Spaces:
Runtime error
Runtime error
import contextlib | |
import functools | |
import hashlib | |
import inspect | |
import os | |
import gc | |
import pathlib | |
import pickle | |
import random | |
import shutil | |
import subprocess | |
import sys | |
import threading | |
import time | |
import traceback | |
import zipfile | |
from datetime import datetime | |
import filelock | |
import requests, uuid | |
from typing import Tuple, Callable, Dict | |
from tqdm.auto import tqdm | |
from joblib import Parallel | |
from concurrent.futures import ProcessPoolExecutor | |
import numpy as np | |
import pandas as pd | |
def set_seed(seed: int): | |
""" | |
Sets the seed of the entire notebook so results are the same every time we run. | |
This is for REPRODUCIBILITY. | |
""" | |
import torch | |
np.random.seed(seed) | |
random_state = np.random.RandomState(seed) | |
random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
os.environ['PYTHONHASHSEED'] = str(seed) | |
return random_state | |
def flatten_list(lis): | |
"""Given a list, possibly nested to any level, return it flattened.""" | |
new_lis = [] | |
for item in lis: | |
if type(item) == type([]): | |
new_lis.extend(flatten_list(item)) | |
else: | |
new_lis.append(item) | |
return new_lis | |
def clear_torch_cache(): | |
import torch | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
gc.collect() | |
def ping(): | |
try: | |
print('Ping: %s' % str(datetime.now()), flush=True) | |
except AttributeError: | |
# some programs wrap print and will fail with flush passed | |
pass | |
def ping_gpu(): | |
try: | |
print('Ping_GPU: %s %s' % (str(datetime.now()), system_info()), flush=True) | |
except AttributeError: | |
# some programs wrap print and will fail with flush passed | |
pass | |
try: | |
ping_gpu_memory() | |
except Exception as e: | |
print('Ping_GPU memory failure: %s' % str(e), flush=True) | |
def ping_gpu_memory(): | |
from models.gpu_mem_track import MemTracker | |
gpu_tracker = MemTracker() # define a GPU tracker | |
from torch.cuda import memory_summary | |
gpu_tracker.track() | |
def get_torch_allocated(): | |
import torch | |
return torch.cuda.memory_allocated() | |
def get_device(): | |
import torch | |
if torch.cuda.is_available(): | |
device = "cuda" | |
elif torch.backends.mps.is_built(): | |
device = "mps" | |
else: | |
device = "cpu" | |
return device | |
def system_info(): | |
import psutil | |
system = {} | |
# https://stackoverflow.com/questions/48951136/plot-multiple-graphs-in-one-plot-using-tensorboard | |
# https://arshren.medium.com/monitoring-your-devices-in-python-5191d672f749 | |
try: | |
temps = psutil.sensors_temperatures(fahrenheit=False) | |
if 'coretemp' in temps: | |
coretemp = temps['coretemp'] | |
temp_dict = {k.label: k.current for k in coretemp} | |
for k, v in temp_dict.items(): | |
system['CPU_C/%s' % k] = v | |
except AttributeError: | |
pass | |
# https://github.com/gpuopenanalytics/pynvml/blob/master/help_query_gpu.txt | |
try: | |
from pynvml.smi import nvidia_smi | |
nvsmi = nvidia_smi.getInstance() | |
gpu_power_dict = {'W_gpu%d' % i: x['power_readings']['power_draw'] for i, x in | |
enumerate(nvsmi.DeviceQuery('power.draw')['gpu'])} | |
for k, v in gpu_power_dict.items(): | |
system['GPU_W/%s' % k] = v | |
gpu_temp_dict = {'C_gpu%d' % i: x['temperature']['gpu_temp'] for i, x in | |
enumerate(nvsmi.DeviceQuery('temperature.gpu')['gpu'])} | |
for k, v in gpu_temp_dict.items(): | |
system['GPU_C/%s' % k] = v | |
gpu_memory_free_dict = {'MiB_gpu%d' % i: x['fb_memory_usage']['free'] for i, x in | |
enumerate(nvsmi.DeviceQuery('memory.free')['gpu'])} | |
gpu_memory_total_dict = {'MiB_gpu%d' % i: x['fb_memory_usage']['total'] for i, x in | |
enumerate(nvsmi.DeviceQuery('memory.total')['gpu'])} | |
gpu_memory_frac_dict = {k: gpu_memory_free_dict[k] / gpu_memory_total_dict[k] for k in gpu_memory_total_dict} | |
for k, v in gpu_memory_frac_dict.items(): | |
system[f'GPU_M/%s' % k] = v | |
except (KeyError, ModuleNotFoundError): | |
pass | |
system['hash'] = get_githash() | |
return system | |
def system_info_print(): | |
try: | |
df = pd.DataFrame.from_dict(system_info(), orient='index') | |
# avoid slamming GPUs | |
time.sleep(1) | |
