Spaces:
Runtime error
Runtime error
import ast | |
import copy | |
import functools | |
import inspect | |
import queue | |
import sys | |
import os | |
import time | |
import traceback | |
import typing | |
import warnings | |
from datetime import datetime | |
import requests | |
from requests import ConnectTimeout, JSONDecodeError | |
from urllib3.exceptions import ConnectTimeoutError, MaxRetryError, ConnectionError | |
from requests.exceptions import ConnectionError as ConnectionError2 | |
from requests.exceptions import ReadTimeout as ReadTimeout2 | |
if os.path.dirname(os.path.abspath(__file__)) not in sys.path: | |
sys.path.append(os.path.dirname(os.path.abspath(__file__))) | |
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1' | |
os.environ['BITSANDBYTES_NOWELCOME'] = '1' | |
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated') | |
# more is not useful typically, don't let these go beyond limits and eat up resources | |
max_cores = max(1, os.cpu_count() // 2) | |
if os.getenv('NUMEXPR_MAX_THREADS') is None: | |
os.environ['NUMEXPR_MAX_THREADS'] = str(min(8, max_cores)) | |
if os.getenv('NUMEXPR_NUM_THREADS') is None: | |
os.environ['NUMEXPR_NUM_THREADS'] = str(min(8, max_cores)) | |
if os.getenv('OMP_NUM_THREADS') is None: | |
os.environ['OMP_NUM_THREADS'] = str(min(8, max_cores)) | |
if os.getenv('OPENBLAS_NUM_THREADS') is None: | |
os.environ['OPENBLAS_NUM_THREADS'] = str(min(8, max_cores)) | |
if os.getenv('DUCKDB_NUM_THREADS') is None: | |
os.environ['DUCKDB_NUM_THREADS'] = str(min(4, max_cores)) | |
if os.getenv('RAYON_RS_NUM_CPUS') is None: | |
os.environ['RAYON_RS_NUM_CPUS'] = str(min(8, max_cores)) | |
if os.getenv('RAYON_NUM_THREADS') is None: | |
os.environ['RAYON_NUM_THREADS'] = str(min(8, max_cores)) | |
import numpy as np | |
from evaluate_params import eval_func_param_names, no_default_param_names, input_args_list | |
from enums import DocumentSubset, LangChainMode, no_lora_str, model_token_mapping, no_model_str, \ | |
LangChainAction, LangChainAgent, DocumentChoice, LangChainTypes, super_source_prefix, \ | |
super_source_postfix, t5_type, get_langchain_prompts, gr_to_lg, invalid_key_msg | |
from loaders import get_loaders | |
from utils import set_seed, clear_torch_cache, NullContext, wrapped_partial, EThread, get_githash, \ | |
import_matplotlib, get_device, makedirs, get_kwargs, start_faulthandler, get_hf_server, FakeTokenizer, \ | |
have_langchain, set_openai, cuda_vis_check, H2O_Fire, lg_to_gr, str_to_list, str_to_dict, get_token_count | |
start_faulthandler() | |
import_matplotlib() | |
SEED = 1236 | |
set_seed(SEED) | |
from typing import Union | |
import torch | |
from transformers import GenerationConfig, AutoModel, TextIteratorStreamer | |
from prompter import Prompter, inv_prompt_type_to_model_lower, non_hf_types, PromptType, get_prompt, generate_prompt | |
from stopping import get_stopping | |
langchain_actions = [x.value for x in list(LangChainAction)] | |
langchain_agents_list = [x.value for x in list(LangChainAgent)] | |
def main( | |
load_8bit: bool = False, | |
load_4bit: bool = False, | |
low_bit_mode: int = 1, | |
load_half: bool = None, | |
load_gptq: str = '', | |
load_exllama: bool = False, | |
use_safetensors: bool = False, | |
revision: str = None, | |
use_gpu_id: bool = True, | |
base_model: str = '', | |
tokenizer_base_model: str = '', | |
lora_weights: str = "", | |
gpu_id: int = 0, | |
compile_model: bool = None, | |
use_cache: bool = None, | |
inference_server: str = "", | |
prompt_type: Union[int, str] = None, | |
prompt_dict: typing.Dict = None, | |
system_prompt: str = '', | |
# llama and gpt4all settings | |
llamacpp_dict: typing.Dict = dict(n_gpu_layers=100, use_mlock=True, n_batch=1024, n_gqa=0), | |
model_path_llama: str = 'https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/resolve/main/llama-2-7b-chat.ggmlv3.q8_0.bin', | |
# 'llama-2-7b-chat.ggmlv3.q8_0.bin', | |
model_name_gptj: str = 'ggml-gpt4all-j-v1.3-groovy.bin', | |
model_name_gpt4all_llama: str = 'ggml-wizardLM-7B.q4_2.bin', | |
model_name_exllama_if_no_config: str = 'TheBloke/Nous-Hermes-Llama2-GPTQ', | |
model_lock: typing.List[typing.Dict[str, str]] = None, | |
model_lock_columns: int = None, | |
fail_if_cannot_connect: bool = False, | |
# input to generation | |
temperature: float = None, | |
top_p: float = None, | |
top_k: int = None, | |
num_beams: int = None, | |
repetition_penalty: float = None, | |
num_return_sequences: int = None, | |
do_sample: bool = None, | |
max_new_tokens: int = None, | |
min_new_tokens: int = None, | |
early_stopping: Union[bool, str] = None, | |
max_time: float = None, | |
memory_restriction_level: int = None, | |
debug: bool = False, | |
save_dir: str = None, | |
share: bool = False, | |
local_files_only: bool = False, | |
resume_download: bool = True, | |
use_auth_token: Union[str, bool] = False, | |
trust_remote_code: Union[str, bool] = True, | |
rope_scaling: dict = None, | |
max_seq_len: int = None, | |
offload_folder: str = "offline_folder", | |
src_lang: str = "English", | |
tgt_lang: str = "Russian", | |
prepare_offline_level: int = 0, | |
cli: bool = False, | |
cli_loop: bool = True, | |
gradio: bool = True, | |
gradio_offline_level: int = 0, | |
server_name: str = "0.0.0.0", | |
root_path: str = "", | |
chat: bool = True, | |
chat_conversation: typing.List[typing.Tuple[str, str]] = None, | |
text_context_list: typing.List[str] = None, | |
stream_output: bool = True, | |
async_output: bool = True, | |
num_async: int = 3, | |
show_examples: bool = None, | |
verbose: bool = False, | |
h2ocolors: bool = True, | |
dark: bool = False, # light tends to be best | |
height: int = 600, | |
show_lora: bool = True, | |
show_llama: bool = True, | |
show_gpt4all: bool = False, | |
login_mode_if_model0: bool = False, | |
block_gradio_exit: bool = True, | |
concurrency_count: int = 1, | |
api_open: bool = False, | |
allow_api: bool = True, | |
input_lines: int = 1, | |
