pd.read_parquet(file).reset_index(drop=True)
df = count_human_bot_lengths(df)
df['rand'] = np.random.rand(df.shape[0])
df['rand2'] = np.random.rand(df.shape[0])
before_rows = df.shape[0]
# throw away short human/bot responses with higher likelihood
df = df[(df['len_human_mean'] > 20)] # never keep very short ones
df = df[(df['len_human_mean'] > 30) | (df['rand'] < 0.2)]
df = df[(df['len_human_mean'] > 50) | (df['rand'] < 0.5)]
df = df[(df['len_human_max'] < 10000)] # drop super long (basically only human) ones
df = df[(df['len_bot_mean'] > 20)] # never keep very short ones
df = df[(df['len_bot_mean'] > 30) | (df['rand2'] < 0.2)]
df = df[(df['len_bot_mean'] > 50) | (df['rand2'] < 0.5)]
df = df[(df['len_bot_max'] < 10000)] # drop super long (only bot) ones
assert df['text'].apply(lambda x: len(x)).max() < 20000
df = df.drop(['rand', 'rand2'], axis=1)
after_rows = df.shape[0]
print("Chopped off %d out of %d rows due to length" % (before_rows - after_rows, before_rows))
print(df.describe())
df.to_parquet('h2oGPT.cleaned.chopped.human_bot.shorter.parquet', index=False)
def count_human_bot_lengths(df, human=None, bot=None):
import re
len_human_min = []
len_human_max = []
len_human_mean = []
len_bot_min = []
len_bot_max = []
len_bot_mean = []
human = human or '<human>:'
bot = bot or '<bot>:'
for is_human in [True, False]:
what = human if is_human else bot
other = human if not is_human else bot
for i in range(df.shape[0]):
text = df.loc[i, 'text']
assert isinstance(text, str)
starts = [m.start() for m in re.finditer(what, text)]
if len(starts) == 1:
starts = [starts[0], len(text)] # always go into for loop below
assert len(text)
list_what = []
for ii in range(len(starts) - 1):
interaction = text[starts[ii]: starts[ii + 1]]
if other in interaction:
interaction = interaction[:interaction.find(other)]
interaction.strip()
list_what.append(interaction)
if not list_what:
list_what = [''] # handle corrupted data, very rare, leads to sizes 0
if is_human:
len_human_min.append(min([len(x) for x in list_what]))
len_human_max.append(max([len(x) for x in list_what]))
len_human_mean.append(np.mean([len(x) for x in list_what]))
else:
len_bot_min.append(min([len(x) for x in list_what]))
len_bot_max.append(max([len(x) for x in list_what]))
len_bot_mean.append(np.mean([len(x) for x in list_what]))
df['len_human_min'] = len_human_min
df['len_human_max'] = len_human_max
df['len_human_mean'] = len_human_mean
df['len_bot_min'] = len_bot_min
df['len_bot_max'] = len_bot_max
df['len_bot_mean'] = len_bot_mean
np.random.seed(1234)
pd.set_option('display.max_columns', None)
print("Before chopping")
print(df.describe())
return df
def test_grade():
df = None
file = "h2oGPT.cleaned.chopped.human_bot.shorter.parquet"
output_file = "h2oGPT.cleaned.graded1.human_bot.shorter.parquet"
if not os.path.exists(output_file):
if df is None:
df = pd.read_parquet(file).reset_index(drop=True)
df = add_textstat_grade(df)
min_grade = 10
max_grade = 25
df = df[df['flesch_grade'] >= min_grade]
df = df[df['flesch_grade'] <= max_grade]
print("After Flesch grade")
print(df.describe())
df.to_parquet(output_file, index=False)
file = output_file
output_file = "h2oGPT.cleaned.graded2.human_bot.shorter.parquet"
if not os.path.exists(output_file):
# slower than alt-profanity, do last, but do before deberta grading, since that's slower
if df is None:
df = pd.read_parquet(file).reset_index(drop=True)
