Spaces:
Runtime error
Runtime error
import os | |
import ast | |
import time | |
from enums import PromptType # also supports imports from this file from other files | |
non_hf_types = ['gpt4all_llama', 'llama', 'gptj'] | |
prompt_type_to_model_name = { | |
'plain': [ | |
'EleutherAI/gpt-j-6B', | |
'EleutherAI/pythia-6.9b', | |
'EleutherAI/pythia-12b', | |
'EleutherAI/pythia-12b-deduped', | |
'EleutherAI/gpt-neox-20b', | |
'openlm-research/open_llama_7b_700bt_preview', | |
'decapoda-research/llama-7b-hf', | |
'decapoda-research/llama-13b-hf', | |
'decapoda-research/llama-30b-hf', | |
'decapoda-research/llama-65b-hf', | |
'facebook/mbart-large-50-many-to-many-mmt', | |
'philschmid/bart-large-cnn-samsum', | |
'philschmid/flan-t5-base-samsum', | |
'gpt2', | |
'distilgpt2', | |
'mosaicml/mpt-7b-storywriter', | |
], | |
'gptj': ['gptj', 'gpt4all_llama'], | |
'prompt_answer': [ | |
'h2oai/h2ogpt-gm-oasst1-en-1024-20b', | |
'h2oai/h2ogpt-gm-oasst1-en-1024-12b', | |
'h2oai/h2ogpt-gm-oasst1-multilang-1024-20b', | |
'h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b', | |
'h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b-v2', | |
'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3', | |
'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b', | |
'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2', | |
'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1', | |
'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v2', | |
'h2oai/h2ogpt-gm-oasst1-en-xgen-7b-8k', | |
'h2oai/h2ogpt-gm-oasst1-multilang-xgen-7b-8k', | |
'TheBloke/h2ogpt-gm-oasst1-en-2048-falcon-40b-v2-GPTQ', | |
], | |
'prompt_answer_openllama': [ | |
'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt', | |
'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2', | |
'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-700bt', | |
'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b', | |
'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-13b', | |
], | |
'instruct': ['TheBloke/llama-30b-supercot-SuperHOT-8K-fp16'], # https://huggingface.co/TheBloke/llama-30b-supercot-SuperHOT-8K-fp16#prompting | |
'instruct_with_end': ['databricks/dolly-v2-12b'], | |
'quality': [], | |
'human_bot': [ | |
'h2oai/h2ogpt-oasst1-512-12b', | |
'h2oai/h2ogpt-oasst1-512-20b', | |
'h2oai/h2ogpt-oig-oasst1-256-6_9b', | |
'h2oai/h2ogpt-oig-oasst1-512-6_9b', | |
'h2oai/h2ogpt-oig-oasst1-256-6.9b', # legacy | |
'h2oai/h2ogpt-oig-oasst1-512-6.9b', # legacy | |
'h2oai/h2ogpt-research-oasst1-512-30b', | |
'h2oai/h2ogpt-research-oasst1-llama-65b', | |
'h2oai/h2ogpt-oasst1-falcon-40b', | |
'h2oai/h2ogpt-oig-oasst1-falcon-40b', | |
], | |
'dai_faq': [], | |
'summarize': [], | |
'simple_instruct': ['t5-small', 't5-large', 'google/flan-t5', 'google/flan-t5-xxl', 'google/flan-ul2'], | |
'instruct_vicuna': ['AlekseyKorshuk/vicuna-7b', 'TheBloke/stable-vicuna-13B-HF', 'junelee/wizard-vicuna-13b'], | |
'human_bot_orig': ['togethercomputer/GPT-NeoXT-Chat-Base-20B'], | |
"open_assistant": ['OpenAssistant/oasst-sft-7-llama-30b-xor', 'oasst-sft-7-llama-30b'], | |
"wizard_lm": ['ehartford/WizardLM-7B-Uncensored', 'ehartford/WizardLM-13B-Uncensored'], | |
"wizard_mega": ['openaccess-ai-collective/wizard-mega-13b'], | |
"instruct_simple": ['JosephusCheung/Guanaco'], | |
"wizard_vicuna": ['ehartford/Wizard-Vicuna-13B-Uncensored'], | |
"wizard2": ['llama'], | |
"mptinstruct": ['mosaicml/mpt-30b-instruct', 'mosaicml/mpt-7b-instruct', 'mosaicml/mpt-30b-instruct'], | |
"mptchat": ['mosaicml/mpt-7b-chat', 'mosaicml/mpt-30b-chat', 'TheBloke/mpt-30B-chat-GGML'], | |
"vicuna11": ['lmsys/vicuna-33b-v1.3'], | |
"falcon": ['tiiuae/falcon-40b-instruct', 'tiiuae/falcon-40b', 'tiiuae/falcon-7b-instruct', 'tiiuae/falcon-7b'], | |
# could be plain, but default is correct prompt_type for default TheBloke model ggml-wizardLM-7B.q4_2.bin | |
} | |