gradio_size: str = None, | |
show_copy_button: bool = True, | |
large_file_count_mode: bool = False, | |
pre_load_embedding_model: bool = True, | |
auth: Union[typing.List[typing.Tuple[str, str]], str] = None, | |
auth_filename: str = None, | |
auth_access: str = 'open', | |
auth_freeze: bool = False, | |
auth_message: str = None, | |
guest_name: str = "guest", | |
enforce_h2ogpt_api_key: bool = None, | |
h2ogpt_api_keys: Union[list, str] = [], | |
h2ogpt_key: str = None, | |
max_max_time=None, | |
max_max_new_tokens=None, | |
visible_models: list = None, | |
visible_visible_models: bool = True, | |
visible_submit_buttons: bool = True, | |
visible_side_bar: bool = True, | |
visible_doc_track: bool = True, | |
visible_chat_tab: bool = True, | |
visible_doc_selection_tab: bool = True, | |
visible_doc_view_tab: bool = True, | |
visible_chat_history_tab: bool = True, | |
visible_expert_tab: bool = True, | |
visible_models_tab: bool = True, | |
visible_system_tab: bool = True, | |
visible_tos_tab: bool = False, | |
visible_login_tab: bool = True, | |
visible_hosts_tab: bool = False, | |
chat_tables: bool = False, | |
visible_h2ogpt_header: bool = True, | |
max_raw_chunks: int = None, | |
sanitize_user_prompt: bool = False, | |
sanitize_bot_response: bool = False, | |
extra_model_options: typing.List[str] = [], | |
extra_lora_options: typing.List[str] = [], | |
extra_server_options: typing.List[str] = [], | |
score_model: str = 'auto', | |
eval_filename: str = None, | |
eval_prompts_only_num: int = 0, | |
eval_prompts_only_seed: int = 1234, | |
eval_as_output: bool = False, | |
langchain_mode: str = None, | |
user_path: str = None, | |
langchain_modes: list = [LangChainMode.USER_DATA.value, LangChainMode.MY_DATA.value, LangChainMode.LLM.value, | |
LangChainMode.DISABLED.value], | |
langchain_mode_paths: dict = {LangChainMode.USER_DATA.value: None}, | |
langchain_mode_types: dict = {LangChainMode.USER_DATA.value: LangChainTypes.SHARED.value}, | |
detect_user_path_changes_every_query: bool = False, | |
langchain_action: str = LangChainAction.QUERY.value, | |
langchain_agents: list = [], | |
force_langchain_evaluate: bool = False, | |
visible_langchain_actions: list = [LangChainAction.QUERY.value, LangChainAction.SUMMARIZE_MAP.value], | |
visible_langchain_agents: list = langchain_agents_list.copy(), | |
document_subset: str = DocumentSubset.Relevant.name, | |
document_choice: list = [DocumentChoice.ALL.value], | |
use_llm_if_no_docs: bool = True, | |
load_db_if_exists: bool = True, | |
keep_sources_in_context: bool = False, | |
db_type: str = 'chroma', | |
use_openai_embedding: bool = False, | |
use_openai_model: bool = False, | |
hf_embedding_model: str = None, | |
migrate_embedding_model: str = False, | |
auto_migrate_db: bool = False, | |
cut_distance: float = 1.64, | |
answer_with_sources: bool = True, | |
append_sources_to_answer: bool = True, | |
show_accordions: bool = True, | |
top_k_docs_max_show: int = 10, | |
show_link_in_sources: bool = True, | |
pre_prompt_query: str = None, | |
prompt_query: str = None, | |
pre_prompt_summary: str = None, | |
prompt_summary: str = None, | |
add_chat_history_to_context: bool = True, | |
add_search_to_context: bool = False, | |
context: str = '', | |
iinput: str = '', | |
allow_upload_to_user_data: bool = True, | |
reload_langchain_state: bool = True, | |
allow_upload_to_my_data: bool = True, | |
enable_url_upload: bool = True, | |
enable_text_upload: bool = True, | |
enable_sources_list: bool = True, | |
chunk: bool = True, | |
chunk_size: int = 512, | |
top_k_docs: int = None, | |
docs_ordering_type: str = 'reverse_ucurve_sort', | |
min_max_new_tokens=256, | |
auto_reduce_chunks: bool = True, | |
max_chunks: int = 100, | |
headsize: int = 50, | |
n_jobs: int = -1, | |
# urls | |
use_unstructured=True, | |
use_playwright=False, | |
use_selenium=False, | |
# pdfs | |
use_pymupdf='auto', | |
use_unstructured_pdf='auto', | |
use_pypdf='auto', | |
enable_pdf_ocr='auto', | |
enable_pdf_doctr='auto', | |
try_pdf_as_html='auto', | |
# images | |
enable_ocr=False, | |
enable_doctr=False, | |
enable_pix2struct=False, | |
enable_captions=True, | |
pre_load_caption_model: bool = False, | |
caption_gpu: bool = True, | |
captions_model: str = "Salesforce/blip-image-captioning-base", | |
doctr_gpu: bool = True, | |
# json | |
jq_schema='.[]', | |
max_quality: bool = False, | |
enable_heap_analytics: bool = True, | |
heap_app_id: str = "1680123994", | |
): | |
""" | |
:param load_8bit: load model in 8-bit using bitsandbytes | |
:param load_4bit: load model in 4-bit using bitsandbytes | |
:param low_bit_mode: 0: no quantization config 1: change compute 2: nf4 3: double quant 4: 2 and 3 | |
See: https://huggingface.co/docs/transformers/main_classes/quantization | |
If using older bitsandbytes or transformers, 0 is required | |
:param load_half: load model in float16 (None means auto, which means True unless t5 based model) | |
otherwise specify bool | |
:param load_gptq: to load model with GPTQ, put model_basename here, e.g. gptq_model-4bit--1g | |
:param load_exllama: whether to use exllama (only applicable to LLaMa1/2 models with 16-bit or GPTQ | |
:param use_safetensors: to use safetensors version (assumes file/HF points to safe tensors version) | |
:param revision: Which HF revision to use | |
:param use_gpu_id: whether to control devices with gpu_id. If False, then spread across GPUs | |
:param base_model: model HF-type name. If use --base_model to preload model, cannot unload in gradio in models tab | |
:param tokenizer_base_model: tokenizer HF-type name. Usually not required, inferred from base_model. | |
:param lora_weights: LORA weights path/HF link | |
:param gpu_id: if use_gpu_id, then use gpu_id for cuda device ID, or auto mode if gpu_id != -1 | |
:param compile_model Whether to compile the model | |
:param use_cache: Whether to use caching in model (some models fail when multiple threads use) | |