df = add_better_profanity_flag(df)
before_rows = df.shape[0]
df = df[df['better_profanity'] == 0]
df = df.drop(['better_profanity'], axis=1)
after_rows = df.shape[0]
print("Dropped %d rows out of %d due to better_profanity" % (before_rows - after_rows, before_rows))
print(df.describe())
df.to_parquet(output_file, index=False)
file = output_file
output_file = 'h2oGPT.cleaned.graded3.human_bot.shorter.parquet'
if not os.path.exists(output_file):
if df is None:
df = pd.read_parquet(file).reset_index(drop=True)
df = add_deberta_grade(df)
min_grade = 0.3
max_grade = np.inf
before_rows = df.shape[0]
df = df[df['grade_deberta'] >= min_grade]
df = df[df['grade_deberta'] <= max_grade]
after_rows = df.shape[0]
print("Dropped %d rows out of %d due to deberta grade" % (before_rows - after_rows, before_rows))
print("After DeBERTa grade")
print(df.describe())
df.to_parquet(output_file, index=False)
file = output_file
output_file = 'h2oGPT.cleaned.graded.human_bot.shorter.parquet'
if df is None:
df = pd.read_parquet(file).reset_index(drop=True)
df.to_parquet(output_file, index=False)
@pytest.mark.parametrize(
"fixup_personality, only_personality, deberta_grading",
[
# [False, False, False],
# [True, True, False],
[True, False, False],
# [True, False, True],
]
)
@pytest.mark.parametrize("prompt_type", ["llama2"])
def test_add_open_assistant(fixup_personality, only_personality, deberta_grading, prompt_type, save_json=True):
"""
Flatten tree structure into one row per path from root to leaf
Also turn into human_bot prompting format:
<human>: question\n<bot>: answer <human>: question2\n<bot>: answer2 Etc.
Also saves a .json locally as side-effect
returns list of dicts, containing intput, prompt_type and source
"""
from datasets import load_dataset
data_file = "OpenAssistant/oasst1"
ds = load_dataset(data_file)
df = pd.concat([ds['train'].to_pandas(), ds['validation'].to_pandas()], axis=0)
rows = {}
message_ids = df['message_id'].values.tolist()
message_tree_ids = df['message_tree_id'].values.tolist()
parent_ids = df['parent_id'].values.tolist()
texts = df['text'].values.tolist()
roles = df['role'].values.tolist()
deleteds = df['deleted'].values.tolist()
for i in range(df.shape[0]):
# collect all trees
message_id = message_ids[i]
message_tree_id = message_tree_ids[i]
parent_id = parent_ids[i]
text = texts[i]
deleted = deleteds[i]
if deleted:
continue
if fixup_personality:
text = text.replace("Open Assistant", "h2oGPT")
text = text.replace("Open-Assistant", "h2oGPT")
text = text.replace("open-assistant", "h2oGPT")
text = text.replace("OpenAssistant", "h2oGPT")
text = text.replace("open assistant", "h2oGPT")
text = text.replace("Open Assistand", "h2oGPT")
text = text.replace("Open Assitant", "h2oGPT")
text = text.replace("Open Assistent", "h2oGPT")
text = text.replace("Open Assisstant", "h2oGPT")
text = text.replace("Open Assitent", "h2oGPT")
text = text.replace("Open Assitiant", "h2oGPT")
text = text.replace("Open Assistiant", "h2oGPT")
text = text.replace("Open Assitan ", "h2oGPT ")
text = text.replace("Open Assistan ", "h2oGPT ")
text = text.replace("Open Asistant", "h2oGPT")
text = text.replace("Open Assiant", "h2oGPT")
text = text.replace("Assistant", "h2oGPT")
text = text.replace("LAION AI", "H2O.ai")
text = text.replace("LAION-AI", "H2O.ai")
text = text.replace("LAION,", "H2O.ai,")
text = text.replace("LAION.ai", "H2O.ai")
text = text.replace("LAION.", "H2O.ai.")