if os.getenv('OPENAI_API_KEY'): | |
prompt_type_to_model_name.update({ | |
"openai": ["text-davinci-003", "text-curie-001", "text-babbage-001", "text-ada-001"], | |
"openai_chat": ["gpt-3.5-turbo", "gpt-3.5-turbo-16k"], | |
}) | |
inv_prompt_type_to_model_name = {v.strip(): k for k, l in prompt_type_to_model_name.items() for v in l} | |
inv_prompt_type_to_model_lower = {v.strip().lower(): k for k, l in prompt_type_to_model_name.items() for v in l} | |
prompt_types_strings = [] | |
for p in PromptType: | |
prompt_types_strings.extend([p.name]) | |
prompt_types = [] | |
for p in PromptType: | |
prompt_types.extend([p.name, p.value, str(p.value)]) | |
def get_prompt(prompt_type, prompt_dict, chat, context, reduced, making_context, return_dict=False): | |
prompt_dict_error = '' | |
generates_leading_space = False | |
if prompt_type == PromptType.custom.name and not isinstance(prompt_dict, dict): | |
try: | |
prompt_dict = ast.literal_eval(prompt_dict) | |
except BaseException as e: | |
prompt_dict_error = str(e) | |
if prompt_dict_error: | |
promptA = None | |
promptB = None | |
PreInstruct = None | |
PreInput = '' | |
PreResponse = '' | |
terminate_response = None | |
chat_sep = '' | |
chat_turn_sep = '' | |
humanstr = '' | |
botstr = '' | |
generates_leading_space = False | |
elif prompt_type in [PromptType.custom.value, str(PromptType.custom.value), | |
PromptType.custom.name]: | |
promptA = prompt_dict.get('promptA', '') | |
promptB = prompt_dict.get('promptB', '') | |
PreInstruct = prompt_dict.get('PreInstruct', '') | |
PreInput = prompt_dict.get('PreInput', '') | |
PreResponse = prompt_dict.get('PreResponse', '') | |
terminate_response = prompt_dict.get('terminate_response', None) | |
chat_sep = prompt_dict.get('chat_sep', '\n') | |
chat_turn_sep = prompt_dict.get('chat_turn_sep', '\n') | |
humanstr = prompt_dict.get('humanstr', '') | |
botstr = prompt_dict.get('botstr', '') | |
elif prompt_type in [PromptType.plain.value, str(PromptType.plain.value), | |
PromptType.plain.name]: | |
promptA = promptB = PreInstruct = PreInput = PreResponse = None | |
terminate_response = [] | |
chat_turn_sep = chat_sep = '' | |
# plain should have None for human/bot, so nothing truncated out, not '' that would truncate after first token | |
humanstr = None | |
botstr = None | |
elif prompt_type == 'simple_instruct': | |
promptA = promptB = PreInstruct = PreInput = PreResponse = None | |
terminate_response = [] | |
chat_turn_sep = chat_sep = '\n' | |
humanstr = None | |
botstr = None | |
elif prompt_type in [PromptType.instruct.value, str(PromptType.instruct.value), | |
PromptType.instruct.name] + [PromptType.instruct_with_end.value, | |
str(PromptType.instruct_with_end.value), | |
PromptType.instruct_with_end.name]: | |
promptA = 'Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n' if not ( | |
chat and reduced) else '' | |
promptB = 'Below is an instruction that describes a task. Write a response that appropriately completes the request.\n' if not ( | |
chat and reduced) else '' | |
PreInstruct = """ | |
### Instruction: | |
""" | |
PreInput = """ | |
### Input: | |
""" | |
PreResponse = """ | |
### Response: | |
""" | |
if prompt_type in [PromptType.instruct_with_end.value, str(PromptType.instruct_with_end.value), | |
PromptType.instruct_with_end.name]: | |
terminate_response = ['### End'] | |
else: | |
terminate_response = None | |
chat_turn_sep = chat_sep = '\n' | |
humanstr = PreInstruct | |
botstr = PreResponse | |
elif prompt_type in [PromptType.quality.value, str(PromptType.quality.value), | |
PromptType.quality.name]: | |
promptA = 'Write a detailed high-quality, accurate, fair, Response with about 100 words by following the Instruction as applied on the Input.\n' if not ( | |
chat and reduced) else '' | |