:param inference_server: Consume base_model as type of model at this address | |
Address can be text-generation-server hosting that base_model | |
e.g. python generate.py --inference_server="http://192.168.1.46:6112" --base_model=h2oai/h2ogpt-oasst1-512-12b | |
Or Address can be "openai_chat" or "openai" for OpenAI API | |
Or Address can be "openai_azure_chat" or "openai_azure" for Azure OpenAI API | |
e.g. python generate.py --inference_server="openai_chat" --base_model=gpt-3.5-turbo | |
e.g. python generate.py --inference_server="openai" --base_model=text-davinci-003 | |
e.g. python generate.py --inference_server="openai_azure_chat:<deployment_name>:<baseurl>:<api_version>:<model_version>" --base_model=gpt-3.5-turbo | |
e.g. python generate.py --inference_server="openai_azure:<deployment_name>:<baseurl>:<api_version>:<model_version>" --base_model=text-davinci-003 | |
Optionals (Replace with None or just leave empty but keep :) | |
<deployment_name> of some deployment name | |
<baseurl>: e.g. "<endpoint>.openai.azure.com" for some <endpoint> without https:// | |
<api_version> of some api, e.g. 2023-05-15 | |
<model_version> e.g. 0613 | |
Or Address can be for vLLM: | |
Use: "vllm:IP:port" for OpenAI-compliant vLLM endpoint | |
Use: "vllm_chat:IP:port" for OpenAI-Chat-compliant vLLM endpoint | |
Or Address can be replicate: | |
Use: | |
--inference_server=replicate:<model name string> will use a Replicate server, requiring a Replicate key. | |
e.g. <model name string> looks like "a16z-infra/llama13b-v2-chat:df7690f1994d94e96ad9d568eac121aecf50684a0b0963b25a41cc40061269e5" | |
Or Address can be for AWS SageMaker: | |
Use: "sagemaker_chat:<endpoint name>" for chat models that AWS sets up as dialog | |
Use: "sagemaker:<endpoint name>" for foundation models that AWS only text as inputs | |
:param prompt_type: type of prompt, usually matched to fine-tuned model or plain for foundational model | |
:param prompt_dict: If prompt_type=custom, then expects (some) items returned by get_prompt(..., return_dict=True) | |
:param system_prompt: Universal system prompt to use if model supports, like LLaMa2, regardless of prompt_type definition. | |
Useful for langchain case to control behavior, or OpenAI and Replicate. | |
If None, 'None', or 'auto', then for LLaMa or other models that internally have system_prompt, will use default for each model | |
If '', then no system prompt (no empty template given to model either, just no system part added at all) | |
If some string not in ['None', 'auto'], then use that as system prompt | |
Default is '', no system_prompt, because often it hurts performance/accuracy | |
:param llamacpp_dict: | |
n_gpu_layers: for llama.cpp based models, number of GPU layers to offload (default is all by using large value) | |
use_mlock: when using `llama.cpp` based CPU models, for computers with low system RAM or slow CPUs, recommended False | |
n_batch: Can make smaller to 128 for slower low-memory CPU systems | |
n_gqa: Required to be 8 for LLaMa 70B | |
... etc. anything that could be passed to llama.cpp or GPT4All models | |
e.g. python generate.py --base_model='llama' --prompt_type=llama2 --score_model=None --langchain_mode='UserData' --user_path=user_path --llamacpp_dict="{'n_gpu_layers':25,'n_batch':128}" | |
:param model_path_llama: model path or URL (for auto-download) | |
:param model_name_gptj: model path or URL (for auto-download) | |
:param model_name_gpt4all_llama: model path or URL (for auto-download) | |
:param model_name_exllama_if_no_config: exllama model's full path for model, tokenizer, generator for use when no HuggingFace config | |
:param model_lock: Lock models to specific combinations, for ease of use and extending to many models | |
Only used if gradio = True | |
List of dicts, each dict has base_model, tokenizer_base_model, lora_weights, inference_server, prompt_type, and prompt_dict | |
If all models have same prompt_type, and prompt_dict, can still specify that once in CLI outside model_lock as default for dict | |
Can specify model_lock instead of those items on CLI | |
As with CLI itself, base_model can infer prompt_type and prompt_dict if in prompter.py. | |
Also, tokenizer_base_model and lora_weights are optional. | |
Also, inference_server is optional if loading model from local system. | |
All models provided will automatically appear in compare model mode | |
Model loading-unloading and related choices will be disabled. Model/lora/server adding will be disabled | |
:param model_lock_columns: How many columns to show if locking models (and so showing all at once) | |
If None, then defaults to up to 3 | |
if -1, then all goes into 1 row | |
Maximum value is 4 due to non-dynamic gradio rendering elements | |
:param fail_if_cannot_connect: if doing model locking (e.g. with many models), fail if True. Otherwise ignore. | |
Useful when many endpoints and want to just see what works, but still have to wait for timeout. | |
:param temperature: generation temperature | |
:param top_p: generation top_p | |
:param top_k: generation top_k | |
:param num_beams: generation number of beams | |
:param repetition_penalty: generation repetition penalty | |
:param num_return_sequences: generation number of sequences (1 forced for chat) | |
:param do_sample: generation sample | |
:param max_new_tokens: generation max new tokens | |
:param min_new_tokens: generation min tokens | |
:param early_stopping: generation early stopping | |
:param max_time: maximum time to allow for generation | |
:param memory_restriction_level: 0 = no restriction to tokens or model, 1 = some restrictions on token 2 = HF like restriction 3 = very low memory case | |
:param debug: enable debug mode | |
:param save_dir: directory chat data is saved to | |
:param share: whether to share the gradio app with sharable URL | |
:param local_files_only: whether to only use local files instead of doing to HF for models | |