return df.to_markdown() | |
except Exception as e: | |
return "Error: %s" % str(e) | |
def zip_data(root_dirs=None, zip_file=None, base_dir='./', fail_any_exception=False): | |
try: | |
return _zip_data(zip_file=zip_file, base_dir=base_dir, root_dirs=root_dirs) | |
except Exception as e: | |
traceback.print_exc() | |
print('Exception in zipping: %s' % str(e)) | |
if not fail_any_exception: | |
raise | |
def _zip_data(root_dirs=None, zip_file=None, base_dir='./'): | |
if isinstance(root_dirs, str): | |
root_dirs = [root_dirs] | |
if zip_file is None: | |
datetime_str = str(datetime.now()).replace(" ", "_").replace(":", "_") | |
host_name = os.getenv('HF_HOSTNAME', 'emptyhost') | |
zip_file = "data_%s_%s.zip" % (datetime_str, host_name) | |
assert root_dirs is not None | |
if not os.path.isdir(os.path.dirname(zip_file)) and os.path.dirname(zip_file): | |
os.makedirs(os.path.dirname(zip_file), exist_ok=True) | |
with zipfile.ZipFile(zip_file, "w") as expt_zip: | |
for root_dir in root_dirs: | |
if root_dir is None: | |
continue | |
for root, d, files in os.walk(root_dir): | |
for file in files: | |
file_to_archive = os.path.join(root, file) | |
assert os.path.exists(file_to_archive) | |
path_to_archive = os.path.relpath(file_to_archive, base_dir) | |
expt_zip.write(filename=file_to_archive, arcname=path_to_archive) | |
return zip_file, zip_file | |
def save_generate_output(prompt=None, output=None, base_model=None, save_dir=None, where_from='unknown where from', | |
extra_dict={}): | |
try: | |
return _save_generate_output(prompt=prompt, output=output, base_model=base_model, save_dir=save_dir, | |
where_from=where_from, extra_dict=extra_dict) | |
except Exception as e: | |
traceback.print_exc() | |
print('Exception in saving: %s' % str(e)) | |
def _save_generate_output(prompt=None, output=None, base_model=None, save_dir=None, where_from='unknown where from', | |
extra_dict={}): | |
""" | |
Save conversation to .json, row by row. | |
json_file_path is path to final JSON file. If not in ., then will attempt to make directories. | |
Appends if file exists | |
""" | |
prompt = '<not set>' if prompt is None else prompt | |
output = '<not set>' if output is None else output | |
assert save_dir, "save_dir must be provided" | |
if os.path.exists(save_dir) and not os.path.isdir(save_dir): | |
raise RuntimeError("save_dir already exists and is not a directory!") | |
os.makedirs(save_dir, exist_ok=True) | |
import json | |
dict_to_save = dict(prompt=prompt, text=output, time=time.ctime(), base_model=base_model, where_from=where_from) | |
dict_to_save.update(extra_dict) | |
with filelock.FileLock("save_dir.lock"): | |
# lock logging in case have concurrency | |
with open(os.path.join(save_dir, "history.json"), "a") as f: | |
# just add [ at start, and ] at end, and have proper JSON dataset | |
f.write( | |
" " + json.dumps( | |
dict_to_save | |
) + ",\n" | |
) | |
def s3up(filename): | |
try: | |
return _s3up(filename) | |
except Exception as e: | |
traceback.print_exc() | |
print('Exception for file %s in s3up: %s' % (filename, str(e))) | |
return "Failed to upload %s: Error: %s" % (filename, str(e)) | |
def _s3up(filename): | |
import boto3 | |
aws_access_key_id = os.getenv('AWS_SERVER_PUBLIC_KEY') | |
aws_secret_access_key = os.getenv('AWS_SERVER_SECRET_KEY') | |
bucket = os.getenv('AWS_BUCKET') | |
assert aws_access_key_id, "Set AWS key" | |
assert aws_secret_access_key, "Set AWS secret" | |
assert bucket, "Set AWS Bucket" | |
s3 = boto3.client('s3', | |
aws_access_key_id=os.getenv('AWS_SERVER_PUBLIC_KEY'), | |
aws_secret_access_key=os.getenv('AWS_SERVER_SECRET_KEY'), | |
) | |
ret = s3.upload_file( | |
Filename=filename, | |
Bucket=os.getenv('AWS_BUCKET'), | |
Key=filename, | |
) | |
if ret in [None, '']: | |
return "Successfully uploaded %s" % filename | |
def get_githash(): | |
try: | |
githash = subprocess.run(['git', 'rev-parse', 'HEAD'], stdout=subprocess.PIPE).stdout.decode('utf-8')[0:-1] | |
except: | |
githash = '' | |
return githash | |
def copy_code(run_id): | |
""" | |
copy code to track changes | |
:param run_id: | |
:return: | |
""" | |
rnd_num = str(random.randint(0, 2 ** 31)) | |
run_id = 'run_' + str(run_id) | |