promptB = 'Write a detailed high-quality, accurate, fair, Response with about 100 words by following the Instruction.\n' if not ( | |
chat and reduced) else '' | |
PreInstruct = """ | |
### Instruction: | |
""" | |
PreInput = """ | |
### Input: | |
""" | |
PreResponse = """ | |
### Response: | |
""" | |
terminate_response = None | |
chat_turn_sep = chat_sep = '\n' | |
humanstr = PreInstruct # first thing human says | |
botstr = PreResponse # first thing bot says | |
elif prompt_type in [PromptType.human_bot.value, str(PromptType.human_bot.value), | |
PromptType.human_bot.name] + [PromptType.human_bot_orig.value, | |
str(PromptType.human_bot_orig.value), | |
PromptType.human_bot_orig.name]: | |
human = '<human>:' | |
bot = "<bot>:" | |
if reduced or context or prompt_type in [PromptType.human_bot.value, str(PromptType.human_bot.value), | |
PromptType.human_bot.name]: | |
preprompt = '' | |
else: | |
cur_date = time.strftime('%Y-%m-%d') | |
cur_time = time.strftime('%H:%M:%S %p %Z') | |
PRE_PROMPT = """\ | |
Current Date: {} | |
Current Time: {} | |
""" | |
preprompt = PRE_PROMPT.format(cur_date, cur_time) | |
start = '' | |
promptB = promptA = '%s%s' % (preprompt, start) | |
PreInstruct = human + ' ' | |
PreInput = None | |
if making_context: | |
# when making context, want it to appear as-if LLM generated, which starts with space after : | |
PreResponse = bot + ' ' | |
else: | |
# normally LLM adds space after this, because was how trained. | |
# if add space here, non-unique tokenization will often make LLM produce wrong output | |
PreResponse = bot | |
terminate_response = ['\n' + human, '\n' + bot, human, bot, PreResponse] | |
chat_turn_sep = chat_sep = '\n' | |
humanstr = human # tag before human talks | |
botstr = bot # tag before bot talks | |
generates_leading_space = True | |
elif prompt_type in [PromptType.dai_faq.value, str(PromptType.dai_faq.value), | |
PromptType.dai_faq.name]: | |
promptA = '' | |
promptB = 'Answer the following Driverless AI question.\n' | |
PreInstruct = """ | |
### Driverless AI frequently asked question: | |
""" | |
PreInput = None | |
PreResponse = """ | |
### Driverless AI documentation answer: | |
""" | |
terminate_response = ['\n\n'] | |
chat_turn_sep = chat_sep = terminate_response | |
humanstr = PreInstruct | |
botstr = PreResponse | |
elif prompt_type in [PromptType.summarize.value, str(PromptType.summarize.value), | |
PromptType.summarize.name]: | |
promptA = promptB = PreInput = '' | |
PreInstruct = '## Main Text\n\n' | |
PreResponse = '\n\n## Summary\n\n' | |
terminate_response = None | |
chat_turn_sep = chat_sep = '\n' | |
humanstr = PreInstruct | |
botstr = PreResponse | |
elif prompt_type in [PromptType.instruct_vicuna.value, str(PromptType.instruct_vicuna.value), | |
PromptType.instruct_vicuna.name]: | |
promptA = promptB = "A chat between a curious human and an artificial intelligence assistant. " \ | |
"The assistant gives helpful, detailed, and polite answers to the human's questions." if not ( | |
chat and reduced) else '' | |
PreInstruct = """ | |
### Human: | |
""" | |
PreInput = None | |
PreResponse = """ | |
### Assistant: | |
""" | |
terminate_response = [ | |
'### Human:'] # but only allow terminate after prompt is found correctly, else can't terminate | |
chat_turn_sep = chat_sep = '\n' | |
humanstr = PreInstruct | |
botstr = PreResponse | |
elif prompt_type in [PromptType.prompt_answer.value, str(PromptType.prompt_answer.value), | |
PromptType.prompt_answer.name]: | |
preprompt = '' | |
prompt_tokens = "<|prompt|>" | |
answer_tokens = "<|answer|>" | |
start = '' | |
promptB = promptA = '%s%s' % (preprompt, start) | |
PreInstruct = prompt_tokens | |
PreInput = None | |
PreResponse = answer_tokens | |
eos = '<|endoftext|>' # neox eos | |
humanstr = prompt_tokens | |