text = text.replace("LAION", "H2O.ai")
role = roles[i]
if prompt_type == "llama2":
new_data = ('[INST] ' if role == 'prompter' else ' [/INST] ') + text
if parent_id and role == 'prompter':
new_data = " " + new_data
elif prompt_type == "human_bot":
new_data = ('<human>: ' if role == 'prompter' else '<bot>: ') + text
else:
raise NotImplementedError("prompt_type not supported")
entry = dict(message_id=message_id, parent_id=parent_id, text=new_data)
if message_tree_id not in rows:
rows[message_tree_id] = [entry]
else:
rows[message_tree_id].append(entry)
all_rows = []
for node_id in rows:
# order responses in tree, based on message/parent relationship
conversations = []
list_msgs = rows[node_id]
# find start
while len(list_msgs):
for i, leaf in enumerate(list_msgs):
found = False
parent_id = leaf['parent_id']
if parent_id is None:
# conversation starter
conversations.append(leaf)
found = True
else:
for conv in conversations:
# find all conversations to add my message to
if parent_id in conv['message_id'] and parent_id != conv['message_id'][-len(parent_id):]:
# my message doesn't follow conversation
continue
if parent_id == conv['message_id'][-len(parent_id):]:
# my message follows conversation, but fork first, so another follow-on message can do same
conversations.append(conv.copy())
if prompt_type == "llama2":
conv['text'] += f"""{leaf['text']}"""
elif prompt_type == "human_bot":
conv['text'] += f"""
{leaf['text']}
"""
else:
raise NotImplementedError
conv['message_id'] += leaf['message_id']
found = True
break
if found:
# my content was used, so nuke from list
del list_msgs[i]
break
# now reduce down to final conversations, find the longest chains of message ids
for i, conv in enumerate(conversations):
for j, conv2 in enumerate(conversations):
if i == j:
continue
if conv['message_id'] and conv2['message_id']:
assert conv['message_id'] != conv2['message_id']
# delete the shorter conversation, if one contains the other
if conv['message_id'] in conv2['message_id']:
conv['message_id'] = None
if conv2['message_id'] in conv['message_id']:
conv2['message_id'] = None
conversations = [c for c in conversations if c['message_id']]
if only_personality:
if prompt_type == "human_bot":
all_rows.extend(
[dict(input=c['text'] + "\n<human>:", output="", prompt_type='plain', source=data_file) for c in conversations if
'h2oGPT' in c['text']])
elif prompt_type == "llama2":
all_rows.extend(
[dict(input=c['text'] +
("" if c['text'].rfind("[/INST]") > c['text'].rfind("[INST]") else " [/INST]"),
output="", prompt_type='plain', source=data_file) for c in conversations if
'h2oGPT' in c['text']])
else:
raise NotImplementedError
else:
if prompt_type == "human_bot":
all_rows.extend(
[dict(input=c['text'] + "\n<human>:", output="", prompt_type='plain', source=data_file) for c in conversations
if
"What is H2O.ai" not in c['text']])
elif prompt_type == "llama2":
all_rows.extend(
[dict(input=c['text'] +
(" " if c['text'].rfind("[/INST]") > c['text'].rfind("[INST]") else " [/INST]"),
output="", prompt_type='plain', source=data_file) for c in conversations if
"What is H2O.ai" not in c['text']])
else:
raise NotImplementedError
unhelpful = get_unhelpful_list()
all_rows = [x for x in all_rows if not any(u in x['input'] for u in unhelpful)]
personality = create_personality_data(prompt_type=prompt_type)
all_rows.extend(personality * 10)
np.random.seed(123)
np.random.shuffle(all_rows)
print(len(all_rows))
if deberta_grading:
df = pd.DataFrame(all_rows)
df = df.rename(columns={'input': 'text'})
df = add_deberta_grade(df)
df = df.rename(columns={'text': 'input'})