os.makedirs(run_id, exist_ok=True) | |
me_full = os.path.join(pathlib.Path(__file__).parent.resolve(), __file__) | |
me_file = os.path.basename(__file__) | |
new_me = os.path.join(run_id, me_file + '_' + get_githash()) | |
if os.path.isfile(new_me): | |
new_me = os.path.join(run_id, me_file + '_' + get_githash() + '_' + rnd_num) | |
shutil.copy(me_full, new_me) | |
else: | |
shutil.copy(me_full, new_me) | |
class NullContext(threading.local): | |
"""No-op context manager, executes block without doing any additional processing. | |
Used as a stand-in if a particular block of code is only sometimes | |
used with a normal context manager: | |
""" | |
def __init__(self, *args, **kwargs): | |
pass | |
def __enter__(self): | |
return self | |
def __exit__(self, exc_type, exc_value, exc_traceback): | |
self.finally_act() | |
def finally_act(self): | |
pass | |
def wrapped_partial(func, *args, **kwargs): | |
""" | |
Give partial properties of normal function, like __name__ attribute etc. | |
:param func: | |
:param args: | |
:param kwargs: | |
:return: | |
""" | |
partial_func = functools.partial(func, *args, **kwargs) | |
functools.update_wrapper(partial_func, func) | |
return partial_func | |
class ThreadException(Exception): | |
pass | |
class EThread(threading.Thread): | |
# Function that raises the custom exception | |
def __init__(self, group=None, target=None, name=None, | |
args=(), kwargs=None, *, daemon=None, streamer=None, bucket=None): | |
self.bucket = bucket | |
self.streamer = streamer | |
self.exc = None | |
self._return = None | |
super().__init__(group=group, target=target, name=name, args=args, kwargs=kwargs, daemon=daemon) | |
def run(self): | |
# Variable that stores the exception, if raised by someFunction | |
try: | |
if self._target is not None: | |
self._return = self._target(*self._args, **self._kwargs) | |
except BaseException as e: | |
print("thread exception: %s" % str(sys.exc_info())) | |
self.bucket.put(sys.exc_info()) | |
self.exc = e | |
if self.streamer: | |
print("make stop: %s" % str(sys.exc_info()), flush=True) | |
self.streamer.do_stop = True | |
finally: | |
# Avoid a refcycle if the thread is running a function with | |
# an argument that has a member that points to the thread. | |
del self._target, self._args, self._kwargs | |
def join(self, timeout=None): | |
threading.Thread.join(self) | |
# Since join() returns in caller thread | |
# we re-raise the caught exception | |
# if any was caught | |
if self.exc: | |
raise self.exc | |
return self._return | |
def import_matplotlib(): | |
import matplotlib | |
matplotlib.use('agg') | |
# KEEP THESE HERE! START | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
# to avoid dlopen deadlock in fork | |
import pandas.core.computation.expressions as pd_expressions | |
import pandas._libs.groupby as pd_libgroupby | |
import pandas._libs.reduction as pd_libreduction | |
import pandas.core.algorithms as pd_algorithms | |
import pandas.core.common as pd_com | |
import numpy as np | |
# KEEP THESE HERE! END | |
def get_sha(value): | |
return hashlib.md5(str(value).encode('utf-8')).hexdigest() | |
def sanitize_filename(name): | |
""" | |
Sanitize file *base* names. | |
:param name: name to sanitize | |
:return: | |
""" | |
bad_chars = ['[', ']', ',', '/', '\\', '\\w', '\\s', '-', '+', '\"', '\'', '>', '<', ' ', '=', ')', '(', ':', '^'] | |
for char in bad_chars: | |
name = name.replace(char, "_") | |
length = len(name) | |
file_length_limit = 250 # bit smaller than 256 for safety | |
sha_length = 32 | |
real_length_limit = file_length_limit - (sha_length + 2) | |
if length > file_length_limit: | |
sha = get_sha(name) | |
half_real_length_limit = max(1, int(real_length_limit / 2)) | |
name = name[0:half_real_length_limit] + "_" + sha + "_" + name[length - half_real_length_limit:length] | |
return name | |
def shutil_rmtree(*args, **kwargs): | |
return shutil.rmtree(*args, **kwargs) | |
def remove(path: str): | |
try: | |
if path is not None and os.path.exists(path): | |
if os.path.isdir(path): | |
shutil_rmtree(path, ignore_errors=True) | |
else: | |
with contextlib.suppress(FileNotFoundError): | |
os.remove(path) | |
except: | |