botstr = answer_tokens | |
terminate_response = [humanstr, PreResponse, eos] | |
chat_sep = eos | |
chat_turn_sep = eos | |
elif prompt_type in [PromptType.prompt_answer_openllama.value, str(PromptType.prompt_answer_openllama.value), | |
PromptType.prompt_answer_openllama.name]: | |
preprompt = '' | |
prompt_tokens = "<|prompt|>" | |
answer_tokens = "<|answer|>" | |
start = '' | |
promptB = promptA = '%s%s' % (preprompt, start) | |
PreInstruct = prompt_tokens | |
PreInput = None | |
PreResponse = answer_tokens | |
eos = '</s>' # llama eos | |
humanstr = prompt_tokens | |
botstr = answer_tokens | |
terminate_response = [humanstr, PreResponse, eos] | |
chat_sep = eos | |
chat_turn_sep = eos | |
elif prompt_type in [PromptType.open_assistant.value, str(PromptType.open_assistant.value), | |
PromptType.open_assistant.name]: | |
# From added_tokens.json | |
preprompt = '' | |
prompt_tokens = "<|prompter|>" | |
answer_tokens = "<|assistant|>" | |
start = '' | |
promptB = promptA = '%s%s' % (preprompt, start) | |
PreInstruct = prompt_tokens | |
PreInput = None | |
PreResponse = answer_tokens | |
pend = "<|prefix_end|>" | |
eos = "</s>" | |
humanstr = prompt_tokens | |
botstr = answer_tokens | |
terminate_response = [humanstr, PreResponse, pend, eos] | |
chat_turn_sep = chat_sep = eos | |
elif prompt_type in [PromptType.wizard_lm.value, str(PromptType.wizard_lm.value), | |
PromptType.wizard_lm.name]: | |
# https://github.com/ehartford/WizardLM/blob/main/src/train_freeform.py | |
preprompt = '' | |
start = '' | |
promptB = promptA = '%s%s' % (preprompt, start) | |
PreInstruct = "" | |
PreInput = None | |
PreResponse = "\n\n### Response\n" | |
eos = "</s>" | |
terminate_response = [PreResponse, eos] | |
chat_turn_sep = chat_sep = eos | |
humanstr = promptA | |
botstr = PreResponse | |
elif prompt_type in [PromptType.wizard_mega.value, str(PromptType.wizard_mega.value), | |
PromptType.wizard_mega.name]: | |
preprompt = '' | |
start = '' | |
promptB = promptA = '%s%s' % (preprompt, start) | |
PreInstruct = """ | |
### Instruction: | |
""" | |
PreInput = None | |
PreResponse = """ | |
### Assistant: | |
""" | |
terminate_response = [PreResponse] | |
chat_turn_sep = chat_sep = '\n' | |
humanstr = PreInstruct | |
botstr = PreResponse | |
elif prompt_type in [PromptType.instruct_vicuna2.value, str(PromptType.instruct_vicuna2.value), | |
PromptType.instruct_vicuna2.name]: | |
promptA = promptB = "" if not (chat and reduced) else '' | |
PreInstruct = """ | |
HUMAN: | |
""" | |
PreInput = None | |
PreResponse = """ | |
ASSISTANT: | |
""" | |
terminate_response = [ | |
'HUMAN:'] # but only allow terminate after prompt is found correctly, else can't terminate | |
chat_turn_sep = chat_sep = '\n' | |
humanstr = PreInstruct | |
botstr = PreResponse | |
elif prompt_type in [PromptType.instruct_vicuna3.value, str(PromptType.instruct_vicuna3.value), | |
PromptType.instruct_vicuna3.name]: | |
promptA = promptB = "" if not (chat and reduced) else '' | |
PreInstruct = """ | |
### User: | |
""" | |
PreInput = None | |
PreResponse = """ | |
### Assistant: | |
""" | |
terminate_response = [ | |
'### User:'] # but only allow terminate after prompt is found correctly, else can't terminate | |
chat_turn_sep = chat_sep = '\n' | |
humanstr = PreInstruct | |
botstr = PreResponse | |
elif prompt_type in [PromptType.wizard2.value, str(PromptType.wizard2.value), | |
PromptType.wizard2.name]: | |
# https://huggingface.co/TheBloke/WizardLM-7B-uncensored-GGML | |
preprompt = """Below is an instruction that describes a task. Write a response that appropriately completes the request.""" if not ( | |
chat and reduced) else '' | |
start = '' | |
promptB = promptA = '%s%s' % (preprompt, start) | |
PreInstruct = """ | |
### Instruction: | |
""" | |
PreInput = None | |
PreResponse = """ | |