:param resume_download: whether to resume downloads from HF for models | |
:param use_auth_token: whether to use HF auth token (requires CLI did huggingface-cli login before) | |
:param trust_remote_code: whether to use trust any code needed for HF model | |
:param rope_scaling: | |
For HF transformers model: scaling for rope-based models, e.g. --rope_scaling="{'type':'dynamic', 'factor':4}" | |
For exllama model: --rope_scaling="{'alpha_value':4}" . This automatically scales max_seq_len for exllama | |
:param max_seq_len: Manually set maximum sequence length for the LLM | |
:param offload_folder: path for spilling model onto disk | |
:param src_lang: source languages to include if doing translation (None = all) | |
:param tgt_lang: target languages to include if doing translation (None = all) | |
:param prepare_offline_level: | |
Whether to just prepare for offline use, do not go into cli, eval, or gradio run modes | |
0 : no prep | |
1: prepare just h2oGPT with exact same setup as passed to CLI and ensure all artifacts for h2oGPT alone added to ~/.cache/ | |
2: prepare h2oGPT + all inference servers so h2oGPT+inference servers can use the ~/.cache/ | |
:param cli: whether to use CLI (non-gradio) interface. | |
:param cli_loop: whether to loop for CLI (False usually only for testing) | |
:param gradio: whether to enable gradio, or to enable benchmark mode | |
:param gradio_offline_level: > 0, then change fonts so full offline | |
== 1 means backend won't need internet for fonts, but front-end UI might if font not cached | |
== 2 means backend and frontend don't need internet to download any fonts. | |
Note: Some things always disabled include HF telemetry, gradio telemetry, chromadb posthog that involve uploading. | |
This option further disables google fonts for downloading, which is less intrusive than uploading, | |
but still required in air-gapped case. The fonts don't look as nice as google fonts, but ensure full offline behavior. | |
Also set --share=False to avoid sharing a gradio live link. | |
:param server_name: IP to use. In linux 0.0.0.0 is good choice so exposed to outside host, else for only local use 127.0.0.1. | |
For windows/MAC 0.0.0.0 or 127.0.0.1 will work, but may need to specify actual LAN IP address for other LAN clients to see. | |
:param root_path: The root path (or "mount point") of the application, | |
if it's not served from the root ("/") of the domain. Often used when the application is behind a reverse proxy | |
that forwards requests to the application. For example, if the application is served at "https://example.com/myapp", | |
the `root_path` should be set to "/myapp". | |
:param chat: whether to enable chat mode with chat history | |
:param chat_conversation: list of tuples of (human, bot) conversation pre-appended to existing chat when using instruct/chat models | |
Requires also add_chat_history_to_context = True | |
It does *not* require chat=True, so works with nochat_api etc. | |
:param text_context_list: List of strings to add to context for non-database version of document Q/A for faster handling via API etc. | |
Forces LangChain code path and uses as many entries in list as possible given max_seq_len, with first assumed to be most relevant and to go near prompt. | |
:param stream_output: whether to stream output | |
:param async_output: Whether to do asyncio handling | |
For summarization | |
Applicable to HF TGI server | |
Only if stream_output=False in CLI, UI, or API | |
:param num_async: Number of simultaneously allowed asyncio calls to make for async_output | |
Too many will overload inference server, too few will be too slow | |
:param show_examples: whether to show clickable examples in gradio | |
:param verbose: whether to show verbose prints | |
:param h2ocolors: whether to use H2O.ai theme | |
:param dark: whether to use dark mode for UI by default (still controlled in UI) | |
:param height: height of chat window | |
:param show_lora: whether to show LORA options in UI (expert so can be hard to understand) | |
:param show_llama: whether to show LLaMa.cpp/GPT4All options in UI (only likely useful if have weak GPUs) | |
:param show_gpt4all: whether to show GPT4All models in UI (not often useful, llama.cpp models best) | |
:param login_mode_if_model0: set to True to load --base_model after client logs in, to be able to free GPU memory when model is swapped | |
:param block_gradio_exit: whether to block gradio exit (used for testing) | |
:param concurrency_count: gradio concurrency count (1 is optimal for LLMs) | |
:param api_open: If False, don't let API calls skip gradio queue | |
:param allow_api: whether to allow API calls at all to gradio server | |
:param input_lines: how many input lines to show for chat box (>1 forces shift-enter for submit, else enter is submit) | |
:param gradio_size: Overall size of text and spaces: "xsmall", "small", "medium", "large". | |
Small useful for many chatbots in model_lock mode | |
:param show_copy_button: Whether to show copy button for chatbots | |
:param large_file_count_mode: Whether to force manual update to UI of drop-downs, good idea if millions of chunks or documents | |
:param pre_load_embedding_model: Whether to preload embedding model for shared use across DBs and users (multi-thread safe only) | |
:param auth: gradio auth for launcher in form [(user1, pass1), (user2, pass2), ...] | |
e.g. --auth=[('jon','password')] with no spaces | |
e.g. --auth="[('jon', 'password)())(')]" so any special characters can be used | |
e.g. --auth=auth.json to specify persisted state file with name auth.json (auth_filename then not required) | |
e.g. --auth='' will use default auth.json as file name for persisted state file (auth_filename then not required) | |
e.g. --auth=None will use no auth, but still keep track of auth state, just not from logins | |
:param auth_filename: | |
Set auth filename, used only if --auth= was passed list of user/passwords | |