drop = True
if drop:
min_grade = 0.3
max_grade = np.inf
before_rows = df.shape[0]
df = df[df['grade_deberta'] >= min_grade]
df = df[df['grade_deberta'] <= max_grade]
after_rows = df.shape[0]
print("Dropped %d rows out of %d due to deberta grade" % (before_rows - after_rows, before_rows))
print("After DeBERTa grade")
print(df.describe())
all_rows = []
for i in range(df.shape[0]):
all_rows.append(
dict(
input=df['input'].iloc[i],
output=df['output'].iloc[i],
source=df['source'].iloc[i],
prompt_type=df['prompt_type'].iloc[i],
grade_deberta=df['grade_deberta'].iloc[i],
)
)
if save_json:
data_file = data_file + \
("_h2ogpt" if fixup_personality else "") + \
("_only" if only_personality else "") + \
("_graded" if deberta_grading else "") + \
("_llama2_chat" if prompt_type == "llama2" else "")
for i in range(len(all_rows)):
all_rows[i]['id'] = i
with open(data_file.lower().replace("/", "_") + ".json", "w") as f:
f.write(json.dumps(all_rows, indent=2))
return all_rows
def test_finalize_to_json():
df = pd.read_parquet('h2oGPT.cleaned.graded.human_bot.shorter.parquet')
df = df.rename(columns={'text': 'input'})
print("Number of high-quality human_bot interactions: %s" % df.shape[0], flush=True)
print("Adding open assistant data")
with open("openassistant_oasst1_h2ogpt_graded.json") as f:
open_assistant = json.loads(f.read())
df = pd.concat([df, pd.DataFrame(open_assistant)], axis=0)
def final_clean(df):
from better_profanity import profanity
profanity.load_censor_words_from_file("data/censor_words.txt")
df['profanity'] = parallel_apply(
df['input'],
lambda x: profanity.contains_profanity(x),
n_jobs=-1,
)
return df[(df['profanity'] == 0)].reset_index(drop=True)
print("Before cleaning: Number of final high-quality human_bot interactions: %s" % df.shape[0], flush=True)
df = final_clean(df)
print("After cleaning: Number of final high-quality human_bot interactions: %s" % df.shape[0], flush=True)
print(df.describe())
print(df.shape)
row_list = []
for i in range(df.shape[0]):
row_list.append(
dict(
input=df.loc[i, 'input'],
source=df.loc[i, 'source'],
prompt_type='plain',
)
)
np.random.seed(1234)
np.random.shuffle(row_list)
unhelpful = get_unhelpful_list()
row_list = [x for x in row_list if not any(u in x['input'] for u in unhelpful)]
for i in range(len(row_list)):
row_list[i]['id'] = i
row_list[i]['input'] = row_list[i]['input'].replace(" <bot>:", "\n<bot>:")
with open('h2ogpt-oig-oasst1-instruct-cleaned-v3.json', "w") as f:
f.write(json.dumps(row_list, indent=2))
def create_personality_data(prompt_type="llama2"):
questions = [
"What's your name?",
"What is your name?",
"What are you?",
"Who are you?",
"Do you have a name?",
"Who trained you?",
"Who created you?",
"Who made you?",
]
answers = [
"I'm h2oGPT, a large language model by H2O.ai.",
"I'm h2oGPT, a large language model by H2O.ai, the visionary leader in democratizing AI.",
"My name is h2oGPT. I'm a large language model by H2O.ai, the visionary leader in democratizing AI.",
"My name is h2oGPT. I'm a large language model trained by H2O.ai.",
"Hi! I'm h2oGPT, a large language model by H2O.ai.",
"Hi! I'm h2oGPT, a large language model by H2O.ai, the visionary leader in democratizing AI.",
]
help = [
"",
" How can I help you?",
" How may I assist you?",
" Nice to meet you.",
]
import itertools
rows = []
for pair in itertools.product(questions, answers, help):
rows.append(
dict(input=f"{pair[0]}", output=f"{pair[1]}{pair[2]}", prompt_type=prompt_type, source="H2O.ai")
)
for q, a in [