### Response: | |
""" | |
terminate_response = [PreResponse] | |
chat_turn_sep = chat_sep = '\n' | |
humanstr = PreInstruct | |
botstr = PreResponse | |
elif prompt_type in [PromptType.wizard3.value, str(PromptType.wizard3.value), | |
PromptType.wizard3.name]: | |
# https://huggingface.co/TheBloke/wizardLM-13B-1.0-GGML | |
preprompt = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.""" if not ( | |
chat and reduced) else '' | |
start = '' | |
promptB = promptA = '%s%s' % (preprompt, start) | |
PreInstruct = """USER: """ | |
PreInput = None | |
PreResponse = """ASSISTANT: """ | |
terminate_response = [PreResponse] | |
chat_turn_sep = chat_sep = '\n' | |
humanstr = PreInstruct | |
botstr = PreResponse | |
elif prompt_type in [PromptType.wizard_vicuna.value, str(PromptType.wizard_vicuna.value), | |
PromptType.wizard_vicuna.name]: | |
preprompt = '' | |
start = '' | |
promptB = promptA = '%s%s' % (preprompt, start) | |
PreInstruct = """USER: """ | |
PreInput = None | |
PreResponse = """ASSISTANT: """ | |
terminate_response = [PreResponse] | |
chat_turn_sep = chat_sep = '\n' | |
humanstr = PreInstruct | |
botstr = PreResponse | |
elif prompt_type in [PromptType.instruct_simple.value, str(PromptType.instruct_simple.value), | |
PromptType.instruct_simple.name]: | |
promptB = promptA = '' if not (chat and reduced) else '' | |
PreInstruct = """ | |
### Instruction: | |
""" | |
PreInput = """ | |
### Input: | |
""" | |
PreResponse = """ | |
### Response: | |
""" | |
terminate_response = None | |
chat_turn_sep = chat_sep = '\n' | |
humanstr = PreInstruct | |
botstr = PreResponse | |
elif prompt_type in [PromptType.openai.value, str(PromptType.openai.value), | |
PromptType.openai.name]: | |
preprompt = """The following is a conversation with an AI assistant. The assistant is helpful, creative, clever, and very friendly.""" if not ( | |
chat and reduced) else '' | |
start = '' | |
promptB = promptA = '%s%s' % (preprompt, start) | |
PreInstruct = "\nHuman: " | |
PreInput = None | |
PreResponse = "\nAI:" | |
terminate_response = [PreResponse] + [" Human:", " AI:"] | |
chat_turn_sep = chat_sep = '\n' | |
humanstr = PreInstruct | |
botstr = PreResponse | |
elif prompt_type in [PromptType.gptj.value, str(PromptType.gptj.value), | |
PromptType.gptj.name]: | |
preprompt = "### Instruction:\n The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response." if not ( | |
chat and reduced) else '' | |
start = '' | |
promptB = promptA = '%s%s' % (preprompt, start) | |
PreInstruct = "\n### Prompt: " | |
PreInput = None | |
PreResponse = "\n### Response: " | |
terminate_response = [PreResponse] + ["Prompt:", "Response:"] | |
chat_turn_sep = chat_sep = '\n' | |
humanstr = PreInstruct | |
botstr = PreResponse | |
elif prompt_type in [PromptType.openai_chat.value, str(PromptType.openai_chat.value), | |
PromptType.openai_chat.name]: | |
# prompting and termination all handled by endpoint | |
preprompt = """""" | |
start = '' | |
promptB = promptA = '%s%s' % (preprompt, start) | |
PreInstruct = "" | |
PreInput = None | |
PreResponse = "" | |
terminate_response = [] | |
chat_turn_sep = chat_sep = '\n' | |
humanstr = None | |
botstr = None | |
elif prompt_type in [PromptType.vicuna11.value, str(PromptType.vicuna11.value), | |
PromptType.vicuna11.name]: | |
preprompt = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. """ if not ( | |
chat and reduced) else '' | |
start = '' | |
promptB = promptA = '%s%s' % (preprompt, start) | |
eos = '</s>' | |
PreInstruct = """USER: """ | |
PreInput = None | |
PreResponse = """ASSISTANT:""" | |
terminate_response = [PreResponse] | |
chat_sep = ' ' | |
chat_turn_sep = eos | |
humanstr = PreInstruct | |
botstr = PreResponse | |
if making_context: | |
# when making context, want it to appear as-if LLM generated, which starts with space after : | |
PreResponse = PreResponse + ' ' | |