:param auth_access: | |
'open': Allow new users to be added | |
'closed': Stick to existing users | |
:param auth_freeze: whether freeze authentication based upon current file, no longer update file | |
:param auth_message: Message to show if having users login, fixed if passed, else dynamic internally | |
:param guest_name: guess name if using auth and have open access. | |
If '', then no guest allowed even if open access, then all databases for each user always persisted | |
:param enforce_h2ogpt_api_key: Whether to enforce h2oGPT token usage for API | |
:param h2ogpt_api_keys: list of tokens allowed for API access or file accessed on demand for json of list of keys | |
:param h2ogpt_key: E.g. can be set when accessing gradio h2oGPT server from local gradio h2oGPT server that acts as client to that inference server | |
:param max_max_time: Maximum max_time for gradio slider | |
:param max_max_new_tokens: Maximum max_new_tokens for gradio slider | |
:param min_max_new_tokens: Minimum of max_new_tokens, when auto-scaling down to handle more docs/prompt, but still let generation have some tokens | |
:param visible_models: Which models in model_lock list to show by default | |
Takes integers of position in model_lock (model_states) list or strings of base_model names | |
Ignored if model_lock not used | |
For nochat API, this is single item within a list for model by name or by index in model_lock | |
If None, then just use first model in model_lock list | |
If model_lock not set, use model selected by CLI --base_model etc. | |
:param visible_visible_models: Whether visible models drop-down is visible in UI | |
:param visible_submit_buttons: whether submit buttons are visible when UI first comes up | |
:param visible_side_bar: whether left side bar is visible when UI first comes up | |
:param visible_doc_track: whether left side bar's document tracking is visible when UI first comes up | |
:param visible_chat_tab: "" for chat tab | |
:param visible_doc_selection_tab: "" for doc selection tab | |
:param visible_doc_view_tab: "" for doc view tab | |
:param visible_chat_history_tab: "" for chat history tab | |
:param visible_expert_tab: "" for expert tab | |
:param visible_models_tab: "" for models tab | |
:param visible_system_tab: "" for system tab | |
:param visible_tos_tab: "" for ToS tab | |
:param visible_login_tab: "" for Login tab | |
:param visible_hosts_tab: "" for hosts tab | |
:param chat_tables: Just show Chat as block without tab (useful if want only chat view) | |
:param visible_h2ogpt_header: Whether github stars, URL, logo, and QR code are visible | |
:param max_raw_chunks: Maximum number of chunks to show in UI when asking for raw DB text from documents/collection | |
:param sanitize_user_prompt: whether to remove profanity from user input (slows down input processing) | |
Requires optional packages: | |
pip install alt-profanity-check==1.2.2 better-profanity==0.7.0 | |
:param sanitize_bot_response: whether to remove profanity and repeat lines from bot output (about 2x slower generation for long streaming cases due to better_profanity being slow) | |
:param extra_model_options: extra models to show in list in gradio | |
:param extra_lora_options: extra LORA to show in list in gradio | |
:param extra_server_options: extra servers to show in list in gradio | |
:param score_model: which model to score responses | |
None: no response scoring | |
'auto': auto mode, '' (no model) for CPU or 1 GPU, 'OpenAssistant/reward-model-deberta-v3-large-v2' for >=2 GPUs, | |
because on CPU takes too much compute just for scoring response | |
:param eval_filename: json file to use for evaluation, if None is sharegpt | |
:param eval_prompts_only_num: for no gradio benchmark, if using eval_filename prompts for eval instead of examples | |
:param eval_prompts_only_seed: for no gradio benchmark, seed for eval_filename sampling | |
:param eval_as_output: for no gradio benchmark, whether to test eval_filename output itself | |
:param langchain_mode: Data source to include. Choose "UserData" to only consume files from make_db.py. | |
None: auto mode, check if langchain package exists, at least do LLM if so, else Disabled | |
If not passed, then chosen to be first langchain_modes, else langchain_mode->Disabled is set if no langchain_modes either | |
WARNING: wiki_full requires extra data processing via read_wiki_full.py and requires really good workstation to generate db, unless already present. | |
:param user_path: user path to glob from to generate db for vector search, for 'UserData' langchain mode. | |
If already have db, any new/changed files are added automatically if path set, does not have to be same path used for prior db sources | |
:param langchain_modes: dbs to generate at launch to be ready for LLM | |
Apart from additional user-defined collections, can include ['wiki', 'wiki_full', 'UserData', 'MyData', 'github h2oGPT', 'DriverlessAI docs'] | |
But wiki_full is expensive and requires preparation | |
To allow personal space only live in session, add 'MyData' to list | |
Default: If only want to consume local files, e.g. prepared by make_db.py, only include ['UserData'] | |
If have own user modes, need to add these here or add in UI. | |
:param langchain_mode_paths: dict of langchain_mode keys and disk path values to use for source of documents | |
E.g. "{'UserData2': 'userpath2'}" | |
A disk path be None, e.g. --langchain_mode_paths="{'UserData2': None}" even if existing DB, to avoid new documents being added from that path, source links that are on disk still work. | |
If `--user_path` was passed, that path is used for 'UserData' instead of the value in this dict | |
:param langchain_mode_types: dict of langchain_mode keys and database types | |
E.g. python generate.py --base_model=llama --langchain_modes=['TestData'] --langchain_mode_types="{'TestData':'shared'}" | |
The type is attempted to be inferred if directory already exists, then don't have to pass this | |