pass | |
def makedirs(path, exist_ok=True): | |
""" | |
Avoid some inefficiency in os.makedirs() | |
:param path: | |
:param exist_ok: | |
:return: | |
""" | |
if os.path.isdir(path) and os.path.exists(path): | |
assert exist_ok, "Path already exists" | |
return path | |
os.makedirs(path, exist_ok=exist_ok) | |
def atomic_move_simple(src, dst): | |
try: | |
shutil.move(src, dst) | |
except (shutil.Error, FileExistsError): | |
pass | |
remove(src) | |
def download_simple(url, dest=None, print_func=None): | |
if print_func is not None: | |
print_func("BEGIN get url %s" % str(url)) | |
if url.startswith("file://"): | |
from requests_file import FileAdapter | |
s = requests.Session() | |
s.mount('file://', FileAdapter()) | |
url_data = s.get(url, stream=True) | |
else: | |
url_data = requests.get(url, stream=True) | |
if dest is None: | |
dest = os.path.basename(url) | |
if url_data.status_code != requests.codes.ok: | |
msg = "Cannot get url %s, code: %s, reason: %s" % ( | |
str(url), | |
str(url_data.status_code), | |
str(url_data.reason), | |
) | |
raise requests.exceptions.RequestException(msg) | |
url_data.raw.decode_content = True | |
makedirs(os.path.dirname(dest), exist_ok=True) | |
uuid_tmp = str(uuid.uuid4())[:6] | |
dest_tmp = dest + "_dl_" + uuid_tmp + ".tmp" | |
with open(dest_tmp, "wb") as f: | |
shutil.copyfileobj(url_data.raw, f) | |
atomic_move_simple(dest_tmp, dest) | |
if print_func is not None: | |
print_func("END get url %s" % str(url)) | |
def download(url, dest=None, dest_path=None): | |
if dest_path is not None: | |
dest = os.path.join(dest_path, os.path.basename(url)) | |
if os.path.isfile(dest): | |
print("already downloaded %s -> %s" % (url, dest)) | |
return dest | |
elif dest is not None: | |
if os.path.exists(dest): | |
print("already downloaded %s -> %s" % (url, dest)) | |
return dest | |
else: | |
uuid_tmp = "dl2_" + str(uuid.uuid4())[:6] | |
dest = uuid_tmp + os.path.basename(url) | |
print("downloading %s to %s" % (url, dest)) | |
if url.startswith("file://"): | |
from requests_file import FileAdapter | |
s = requests.Session() | |
s.mount('file://', FileAdapter()) | |
url_data = s.get(url, stream=True) | |
else: | |
url_data = requests.get(url, stream=True) | |
if url_data.status_code != requests.codes.ok: | |
msg = "Cannot get url %s, code: %s, reason: %s" % ( | |
str(url), str(url_data.status_code), str(url_data.reason)) | |
raise requests.exceptions.RequestException(msg) | |
url_data.raw.decode_content = True | |
dirname = os.path.dirname(dest) | |
if dirname != "" and not os.path.isdir(dirname): | |
makedirs(os.path.dirname(dest), exist_ok=True) | |
uuid_tmp = "dl3_" + str(uuid.uuid4())[:6] | |
dest_tmp = dest + "_" + uuid_tmp + ".tmp" | |
with open(dest_tmp, 'wb') as f: | |
shutil.copyfileobj(url_data.raw, f) | |
try: | |
shutil.move(dest_tmp, dest) | |
except FileExistsError: | |
pass | |
remove(dest_tmp) | |
return dest | |
def get_url(x, from_str=False, short_name=False): | |
if not from_str: | |
source = x.metadata['source'] | |
else: | |
source = x | |
if short_name: | |
source_name = get_short_name(source) | |
else: | |
source_name = source | |
if source.startswith('http://') or source.startswith('https://'): | |
return """<a href="%s" target="_blank" rel="noopener noreferrer">%s</a>""" % ( | |
source, source_name) | |
else: | |
return """<a href="file/%s" target="_blank" rel="noopener noreferrer">%s</a>""" % ( | |
source, source_name) | |
def get_short_name(name, maxl=50): | |
if name is None: | |
return '' | |
length = len(name) | |
if length > maxl: | |
allow_length = maxl - 3 | |
half_allowed = max(1, int(allow_length / 2)) | |
name = name[0:half_allowed] + "..." + name[length - half_allowed:length] | |
return name | |
def cuda_vis_check(total_gpus): | |
"""Helper function to count GPUs by environment variable | |
Stolen from Jon's h2o4gpu utils | |
""" | |
cudavis = os.getenv("CUDA_VISIBLE_DEVICES") | |
which_gpus = [] | |
if cudavis is not None: | |
# prune away white-space, non-numerics, | |
# except commas for simple checking | |
cudavis = "".join(cudavis.split()) | |
import re | |
cudavis = re.sub("[^0-9,]", "", cudavis) | |
lencudavis = len(cudavis) | |
if lencudavis == 0: | |