else: | |
# normally LLM adds space after this, because was how trained. | |
# if add space here, non-unique tokenization will often make LLM produce wrong output | |
PreResponse = PreResponse | |
elif prompt_type in [PromptType.mptinstruct.value, str(PromptType.mptinstruct.value), | |
PromptType.mptinstruct.name]: | |
# https://huggingface.co/mosaicml/mpt-30b-instruct#formatting | |
promptA = promptB = 'Below is an instruction that describes a task. Write a response that appropriately completes the request.\n' if not ( | |
chat and reduced) else '' | |
PreInstruct = """ | |
### Instruction | |
""" | |
PreInput = """ | |
### Input | |
""" | |
PreResponse = """ | |
### Response | |
""" | |
terminate_response = None | |
chat_turn_sep = chat_sep = '\n' | |
humanstr = PreInstruct | |
botstr = PreResponse | |
elif prompt_type in [PromptType.mptchat.value, str(PromptType.mptchat.value), | |
PromptType.mptchat.name]: | |
# https://huggingface.co/TheBloke/mpt-30B-chat-GGML#prompt-template | |
promptA = promptB = """<|im_start|>system\nA conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.\n<|im_end|>""" if not ( | |
chat and reduced) else '' | |
PreInstruct = """<|im_start|>user | |
""" | |
PreInput = None | |
PreResponse = """<|im_end|><|im_start|>assistant | |
""" | |
terminate_response = ['<|im_end|>'] | |
chat_sep = '' | |
chat_turn_sep = '<|im_end|>' | |
humanstr = PreInstruct | |
botstr = PreResponse | |
elif prompt_type in [PromptType.falcon.value, str(PromptType.falcon.value), | |
PromptType.falcon.name]: | |
promptA = promptB = "" if not (chat and reduced) else '' | |
PreInstruct = """User: """ | |
PreInput = None | |
PreResponse = """Assistant:""" | |
terminate_response = ['\nUser', "<|endoftext|>"] | |
chat_sep = '\n\n' | |
chat_turn_sep = '\n\n' | |
humanstr = PreInstruct | |
botstr = PreResponse | |
if making_context: | |
# when making context, want it to appear as-if LLM generated, which starts with space after : | |
PreResponse = 'Assistant: ' | |
else: | |
# normally LLM adds space after this, because was how trained. | |
# if add space here, non-unique tokenization will often make LLM produce wrong output | |
PreResponse = PreResponse | |
# generates_leading_space = True | |
else: | |
raise RuntimeError("No such prompt_type=%s" % prompt_type) | |
if isinstance(terminate_response, (tuple, list)): | |
assert '' not in terminate_response, "Bad terminate_response" | |
ret_dict = dict(promptA=promptA, promptB=promptB, PreInstruct=PreInstruct, PreInput=PreInput, | |
PreResponse=PreResponse, terminate_response=terminate_response, chat_sep=chat_sep, | |
chat_turn_sep=chat_turn_sep, | |
humanstr=humanstr, botstr=botstr, | |
generates_leading_space=generates_leading_space) | |
if return_dict: | |
return ret_dict, prompt_dict_error | |
else: | |
return tuple(list(ret_dict.values())) | |
def generate_prompt(data_point, prompt_type, prompt_dict, chat, reduced, making_context): | |
context = data_point.get('context') | |
if context is None: | |
context = '' | |
instruction = data_point.get('instruction') | |
input = data_point.get('input') | |
output = data_point.get('output') | |
prompt_type = data_point.get('prompt_type', prompt_type) | |
prompt_dict = data_point.get('prompt_dict', prompt_dict) | |
assert prompt_type in prompt_types, "Bad prompt type: %s" % prompt_type | |
promptA, promptB, PreInstruct, PreInput, PreResponse, \ | |
terminate_response, chat_sep, chat_turn_sep, humanstr, botstr, \ | |
generates_leading_space = get_prompt(prompt_type, prompt_dict, chat, | |
context, reduced, making_context) | |
# could avoid if reduce=True, but too complex for parent functions to handle | |
prompt = context | |
if input and promptA: | |
prompt += f"""{promptA}""" | |
elif promptB: | |
