Spaces:
Runtime error
Runtime error
import os | |
import math | |
import gradio as gr | |
def make_chatbots(output_label0, output_label0_model2, **kwargs): | |
text_outputs = [] | |
chat_kwargs = [] | |
for model_state_lock in kwargs['model_states']: | |
if os.environ.get('DEBUG_MODEL_LOCK'): | |
model_name = model_state_lock["base_model"] + " : " + model_state_lock["inference_server"] | |
else: | |
model_name = model_state_lock["base_model"] | |
output_label = f'h2oGPT [{model_name}]' | |
min_width = 250 if kwargs['gradio_size'] in ['small', 'large', 'medium'] else 160 | |
chat_kwargs.append(dict(label=output_label, visible=kwargs['model_lock'], elem_classes='chatsmall', | |
height=kwargs['height'] or 400, min_width=min_width)) | |
if kwargs['model_lock_columns'] == -1: | |
kwargs['model_lock_columns'] = len(kwargs['model_states']) | |
if kwargs['model_lock_columns'] is None: | |
kwargs['model_lock_columns'] = 3 | |
ncols = kwargs['model_lock_columns'] | |
if kwargs['model_states'] == 0: | |
nrows = 0 | |
else: | |
nrows = math.ceil(len(kwargs['model_states']) / kwargs['model_lock_columns']) | |
if kwargs['model_lock_columns'] == 0: | |
# not using model_lock | |
pass | |
elif nrows <= 1: | |
with gr.Row(): | |
for chat_kwargs1, model_state_lock in zip(chat_kwargs, kwargs['model_states']): | |
text_outputs.append(gr.Chatbot(**chat_kwargs1)) | |
elif nrows == kwargs['model_states']: | |
with gr.Row(): | |
for chat_kwargs1, model_state_lock in zip(chat_kwargs, kwargs['model_states']): | |
text_outputs.append(gr.Chatbot(**chat_kwargs1)) | |
elif nrows == 2: | |
with gr.Row(): | |
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): | |
if mii >= len(kwargs['model_states']) / 2: | |
continue | |
text_outputs.append(gr.Chatbot(**chat_kwargs1)) | |
with gr.Row(): | |
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): | |
if mii < len(kwargs['model_states']) / 2: | |
continue | |
text_outputs.append(gr.Chatbot(**chat_kwargs1)) | |
elif nrows == 3: | |
with gr.Row(): | |
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): | |
if mii >= 1 * len(kwargs['model_states']) / 3: | |
continue | |
text_outputs.append(gr.Chatbot(**chat_kwargs1)) | |
with gr.Row(): | |
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): | |
if mii < 1 * len(kwargs['model_states']) / 3 or mii >= 2 * len(kwargs['model_states']) / 3: | |
continue | |
text_outputs.append(gr.Chatbot(**chat_kwargs1)) | |
with gr.Row(): | |
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): | |
if mii < 2 * len(kwargs['model_states']) / 3: | |
continue | |
text_outputs.append(gr.Chatbot(**chat_kwargs1)) | |
elif nrows >= 4: | |
with gr.Row(): | |
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): | |
if mii >= 1 * len(kwargs['model_states']) / 4: | |
continue | |
text_outputs.append(gr.Chatbot(**chat_kwargs1)) | |
with gr.Row(): | |
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): | |
if mii < 1 * len(kwargs['model_states']) / 4 or mii >= 2 * len(kwargs['model_states']) / 4: | |
continue | |
text_outputs.append(gr.Chatbot(**chat_kwargs1)) | |
with gr.Row(): | |
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): | |
if mii < 2 * len(kwargs['model_states']) / 4 or mii >= 3 * len(kwargs['model_states']) / 4: | |
continue | |
text_outputs.append(gr.Chatbot(**chat_kwargs1)) | |
with gr.Row(): | |
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])): | |
if mii < 3 * len(kwargs['model_states']) / 4: | |
continue | |
text_outputs.append(gr.Chatbot(**chat_kwargs1)) | |
with gr.Row(): | |
text_output = gr.Chatbot(label=output_label0, visible=not kwargs['model_lock'], height=kwargs['height'] or 400) | |
text_output2 = gr.Chatbot(label=output_label0_model2, | |
visible=False and not kwargs['model_lock'], height=kwargs['height'] or 400) | |
return text_output, text_output2, text_outputs | |
def make_prompt_form(kwargs, LangChainMode): | |
if kwargs['langchain_mode'] != LangChainMode.DISABLED.value: | |
extra_prompt_form = ". For summarization, empty submission uses first top_k_docs documents." | |
else: | |
extra_prompt_form = "" | |
if kwargs['input_lines'] > 1: | |
instruction_label = "Shift-Enter to Submit, Enter for more lines%s" % extra_prompt_form | |
else: | |
instruction_label = "Enter to Submit, Shift-Enter for more lines%s" % extra_prompt_form | |
with gr.Row():#elem_id='prompt-form-area'): | |
with gr.Column(scale=50): | |
instruction = gr.Textbox( | |
lines=kwargs['input_lines'], | |
label='Ask anything', | |
placeholder=instruction_label, | |
info=None, | |
elem_id='prompt-form', | |
container=True, | |
) | |
with gr.Row(): | |
submit = gr.Button(value='Submit', variant='primary', scale=0, size='sm') | |
stop_btn = gr.Button(value="Stop", variant='secondary', scale=0, size='sm') | |
return instruction, submit, stop_btn | |