:param detect_user_path_changes_every_query: whether to detect if any files changed or added every similarity search (by file hashes). | |
Expensive for large number of files, so not done by default. By default only detect changes during db loading. | |
:param langchain_action: Mode langchain operations in on documents. | |
Query: Make query of document(s) | |
Summarize or Summarize_map_reduce: Summarize document(s) via map_reduce | |
Summarize_all: Summarize document(s) using entire document at once | |
Summarize_refine: Summarize document(s) using entire document, and try to refine before returning summary | |
:param langchain_agents: Which agents to use | |
'search': Use Web Search as context for LLM response, e.g. SERP if have SERPAPI_API_KEY in env | |
:param force_langchain_evaluate: Whether to force langchain LLM use even if not doing langchain, mostly for testing. | |
:param visible_langchain_actions: Which actions to allow | |
:param visible_langchain_agents: Which agents to allow | |
:param document_subset: Default document choice when taking subset of collection | |
:param document_choice: Chosen document(s) by internal name, 'All' means use all docs | |
:param use_llm_if_no_docs: Whether to use LLM even if no documents, when langchain_mode=UserData or MyData or custom | |
:param load_db_if_exists: Whether to load chroma db if exists or re-generate db | |
:param keep_sources_in_context: Whether to keep url sources in context, not helpful usually | |
:param db_type: 'faiss' for in-memory | |
'chroma' (for chroma >= 0.4) | |
'chroma_old' (for chroma < 0.4) -- recommended for large collections | |
'weaviate' for persisted on disk | |
:param use_openai_embedding: Whether to use OpenAI embeddings for vector db | |
:param use_openai_model: Whether to use OpenAI model for use with vector db | |
:param hf_embedding_model: Which HF embedding model to use for vector db | |
Default is instructor-large with 768 parameters per embedding if have GPUs, else all-MiniLM-L6-v2 if no GPUs | |
Can also choose simpler model with 384 parameters per embedding: "sentence-transformers/all-MiniLM-L6-v2" | |
Can also choose even better embedding with 1024 parameters: 'hkunlp/instructor-xl' | |
We support automatically changing of embeddings for chroma, with a backup of db made if this is done | |
:param migrate_embedding_model: whether to use hf_embedding_model embedding even if database already had an embedding set. | |
used to migrate all embeddings to a new one, but will take time to re-embed. | |
Default (False) is to use the prior embedding for existing databases, and only use hf_embedding_model for new databases | |
If had old database without embedding saved, then hf_embedding_model is also used. | |
:param auto_migrate_db: whether to automatically migrate any chroma<0.4 database from duckdb -> sqlite version | |
:param cut_distance: Distance to cut off references with larger distances when showing references. | |
1.64 is good to avoid dropping references for all-MiniLM-L6-v2, but instructor-large will always show excessive references. | |
For all-MiniLM-L6-v2, a value of 1.5 can push out even more references, or a large value of 100 can avoid any loss of references. | |
:param answer_with_sources: Whether to determine (and return) sources | |
:param append_sources_to_answer: Whether to place source information in chat response (ignored by LLM). Always disabled for API. | |
:param show_accordions: whether to show accordion for document references in chatbot UI | |
:param top_k_docs_max_show: Max number of docs to show in UI for sources | |
If web search is enabled, then this is modified to be max(top_k_docs_max_show, number of links used in search) | |
:param show_link_in_sources: Whether to show URL link to source document in references | |
:param pre_prompt_query: prompt before documents to query, if None then use internal defaults | |
:param prompt_query: prompt after documents to query, if None then use internal defaults | |
:param pre_prompt_summary: prompt before documents to summarize, if None then use internal defaults | |
:param prompt_summary: prompt after documents to summarize, if None then use internal defaults | |
For summarize, normal to have empty query (nothing added in ask anything in UI or empty string in API) | |
If pass query, template is "Focusing on %s, %s" % (query, prompt_summary) | |
If pass query and iinput, template is "Focusing on %s, %s, %s" % (query, iinput, prompt_summary) | |
:param add_chat_history_to_context: Include chat context when performing action | |
Not supported yet for openai_chat when using document collection instead of LLM | |
Also not supported when using CLI mode | |
:param add_search_to_context: Include web search in context as augmented prompt | |
:param context: Default context to use (for system pre-context in gradio UI) | |
context comes before chat_conversation and any document Q/A from text_context_list | |
:param iinput: Default input for instruction-based prompts | |
:param allow_upload_to_user_data: Whether to allow file uploads to update shared vector db (UserData or custom user dbs) | |
Ensure pass user_path for the files uploaded to be moved to this location for linking. | |
:param reload_langchain_state: Whether to reload langchain_modes.pkl file that contains any new user collections. | |
:param allow_upload_to_my_data: Whether to allow file uploads to update personal vector db | |
:param enable_url_upload: Whether to allow upload from URL | |
:param enable_text_upload: Whether to allow upload of text | |
:param enable_sources_list: Whether to allow list (or download for non-shared db) of list of sources for chosen db | |
:param chunk: Whether to chunk data (True unless know data is already optimally chunked) | |
:param chunk_size: Size of chunks, with typically top-4 passed to LLM, so needs to be in context length | |