total_gpus = 0 | |
else: | |
total_gpus = min( | |
total_gpus, | |
os.getenv("CUDA_VISIBLE_DEVICES").count(",") + 1) | |
which_gpus = os.getenv("CUDA_VISIBLE_DEVICES").split(",") | |
which_gpus = [int(x) for x in which_gpus] | |
else: | |
which_gpus = list(range(0, total_gpus)) | |
return total_gpus, which_gpus | |
def get_ngpus_vis(raise_if_exception=True): | |
ngpus_vis1 = 0 | |
shell = False | |
if shell: | |
cmd = "nvidia-smi -L 2> /dev/null" | |
else: | |
cmd = ["nvidia-smi", "-L"] | |
try: | |
timeout = 5 * 3 | |
o = subprocess.check_output(cmd, shell=shell, timeout=timeout) | |
lines = o.decode("utf-8").splitlines() | |
ngpus_vis1 = 0 | |
for line in lines: | |
if 'Failed to initialize NVML' not in line: | |
ngpus_vis1 += 1 | |
except (FileNotFoundError, subprocess.CalledProcessError, OSError): | |
# GPU systems might not have nvidia-smi, so can't fail | |
pass | |
except subprocess.TimeoutExpired as e: | |
print('Failed get_ngpus_vis: %s' % str(e)) | |
if raise_if_exception: | |
raise | |
ngpus_vis1, which_gpus = cuda_vis_check(ngpus_vis1) | |
return ngpus_vis1 | |
def get_mem_gpus(raise_if_exception=True, ngpus=None): | |
totalmem_gpus1 = 0 | |
usedmem_gpus1 = 0 | |
freemem_gpus1 = 0 | |
if ngpus == 0: | |
return totalmem_gpus1, usedmem_gpus1, freemem_gpus1 | |
try: | |
cmd = "nvidia-smi -q 2> /dev/null | grep -A 3 'FB Memory Usage'" | |
o = subprocess.check_output(cmd, shell=True, timeout=15) | |
lines = o.decode("utf-8").splitlines() | |
for line in lines: | |
if 'Total' in line: | |
totalmem_gpus1 += int(line.split()[2]) * 1024 ** 2 | |
if 'Used' in line: | |
usedmem_gpus1 += int(line.split()[2]) * 1024 ** 2 | |
if 'Free' in line: | |
freemem_gpus1 += int(line.split()[2]) * 1024 ** 2 | |
except (FileNotFoundError, subprocess.CalledProcessError, OSError): | |
# GPU systems might not have nvidia-smi, so can't fail | |
pass | |
except subprocess.TimeoutExpired as e: | |
print('Failed get_mem_gpus: %s' % str(e)) | |
if raise_if_exception: | |
raise | |
return totalmem_gpus1, usedmem_gpus1, freemem_gpus1 | |
class ForkContext(threading.local): | |
""" | |
Set context for forking | |
Ensures state is returned once done | |
""" | |
def __init__(self, args=None, kwargs=None, forkdata_capable=True): | |
""" | |
:param args: | |
:param kwargs: | |
:param forkdata_capable: whether fork is forkdata capable and will use copy-on-write forking of args/kwargs | |
""" | |
self.forkdata_capable = forkdata_capable | |
if self.forkdata_capable: | |
self.has_args = args is not None | |
self.has_kwargs = kwargs is not None | |
forkdatacontext.args = args | |
forkdatacontext.kwargs = kwargs | |
else: | |
self.has_args = False | |
self.has_kwargs = False | |
def __enter__(self): | |
try: | |
# flush all outputs so doesn't happen during fork -- don't print/log inside ForkContext contexts! | |
sys.stdout.flush() | |
sys.stderr.flush() | |
except BaseException as e: | |
# exit not called if exception, and don't want to leave forkdatacontext filled in that case | |
print("ForkContext failure on enter: %s" % str(e)) | |
self.finally_act() | |
raise | |
return self | |
def __exit__(self, exc_type, exc_value, exc_traceback): | |
self.finally_act() | |
def finally_act(self): | |
""" | |
Done when exception hit or exit is reached in context | |
first reset forkdatacontext as crucial to have reset even if later 2 calls fail | |
:return: None | |
""" | |
if self.forkdata_capable and (self.has_args or self.has_kwargs): | |
forkdatacontext._reset() | |
class _ForkDataContext(threading.local): | |
def __init__( | |
self, | |
args=None, | |
kwargs=None, | |
): | |
""" | |
Global context for fork to carry data to subprocess instead of relying upon copy/pickle/serialization | |
:param args: args | |
:param kwargs: kwargs | |
""" | |
assert isinstance(args, (tuple, type(None))) | |
assert isinstance(kwargs, (dict, type(None))) | |
self.__args = args | |
self.__kwargs = kwargs | |
def args(self) -> Tuple: | |
"""returns args""" | |
return self.__args | |
def args(self, args): | |
if self.__args is not None: | |
raise AttributeError( | |
"args cannot be overwritten: %s %s" % (str(self.__args), str(self.__kwargs)) | |
) | |
self.__args = args | |