("What is H2O.ai?", "H2O.ai is a technology company that aims to democratize AI and make it accessible to a broader audience by simplifying the process of creating and deploying machine learning models."),
("What is h2o.ai?", "H2O.ai is a technology company that aims to democratize AI and make it accessible to a broader audience by simplifying the process of creating and deploying machine learning models."),
("What is H2O?", "H2O.ai is a technology company that aims to democratize AI and make it accessible to a broader audience by simplifying the process of creating and deploying machine learning models."),
("Who is h2o.ai?", "H2O.ai is a technology company that aims to democratize AI and make it accessible to a broader audience by simplifying the process of creating and deploying machine learning models."),
("who is h2o.ai?", "H2O.ai is a technology company that aims to democratize AI and make it accessible to a broader audience by simplifying the process of creating and deploying machine learning models."),
("who is h2o?", "H2O.ai is a technology company that aims to democratize AI and make it accessible to a broader audience by simplifying the process of creating and deploying machine learning models."),
("what is H2O.ai?", "H2O.ai is the visionary leader in democratizing AI."),
("who is H2O.ai?", "H2O.ai is the visionary leader in democratizing AI."),
("who is H2O?", "H2O.ai is the visionary leader in democratizing AI."),
("Who is h20?", "H2O.ai is the visionary leader in democratizing AI."),
]:
rows.append(dict(input=q, output=a, prompt_type=prompt_type, source='H2O.ai'))
print(len(rows))
with open("h2ogpt-personality.json", "w") as f:
f.write(json.dumps(rows, indent=2))
return rows
def test_check_stats_data():
filename = 'h2ogpt-oig-oasst1-instruct-cleaned-v3.json'
df = pd.read_json(filename)
# get word stats
df['char_count'] = df['input'].apply(lambda x: len(x))
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 10))
plt.hist(df['char_count'], bins=100)
chars_avg = np.mean(df['char_count'])
chars_median = np.median(df['char_count'])
plt.title("char_count avg: %s median: %s" % (chars_avg, chars_median))
plt.savefig('chars_hist.png')
plt.close()
# get tokenize stats for random sample of 1000 rows
from finetune import generate_and_tokenize_prompt
from loaders import get_loaders, get_tokenizer
from functools import partial
llama_type = False
tokenizer_base_model = base_model = 'h2oai/h2ogpt-oasst1-512-20b'
model_loader, tokenizer_loader, conditional_type = (
get_loaders(model_name=base_model, reward_type=False, llama_type=llama_type))
local_files_only = False
resume_download = True
use_auth_token = False
tokenizer = get_tokenizer(tokenizer_loader, tokenizer_base_model, local_files_only, resume_download, use_auth_token)
prompt_type = 'plain' # trained with data already in human bot form
train_on_inputs = True
add_eos_token = False
cutoff_len = 512 # can choose 2048
generate_and_tokenize_prompt_fun = partial(generate_and_tokenize_prompt, prompt_type=prompt_type,
train_on_inputs=train_on_inputs, add_eos_token=add_eos_token,
cutoff_len=cutoff_len, tokenizer=tokenizer)
from datasets import load_dataset
data = load_dataset("json", data_files={"train": filename})
val_set_size = 0.90
train_val = data["train"].train_test_split(
test_size=val_set_size, shuffle=True, seed=42
)
train_data = train_val["train"]
train_data = train_data.shuffle().map(generate_and_tokenize_prompt_fun, num_proc=os.cpu_count())
df_tokens = pd.DataFrame([len(x) for x in train_data['input_ids']], columns=['token_count'])
plt.figure(figsize=(10, 10))
plt.hist(df_tokens['token_count'], bins=100)
token_avg = np.mean(df_tokens['token_count'])