prompt += f"""{promptB}""" | |
if instruction and PreInstruct is not None and input and PreInput is not None: | |
prompt += f"""{PreInstruct}{instruction}{PreInput}{input}""" | |
prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep) | |
elif instruction and input and PreInstruct is None and PreInput is not None: | |
prompt += f"""{PreInput}{instruction} | |
{input}""" | |
prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep) | |
elif input and instruction and PreInput is None and PreInstruct is not None: | |
prompt += f"""{PreInstruct}{instruction} | |
{input}""" | |
prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep) | |
elif instruction and PreInstruct is not None: | |
prompt += f"""{PreInstruct}{instruction}""" | |
prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep) | |
elif input and PreInput is not None: | |
prompt += f"""{PreInput}{input}""" | |
prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep) | |
elif input and instruction and PreInput is not None: | |
prompt += f"""{PreInput}{instruction}{input}""" | |
prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep) | |
elif input and instruction and PreInstruct is not None: | |
prompt += f"""{PreInstruct}{instruction}{input}""" | |
prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep) | |
elif input and instruction: | |
# i.e. for simple_instruct | |
prompt += f"""{instruction}: {input}""" | |
prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep) | |
elif input: | |
prompt += f"""{input}""" | |
prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep) | |
elif instruction: | |
prompt += f"""{instruction}""" | |
prompt = inject_chatsep(prompt_type, prompt, chat_sep=chat_sep) | |
if PreResponse is not None: | |
prompt += f"""{PreResponse}""" | |
pre_response = PreResponse # Don't use strip | |
else: | |
pre_response = '' | |
if output: | |
prompt += f"""{output}""" | |
return prompt, pre_response, terminate_response, chat_sep, chat_turn_sep | |
def inject_chatsep(prompt_type, prompt, chat_sep=None): | |
if chat_sep: | |
# only add new line if structured prompt, while 'plain' is just generation of next tokens from input | |
prompt += chat_sep | |
return prompt | |
class Prompter(object): | |
def __init__(self, prompt_type, prompt_dict, debug=False, chat=False, stream_output=False, repeat_penalty=True, | |
allowed_repeat_line_length=10): | |
self.prompt_type = prompt_type | |
self.prompt_dict = prompt_dict | |
self.debug = debug | |
self.chat = chat | |
self.stream_output = stream_output | |
self.repeat_penalty = repeat_penalty | |
self.allowed_repeat_line_length = allowed_repeat_line_length | |
self.prompt = None | |
context = "" # not for chat context | |
reduced = False # not for chat context | |
making_context = False # not for chat context | |
self.promptA, self.promptB, self.PreInstruct, self.PreInput, self.PreResponse, \ | |
self.terminate_response, self.chat_sep, self.chat_turn_sep, self.humanstr, self.botstr, \ | |
self.generates_leading_space = \ | |
get_prompt(self.prompt_type, self.prompt_dict, chat, context, reduced, making_context) | |
self.pre_response = self.PreResponse | |
def generate_prompt(self, data_point, reduced=None): | |
""" | |
data_point['context'] is assumed to be like a system prompt or pre-conversation, not inserted after user prompt | |
:param data_point: | |
:param reduced: | |
:return: | |
""" | |
reduced = data_point.get('context') not in ['', None] if reduced is None else reduced | |
making_context = False # whether really making final prompt or just generating context | |
prompt, _, _, _, _ = generate_prompt(data_point, self.prompt_type, self.prompt_dict, self.chat, reduced, | |
making_context) | |
if self.debug: | |
print("prompt: %s" % prompt, flush=True) | |