def kwargs(self) -> Dict: | |
"""returns kwargs""" | |
return self.__kwargs | |
def kwargs(self, kwargs): | |
if self.__kwargs is not None: | |
raise AttributeError( | |
"kwargs cannot be overwritten: %s %s" % (str(self.__args), str(self.__kwargs)) | |
) | |
self.__kwargs = kwargs | |
def _reset(self): | |
"""Reset fork arg-kwarg context to default values""" | |
self.__args = None | |
self.__kwargs = None | |
def get_args_kwargs(self, func, args, kwargs) -> Tuple[Callable, Tuple, Dict]: | |
if self.__args: | |
args = self.__args[1:] | |
if not func: | |
assert len(self.__args) > 0, "if have no func, must have in args" | |
func = self.__args[0] # should always be there | |
if self.__kwargs: | |
kwargs = self.__kwargs | |
try: | |
return func, args, kwargs | |
finally: | |
forkdatacontext._reset() | |
def get_args_kwargs_for_traced_func(func, args, kwargs): | |
""" | |
Return args/kwargs out of forkdatacontext when using copy-on-write way of passing args/kwargs | |
:param func: actual function ran by _traced_func, which itself is directly what mppool treats as function | |
:param args: | |
:param kwargs: | |
:return: func, args, kwargs from forkdatacontext if used, else originals | |
""" | |
# first 3 lines are debug | |
func_was_None = func is None | |
args_was_None_or_empty = args is None or len(args) == 0 | |
kwargs_was_None_or_empty = kwargs is None or len(kwargs) == 0 | |
forkdatacontext_args_was_None = forkdatacontext.args is None | |
forkdatacontext_kwargs_was_None = forkdatacontext.kwargs is None | |
func, args, kwargs = forkdatacontext.get_args_kwargs(func, args, kwargs) | |
using_forkdatacontext = func_was_None and func is not None # pulled func out of forkdatacontext.__args[0] | |
assert forkdatacontext.args is None, "forkdatacontext.args should be None after get_args_kwargs" | |
assert forkdatacontext.kwargs is None, "forkdatacontext.kwargs should be None after get_args_kwargs" | |
proc_type = kwargs.get('proc_type', 'SUBPROCESS') | |
if using_forkdatacontext: | |
assert proc_type == "SUBPROCESS" or proc_type == "SUBPROCESS" | |
if proc_type == "NORMAL": | |
assert forkdatacontext_args_was_None, "if no fork, expect forkdatacontext.args None entering _traced_func" | |
assert forkdatacontext_kwargs_was_None, "if no fork, expect forkdatacontext.kwargs None entering _traced_func" | |
assert func is not None, "function should not be None, indicates original args[0] was None or args was None" | |
return func, args, kwargs | |
forkdatacontext = _ForkDataContext() | |
def _traced_func(func, *args, **kwargs): | |
func, args, kwargs = forkdatacontext.get_args_kwargs_for_traced_func(func, args, kwargs) | |
return func(*args, **kwargs) | |
def call_subprocess_onetask(func, args=None, kwargs=None): | |
import platform | |
if platform.system() in ['Darwin', 'Windows']: | |
return func(*args, **kwargs) | |
if isinstance(args, list): | |
args = tuple(args) | |
if args is None: | |
args = () | |
if kwargs is None: | |
kwargs = {} | |
args = list(args) | |
args = [func] + args | |
args = tuple(args) | |
with ForkContext(args=args, kwargs=kwargs): | |
args = (None,) | |
kwargs = {} | |
with ProcessPoolExecutor(max_workers=1) as executor: | |
future = executor.submit(_traced_func, *args, **kwargs) | |
return future.result() | |
class ProgressParallel(Parallel): | |
def __init__(self, use_tqdm=True, total=None, *args, **kwargs): | |
self._use_tqdm = use_tqdm | |
self._total = total | |
super().__init__(*args, **kwargs) | |
def __call__(self, *args, **kwargs): | |
with tqdm(disable=not self._use_tqdm, total=self._total) as self._pbar: | |
return Parallel.__call__(self, *args, **kwargs) | |
def print_progress(self): | |
if self._total is None: | |
self._pbar.total = self.n_dispatched_tasks | |
self._pbar.n = self.n_completed_tasks | |
self._pbar.refresh() | |
def get_kwargs(func, exclude_names=None, **kwargs): | |
func_names = list(inspect.signature(func).parameters) | |
missing_kwargs = [x for x in func_names if x not in kwargs] | |
if exclude_names: | |
for k in exclude_names: | |
if k in missing_kwargs: | |
missing_kwargs.remove(k) | |
if k in func_names: | |
func_names.remove(k) | |
assert not missing_kwargs, "Missing %s" % missing_kwargs | |