token_median = np.median(df_tokens['token_count'])
plt.title("token_count with cutoff=%s avg: %s median: %s" % (cutoff_len, token_avg, token_median))
plt.savefig('token_hist_%s.png' % cutoff_len)
plt.close()
def get_unhelpful_list():
# base versions
unhelpful = ["I'm sorry, I didn't quite understand your question, could you please rephrase it?",
"I'm sorry, but I don't understand your question. Could you please rephrase it?",
"I'm sorry, I don't quite understand your question",
"I'm sorry, I don't know",
"I'm sorry, but I don't know",
"I don't know anything",
"I do not know",
"I don't know",
"I don't know how",
"I do not know how",
"Can you please explain what you mean",
"please explain what you mean",
"please explain",
"I'm sorry, but I don't know how to tell a story. Can you please explain what you mean by",
"I'm sorry but I don't understand what you mean",
"I don't understand",
"I don't have the ability",
"I do not have the ability",
"I do not have",
"I am a language model,",
"I am a large language model,",
"I do not understand your question. Can you please try to make it clearer?",
"I'm sorry, but as an AI language model",
"I apologize, but I cannot rephrase text that I cannot understand. Your post is difficult to read and follow.",
"I apologize, but I am not h2oGPT. I am a language model developed by H2O.ai. How may I help you?",
"Sorry, but I am not an actual Linux shell, nor am I capable of emulating one. I am an open source chat assistant and would be glad t",
"I apologize, but I cannot perform the task you have requested.",
"I'm sorry, I cannot perform this task as I am an AI language model and do not have access",
"I'm sorry, I'm not sure what you're asking for here.",
"I'm not sure what you are asking",
"You need to provide more context",
]
# reduced versions, with redundant parts, just to give context for where they came from
unhelpful += ["sorry, I didn't quite understand your question",
"I didn't quite understand your question",
"I didn't understand your question",
"I did not understand your question",
"I did not understand the question",
"could you please rephrase"
"could you rephrase"
"I do not understand your question.",
"I do not understand the question.",
"I do not understand that question.",
"Can you please try to make it clearer",
"Can you try to make it clearer",
"sorry, but as an AI language model",
"as an AI language model",
"I apologize, but I cannot",
"I cannot rephrase text",
"I cannot understand. Your post is difficult to read and follow."
"Your post is difficult to read and follow."
"I apologize, but I am",
"Sorry, but I am not ",
"nor am I capable",
"I am not capable of",
"I apologize, but I cannot perform the task you have requested",
"I cannot perform the task",
"I cannot complete the task",
"I'm sorry",
"I am sorry",
"do not have access",
"not sure what you're asking for",
"not sure what you are asking for",
"not sure what is being asked",
"I'm not sure what you are asking",
"not sure what you are asking",
"You need to provide more context",
"provide more context",
]
unhelpful += ["As a large language model",
"cannot provide any information",
"As an artificial intelligence I do not have the capability",
"As an artificial intelligence I don't have the capability",
"As an artificial intelligence I can't",
"As an artificial intelligence I cannot",
"I am sorry but I do not understand",
"Can you please explain",
"(sorry couldn't resist)",
"(sorry could not resist)",
" :)",
" ;)",
" :-)",
" ;-)",
" lol ",
"Thanks so much!!!",
"Thank You :)!!!",
"Please try not to repeat",