# if have context, should have always reduced and only preappend promptA/B here | |
if data_point.get('context'): | |
if data_point.get('input') and self.promptA: | |
prompt = self.promptA + prompt | |
elif self.promptB: | |
prompt = self.promptB + prompt | |
self.prompt = prompt | |
return prompt | |
def get_response(self, outputs, prompt=None, sanitize_bot_response=False): | |
if isinstance(outputs, str): | |
outputs = [outputs] | |
if self.debug: | |
print("output:\n%s" % '\n\n'.join(outputs), flush=True) | |
if prompt is not None: | |
self.prompt = prompt | |
def clean_response(response): | |
meaningless_words = ['<pad>', '</s>', '<|endoftext|>'] | |
for word in meaningless_words: | |
response = response.replace(word, "") | |
if sanitize_bot_response: | |
from better_profanity import profanity | |
response = profanity.censor(response) | |
if self.generates_leading_space and isinstance(response, str) and len(response) > 0 and response[0] == ' ': | |
response = response[1:] | |
return response | |
def clean_repeats(response): | |
lines = response.split('\n') | |
new_lines = [] | |
[new_lines.append(line) for line in lines if | |
line not in new_lines or len(line) < self.allowed_repeat_line_length] | |
if self.debug and len(lines) != len(new_lines): | |
print("cleaned repeats: %s %s" % (len(lines), len(new_lines)), flush=True) | |
response = '\n'.join(new_lines) | |
return response | |
multi_output = len(outputs) > 1 | |
for oi, output in enumerate(outputs): | |
if self.prompt_type in [PromptType.plain.value, str(PromptType.plain.value), PromptType.plain.name]: | |
output = clean_response(output) | |
elif prompt is None: | |
# then use most basic parsing like pipeline | |
if not self.botstr: | |
pass | |
elif self.botstr in output: | |
if self.humanstr: | |
output = clean_response(output.split(self.botstr)[1].split(self.humanstr)[0]) | |
else: | |
# i.e. use after bot but only up to next bot | |
output = clean_response(output.split(self.botstr)[1].split(self.botstr)[0]) | |
else: | |
# output = clean_response(output) | |
# assume just not printed yet | |
output = "" | |
else: | |
# find first instance of prereponse | |
# prompt sometimes has odd characters, that mutate length, | |
# so can't go by length alone | |
if self.pre_response: | |
outputi = output.find(prompt) | |
if outputi >= 0: | |
output = output[outputi + len(prompt):] | |
allow_terminate = True | |
else: | |
# subtraction is risky due to space offsets sometimes, so only do if necessary | |
output = output[len(prompt) - len(self.pre_response):] | |
# [1] to avoid repeated pre_response, just take first (after prompt - pre_response for chat) | |
if self.pre_response in output: | |
output = output.split(self.pre_response)[1] | |
allow_terminate = True | |
else: | |
if output: | |
print("Failure of parsing or not enough output yet: %s" % output, flush=True) | |
allow_terminate = False | |
else: | |
allow_terminate = True | |
output = output[len(prompt):] | |
# clean after subtract prompt out, so correct removal of pre_response | |
output = clean_response(output) | |
if self.repeat_penalty: | |
output = clean_repeats(output) | |
if self.terminate_response and allow_terminate: | |
finds = [] | |
for term in self.terminate_response: | |
finds.append(output.find(term)) | |
finds = [x for x in finds if x >= 0] | |
if len(finds) > 0: | |
termi = finds[0] | |
output = output[:termi] | |
else: | |
output = output | |
if multi_output: | |
# prefix with output counter | |
output = "\n=========== Output %d\n\n" % (1 + oi) + output | |
if oi > 0: | |
# post fix outputs with seperator | |
output += '\n' | |
outputs[oi] = output | |
# join all outputs, only one extra new line between outputs | |
output = '\n'.join(outputs) | |
if self.debug: | |
print("outputclean:\n%s" % '\n\n'.join(outputs), flush=True) | |
return output | |