kwargs = {k: v for k, v in kwargs.items() if k in func_names} | |
return kwargs | |
import pkg_resources | |
have_faiss = False | |
try: | |
assert pkg_resources.get_distribution('faiss') is not None | |
have_faiss = True | |
except (pkg_resources.DistributionNotFound, AssertionError): | |
pass | |
try: | |
assert pkg_resources.get_distribution('faiss_gpu') is not None | |
have_faiss = True | |
except (pkg_resources.DistributionNotFound, AssertionError): | |
pass | |
try: | |
assert pkg_resources.get_distribution('faiss_cpu') is not None | |
have_faiss = True | |
except (pkg_resources.DistributionNotFound, AssertionError): | |
pass | |
def hash_file(file): | |
try: | |
import hashlib | |
# BUF_SIZE is totally arbitrary, change for your app! | |
BUF_SIZE = 65536 # lets read stuff in 64kb chunks! | |
md5 = hashlib.md5() | |
# sha1 = hashlib.sha1() | |
with open(file, 'rb') as f: | |
while True: | |
data = f.read(BUF_SIZE) | |
if not data: | |
break | |
md5.update(data) | |
# sha1.update(data) | |
except BaseException as e: | |
print("Cannot hash %s due to %s" % (file, str(e))) | |
traceback.print_exc() | |
md5 = None | |
return md5.hexdigest() | |
def start_faulthandler(): | |
# If hit server or any subprocess with signal SIGUSR1, it'll print out all threads stack trace, but wont't quit or coredump | |
# If more than one fork tries to write at same time, then looks corrupted. | |
import faulthandler | |
# SIGUSR1 in h2oai/__init__.py as well | |
faulthandler.enable() | |
if hasattr(faulthandler, 'register'): | |
# windows/mac | |
import signal | |
faulthandler.register(signal.SIGUSR1) | |
def get_hf_server(inference_server): | |
inf_split = inference_server.split(" ") | |
assert len(inf_split) == 1 or len(inf_split) == 3 | |
inference_server = inf_split[0] | |
if len(inf_split) == 3: | |
headers = {"authorization": "%s %s" % (inf_split[1], inf_split[2])} | |
else: | |
headers = None | |
return inference_server, headers | |
class FakeTokenizer: | |
""" | |
1) For keeping track of model_max_length | |
2) For when model doesn't directly expose tokenizer but need to count tokens | |
""" | |
def __init__(self, model_max_length=2048, encoding_name="cl100k_base"): | |
# dont' push limit, since if using fake tokenizer, only estimate, and seen underestimates by order 250 | |
self.model_max_length = model_max_length - 250 | |
self.encoding_name = encoding_name | |
# The first time this runs, it will require an internet connection to download. Later runs won't need an internet connection. | |
import tiktoken | |
self.encoding = tiktoken.get_encoding(self.encoding_name) | |
def encode(self, x, *args, return_tensors="pt", **kwargs): | |
input_ids = self.encoding.encode(x, disallowed_special=()) | |
if return_tensors == 'pt' and isinstance(input_ids, list): | |
import torch | |
input_ids = torch.tensor(input_ids) | |
return dict(input_ids=input_ids) | |
def decode(self, x, *args, **kwargs): | |
# input is input_ids[0] form | |
return self.encoding.decode(x) | |
def num_tokens_from_string(self, prompt: str) -> int: | |
"""Returns the number of tokens in a text string.""" | |
num_tokens = len(self.encoding.encode(prompt)) | |
return num_tokens | |
def __call__(self, x, *args, **kwargs): | |
return self.encode(x, *args, **kwargs) | |
def get_local_ip(): | |
import socket | |
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) | |
try: | |
# doesn't even have to be reachable | |
s.connect(('10.255.255.255', 1)) | |
IP = s.getsockname()[0] | |
except Exception: | |
IP = '127.0.0.1' | |
finally: | |
s.close() | |
return IP | |
try: | |
assert pkg_resources.get_distribution('langchain') is not None | |
have_langchain = True | |
except (pkg_resources.DistributionNotFound, AssertionError): | |
have_langchain = False | |
import distutils.spawn | |
have_tesseract = distutils.spawn.find_executable("tesseract") | |
have_libreoffice = distutils.spawn.find_executable("libreoffice") | |
import pkg_resources | |
try: | |
assert pkg_resources.get_distribution('arxiv') is not None | |
assert pkg_resources.get_distribution('pymupdf') is not None | |
have_arxiv = True | |
except (pkg_resources.DistributionNotFound, AssertionError): | |