"I am an AI language model",
"I'm a AI assistant that",
"I'm an AI assistant that",
"I am an AI assistant that",
"etc.",
"etc.etc.",
"etc. etc.",
"etc etc",
]
return unhelpful
def test_check_unhelpful():
# file = '/home/jon/Downloads/openassistant_oasst1_h2ogpt_graded.json'
file = '/home/jon/Downloads/openassistant_oasst1_h2ogpt_grades.json'
# file = 'h2ogpt-oig-oasst1-instruct-cleaned-v2.json'
unhelpful = get_unhelpful_list()
# data = json.load(open(file, 'rt'))
df = pd.read_json(file)
use_reward_score_threshold = False
use_bleu_threshold = False
use_sentence_sim = True
from sacrebleu.metrics import BLEU
bleu = BLEU()
from nltk.translate.bleu_score import sentence_bleu
def get_bleu(actual, expected_list):
# return bleu.sentence_score(actual, expected_list).score
return sentence_bleu(expected_list, actual)
threshold = 0.0
if use_reward_score_threshold:
df = df[df['grade_deberta'] > threshold]
# back to as if original json load
data = df.to_dict(orient='records')
bads = {}
string_all = str(data)
for sub in unhelpful:
bads[sub] = string_all.count(sub)
bads = {k: v for k, v in bads.items() if v > 0}
import pprint
pp = pprint.PrettyPrinter(indent=4)
pp.pprint(bads)
total_bads = sum(list(bads.values()))
print('total_bads: %s' % total_bads, flush=True)
# check just bot
import re
convs = [[x.strip() for x in re.split(r'%s|%s' % (human, bot), y['input']) if x.strip()] for y in data]
humans = [[x for i, x in enumerate(y) if i % 2 == 0] for y in convs]
bots = [[x for i, x in enumerate(y) if i % 2 == 1] for y in convs]
# FIXME: apply back to json etc., just see for now
bleu_threshold = 0.9
if use_bleu_threshold:
bots = [[x for x in y if get_bleu(x, unhelpful) < bleu_threshold] for y in tqdm(bots)]
cosine_sim_threshold = 0.8
if use_sentence_sim:
# pip install sentence_transformers-2.2.2
from sentence_transformers import SentenceTransformer
# sent_model = 'bert-base-nli-mean-tokens'
# sent_model = 'nli-distilroberta-base-v2'
sent_model = 'all-MiniLM-L6-v2'
model = SentenceTransformer(sent_model)
sentence_embeddings = model.encode(unhelpful)
from sklearn.metrics.pairwise import cosine_similarity
bots = [x for x in tqdm(bots) if
np.max(cosine_similarity(model.encode(x), sentence_embeddings)) < cosine_sim_threshold]
bads_bots = {}
string_all = str(bots)
for sub in unhelpful:
bads_bots[sub] = string_all.count(sub)
bads_bots = {k: v for k, v in bads_bots.items() if v > 0}
import pprint
pp = pprint.PrettyPrinter(indent=4)
pp.pprint(bads_bots)
total_bads_bots = sum(list(bads_bots.values()))
print('threshold: %g use_bleu_threshold: %g total_bads_bots: %s total_bots: %s total_humans: %s' % (
threshold, use_bleu_threshold, total_bads_bots, len(bots), len(humans)), flush=True)
# assert len(bads) == 0, bads
assert len(bads_bots) == 0, bads_bots
def test_fortune2000_personalized():
row_list = []
import glob
if not os.path.isdir("wikitext"):
raise RuntimeError("download https://github.com/h2oai/h2ogpt/files/11423008/wikitext.zip and unzip")
for file in glob.glob("wikitext/*.txt"):
with open(file, "r") as f:
blob = f.read()
N = 512 * 4
row_list.extend([{'input': s, 'prompt_type': 'plain', 'source': "%s" % os.path.basename(file)}
for s in get_sentences(blob, N) if s])
personality = create_personality_data()
import copy
for i in range(10):
row_list.extend(copy.deepcopy(personality))
np.random.seed(123)
np.random.shuffle(row_list)
for i in range(len(row_list)):
row_list[i]['id'] = i
for i in range(len(row_list)):
assert row_list[i]['id'] == i
with open("h2ogpt-fortune2000-personalized.json", "w") as ff:
ff.write(json.dumps(row_list, indent=2))
|