:param top_k_docs: For langchain_action query: number of chunks to give LLM | |
-1 : auto-fills context up to max_seq_len | |
For langchain_action summarize: number of document parts, like pages for PDF. | |
There's no such thing as chunks for summarization. | |
-1 : auto-fills context up to max_seq_len | |
:param docs_ordering_type: | |
Type of ordering of docs. | |
'best_first': Order by score so score is worst match near prompt | |
'best_near_prompt' or 'reverse_sort' : reverse docs order so most relevant is closest to question. | |
Best choice for sufficiently smart model, and truncation occurs for oldest context, so best then too. | |
But smaller 6_9 models fail to use newest context and can get stuck on old information. | |
'' or None (i.e. default) or 'reverse_ucurve_sort' : Sort so most relevant is either near start or near end | |
Best to avoid "lost in middle" as well as avoid hallucinating off starting content that LLM focuses on alot. | |
:param auto_reduce_chunks: Whether to automatically reduce top_k_docs to fit context given prompt | |
:param max_chunks: If top_k_docs=-1, maximum number of chunks to allow | |
:param headsize: Maximum number of characters for head of document document for UI to show | |
:param n_jobs: Number of processors to use when consuming documents (-1 = all, is default) | |
:param use_unstructured: Enable unstructured URL loader | |
:param use_playwright: Enable PlayWright URL loader | |
:param use_selenium: Enable Selenium URL loader | |
:param use_pymupdf: enable PyMUPDF 'auto' means use first, use others if they are 'auto' if no result | |
:param use_unstructured_pdf: enable Unstructured PDF loader, 'auto' means use if pymupdf fails to get doc result | |
:param use_pypdf: enable PyPDF loader 'auto' means use if unstructured fails to get doc result | |
:param enable_pdf_ocr: 'auto' means only use OCR if normal text extraction fails. Useful for pure image-based PDFs with text. | |
if enable_pdf_doctr == 'on' then don't do. | |
'on' means always do OCR as additional parsing of same documents | |
'off' means don't do OCR (e.g. because it's slow even if 'auto' only would trigger if nothing else worked) | |
:param enable_pdf_doctr: Whether to support doctr on pdfs, 'auto' means use do if failed to get doc result so far | |
:param try_pdf_as_html: Try "PDF" as if HTML file, in case web link has .pdf extension but really is just HTML | |
:param enable_ocr: Whether to support OCR on images | |
:param enable_doctr: Whether to support doctr on images (using OCR better than enable_ocr=True) | |
:param enable_pix2struct: Whether to support pix2struct on images for captions | |
:param enable_captions: Whether to support captions using BLIP for image files as documents, | |
then preloads that model if pre_load_caption_model=True | |
:param pre_load_caption_model: Whether to preload caption model, or load after forking parallel doc loader | |
parallel loading disabled if preload and have images, to prevent deadlocking on cuda context | |
Recommended if using larger caption model | |
:param captions_model: Which model to use for captions. | |
captions_model: str = "Salesforce/blip-image-captioning-base", # continue capable | |
captions_model: str = "Salesforce/blip2-flan-t5-xl", # question/answer capable, 16GB state | |
captions_model: str = "Salesforce/blip2-flan-t5-xxl", # question/answer capable, 60GB state | |
Note: opt-based blip2 are not permissive license due to opt and Meta license restrictions | |
Disabled for CPU since BLIP requires CUDA | |
:param caption_gpu: If support caption, then use GPU if exists | |
:param doctr_gpu: If support doctr, then use GPU if exists | |
:param jq_schema: control json loader | |
By default '.[]' ingests everything in brute-force way, but better to match your schema | |
See: https://python.langchain.com/docs/modules/data_connection/document_loaders/json#using-jsonloader | |
:param max_quality: Choose maximum quality ingestion with all available parsers | |
Pro: Catches document when some default parsers would fail | |
Pro: Enables DocTR that has much better OCR than Tesseract | |
Con: Fills DB with results from all parsers, so similarity search gives redundant results | |
:param enable_heap_analytics: Toggle telemetry. | |
:param heap_app_id: App ID for Heap, change to your ID. | |
:return: | |
""" | |
if base_model is None: | |
base_model = '' | |
if tokenizer_base_model is None: | |
tokenizer_base_model = '' | |
if lora_weights is None: | |
lora_weights = '' | |
if inference_server is None: | |
inference_server = '' | |
# listen to env if set | |
model_lock = os.getenv('model_lock', str(model_lock)) | |
model_lock = ast.literal_eval(model_lock) | |
chat_conversation = str_to_list(chat_conversation) | |
text_context_list = str_to_list(text_context_list) | |
llamacpp_dict = str_to_dict(llamacpp_dict) | |
# add others to single dict | |
llamacpp_dict['model_path_llama'] = model_path_llama | |
llamacpp_dict['model_name_gptj'] = model_name_gptj | |
llamacpp_dict['model_name_gpt4all_llama'] = model_name_gpt4all_llama | |
llamacpp_dict['model_name_exllama_if_no_config'] = model_name_exllama_if_no_config | |
# if user overrides but doesn't set these: | |
if 'n_batch' not in llamacpp_dict: | |
llamacpp_dict['n_batch'] = 128 | |
if 'n_gpu_layers' not in llamacpp_dict: | |
llamacpp_dict['n_gpu_layers'] = 100 | |
if 'n_gqa' not in llamacpp_dict: | |
llamacpp_dict['n_gqa'] = 0 | |
if os.environ.get('SERPAPI_API_KEY') is None and LangChainAgent.SEARCH.value in visible_langchain_agents: | |
visible_langchain_agents.remove(LangChainAgent.SEARCH.value) | |
if model_lock: | |
assert gradio, "model_lock only supported for gradio=True" | |
assert not cli, "model_lock only supported for cli=False" | |
assert not (not cli and not gradio), "model_lock only supported for eval (cli=gradio=False)" | |
assert not base_model, "Don't specify model_lock and base_model" | |
assert not tokenizer_base_model, "Don't specify model_lock and tokenizer_base_model" | |