have_arxiv = False | |
try: | |
assert pkg_resources.get_distribution('pymupdf') is not None | |
have_pymupdf = True | |
except (pkg_resources.DistributionNotFound, AssertionError): | |
have_pymupdf = False | |
try: | |
assert pkg_resources.get_distribution('selenium') is not None | |
have_selenium = True | |
except (pkg_resources.DistributionNotFound, AssertionError): | |
have_selenium = False | |
try: | |
assert pkg_resources.get_distribution('playwright') is not None | |
have_playwright = True | |
except (pkg_resources.DistributionNotFound, AssertionError): | |
have_playwright = False | |
# disable, hangs too often | |
have_playwright = False | |
def set_openai(inference_server): | |
if inference_server.startswith('vllm'): | |
import openai_vllm | |
openai_vllm.api_key = "EMPTY" | |
inf_type = inference_server.split(':')[0] | |
ip_vllm = inference_server.split(':')[1] | |
port_vllm = inference_server.split(':')[2] | |
openai_vllm.api_base = f"http://{ip_vllm}:{port_vllm}/v1" | |
return openai_vllm, inf_type | |
else: | |
import openai | |
openai.api_key = os.getenv("OPENAI_API_KEY") | |
openai.api_base = os.environ.get("OPENAI_API_BASE", "https://api.openai.com/v1") | |
inf_type = inference_server | |
return openai, inf_type | |
visible_langchain_modes_file = 'visible_langchain_modes.pkl' | |
def save_collection_names(langchain_modes, visible_langchain_modes, langchain_mode_paths, LangChainMode, db1s): | |
""" | |
extra controls if UserData type of MyData type | |
""" | |
# use first default MyData hash as general user hash to maintain file | |
# if user moves MyData from langchain modes, db will still survive, so can still use hash | |
scratch_collection_names = list(db1s.keys()) | |
user_hash = db1s.get(LangChainMode.MY_DATA.value, '')[1] | |
llms = ['LLM', 'Disabled'] | |
scratch_langchain_modes = [x for x in langchain_modes if x in scratch_collection_names] | |
scratch_visible_langchain_modes = [x for x in visible_langchain_modes if x in scratch_collection_names] | |
scratch_langchain_mode_paths = {k: v for k, v in langchain_mode_paths.items() if | |
k in scratch_collection_names and k not in llms} | |
user_langchain_modes = [x for x in langchain_modes if x not in scratch_collection_names] | |
user_visible_langchain_modes = [x for x in visible_langchain_modes if x not in scratch_collection_names] | |
user_langchain_mode_paths = {k: v for k, v in langchain_mode_paths.items() if | |
k not in scratch_collection_names and k not in llms} | |
base_path = 'locks' | |
makedirs(base_path) | |
# user | |
extra = '' | |
file = "%s%s" % (visible_langchain_modes_file, extra) | |
with filelock.FileLock(os.path.join(base_path, "%s.lock" % file)): | |
with open(file, 'wb') as f: | |
pickle.dump((user_langchain_modes, user_visible_langchain_modes, user_langchain_mode_paths), f) | |
# scratch | |
extra = user_hash | |
file = "%s%s" % (visible_langchain_modes_file, extra) | |
with filelock.FileLock(os.path.join(base_path, "%s.lock" % file)): | |
with open(file, 'wb') as f: | |
pickle.dump((scratch_langchain_modes, scratch_visible_langchain_modes, scratch_langchain_mode_paths), f) | |
def load_collection_enum(extra): | |
""" | |
extra controls if UserData type of MyData type | |
""" | |
file = "%s%s" % (visible_langchain_modes_file, extra) | |
langchain_modes_from_file = [] | |
visible_langchain_modes_from_file = [] | |
langchain_mode_paths_from_file = {} | |
if os.path.isfile(visible_langchain_modes_file): | |
try: | |
with filelock.FileLock("%s.lock" % file): | |
with open(file, 'rb') as f: | |
langchain_modes_from_file, visible_langchain_modes_from_file, langchain_mode_paths_from_file = pickle.load( | |
f) | |
except BaseException as e: | |
print("Cannot load %s, ignoring error: %s" % (file, str(e)), flush=True) | |
for k, v in langchain_mode_paths_from_file.items(): | |
if v is not None and not os.path.isdir(v) and isinstance(v, str): | |
# assume was deleted, but need to make again to avoid extra code elsewhere | |
makedirs(v) | |
return langchain_modes_from_file, visible_langchain_modes_from_file, langchain_mode_paths_from_file | |
def remove_collection_enum(): | |
remove(visible_langchain_modes_file) | |