assert not lora_weights, "Don't specify model_lock and lora_weights" | |
assert not inference_server, "Don't specify model_lock and inference_server" | |
# assert not prompt_type, "Don't specify model_lock and prompt_type" | |
# assert not prompt_dict, "Don't specify model_lock and prompt_dict" | |
n_jobs = int(os.getenv('n_jobs', str(n_jobs))) | |
is_hf = bool(int(os.getenv("HUGGINGFACE_SPACES", '0'))) | |
is_gpth2oai = bool(int(os.getenv("GPT_H2O_AI", '0'))) | |
is_public = is_hf or is_gpth2oai # multi-user case with fixed model and disclaimer | |
if is_public: | |
visible_tos_tab = visible_hosts_tab = True | |
if enforce_h2ogpt_api_key is None: | |
enforce_h2ogpt_api_key = True | |
else: | |
if enforce_h2ogpt_api_key is None: | |
enforce_h2ogpt_api_key = False | |
if isinstance(h2ogpt_api_keys, str) and not os.path.isfile(h2ogpt_api_keys): | |
h2ogpt_api_keys = str_to_list(h2ogpt_api_keys) | |
if memory_restriction_level is None: | |
memory_restriction_level = 2 if is_hf else 0 # 2 assumes run on 24GB consumer GPU | |
else: | |
assert 0 <= memory_restriction_level <= 3, "Bad memory_restriction_level=%s" % memory_restriction_level | |
if n_jobs == -1: | |
# if -1, assume hypercores, don't use, force user to pass n_jobs to be specific if not standard cores | |
n_jobs = max(1, os.cpu_count() // 2) | |
if is_public and os.getenv('n_jobs') is None: | |
n_jobs = min(n_jobs, max(1, min(os.cpu_count() // 2, 8))) | |
admin_pass = os.getenv("ADMIN_PASS") | |
# will sometimes appear in UI or sometimes actual generation, but maybe better than empty result | |
# but becomes unrecoverable sometimes if raise, so just be silent for now | |
raise_generate_gpu_exceptions = True | |
rope_scaling = str_to_dict(rope_scaling) | |
if isinstance(auth, str): | |
if auth.strip().startswith('['): | |
auth = str_to_list(auth) | |
if isinstance(auth, str) and auth: | |
auth_filename = auth | |
if not auth_filename: | |
auth_filename = "auth.json" | |
assert isinstance(auth, (str, list, tuple, type(None))), "Unknown type %s for auth=%s" % (type(auth), auth) | |
# allow set token directly | |
use_auth_token = os.environ.get("HUGGING_FACE_HUB_TOKEN", use_auth_token) | |
allow_upload_to_user_data = bool( | |
int(os.environ.get("allow_upload_to_user_data", str(int(allow_upload_to_user_data))))) | |
allow_upload_to_my_data = bool(int(os.environ.get("allow_upload_to_my_data", str(int(allow_upload_to_my_data))))) | |
height = int(os.environ.get("HEIGHT", height)) | |
h2ocolors = bool(int(os.getenv('h2ocolors', h2ocolors))) | |
# allow enabling langchain via ENV | |
# FIRST PLACE where LangChain referenced, but no imports related to it | |
langchain_modes = ast.literal_eval(os.environ.get("langchain_modes", str(langchain_modes))) | |
if not isinstance(langchain_modes, list): | |
langchain_modes = [] | |
# always allow DISABLED | |
if LangChainMode.DISABLED.value not in langchain_modes: | |
langchain_modes.append(LangChainMode.DISABLED.value) | |
if not have_langchain: | |
# only allow disabled, not even LLM that is langchain related | |
langchain_mode = LangChainMode.DISABLED.value | |
langchain_modes = [langchain_mode] | |
# update | |
langchain_mode_paths = str_to_dict(langchain_mode_paths) | |
langchain_mode_types = str_to_dict(langchain_mode_types) | |
for lmode in [LangChainMode.GITHUB_H2OGPT.value, | |
LangChainMode.H2O_DAI_DOCS.value, | |
LangChainMode.WIKI.value, | |
LangChainMode.WIKI_FULL.value, | |
]: | |
if lmode not in langchain_mode_types: | |
langchain_mode_types[lmode] = 'shared' | |
if lmode not in langchain_mode_paths: | |
langchain_mode_types[lmode] = '' | |
if user_path: | |
user_path = makedirs(user_path, use_base=True) | |
langchain_mode_paths['UserData'] = user_path | |
langchain_mode_paths['UserData'] = LangChainTypes.SHARED.value | |
if is_public: | |
allow_upload_to_user_data = False | |
if LangChainMode.USER_DATA.value in langchain_modes: | |
langchain_modes.remove(LangChainMode.USER_DATA.value) | |
if max_raw_chunks is None: | |
max_raw_chunks = 30 if is_public else 1000000 | |
# in-place, for non-scratch dbs | |
if allow_upload_to_user_data: | |
# always listen to CLI-passed user_path if passed | |
if user_path: | |
langchain_mode_paths['UserData'] = user_path | |
assert langchain_action in langchain_actions, "Invalid langchain_action %s not in %s" % ( | |
langchain_action, langchain_actions) | |
assert len( | |
set(langchain_agents).difference(langchain_agents_list)) == 0, "Invalid langchain_agents %s" % langchain_agents | |
# auto-set langchain_mode | |
langchain_mode = os.environ.get("LANGCHAIN_MODE", langchain_mode) | |
if have_langchain and langchain_mode is None: | |
# start in chat mode, in case just want to chat and don't want to get "No documents to query" by default. | |
if LangChainMode.LLM.value in langchain_modes: | |
langchain_mode = LangChainMode.LLM.value | |
elif len(langchain_modes) >= 1: | |
# infer even if don't pass which langchain_mode, just langchain_modes. | |
langchain_mode = langchain_modes[0] | |
if allow_upload_to_user_data and not is_public and langchain_mode_paths['UserData']: | |
if verbose: | |
print("Auto set langchain_mode=%s. Could use UserData instead." % langchain_mode, flush=True) | |
elif allow_upload_to_my_data: | |
if verbose: | |
print("Auto set langchain_mode=%s. Could use MyData instead." | |
" To allow UserData to pull files from disk," | |
" set user_path or langchain_mode_paths, and ensure allow_upload_to_user_data=True" % langchain_mode, | |
flush=True) | |
else: | |
raise RuntimeError("Please pass --langchain_mode=<chosen mode> out of %s" % langchain_modes) | |
if not have_langchain and langchain_mode not in [None, LangChainMode.DISABLED.value, LangChainMode.LLM.value]: | |
raise RuntimeError("Asked for LangChain mode but langchain python package cannot be found.") | |
if langchain_mode is None: | |
# if not set yet, disable | |
langchain_mode = LangChainMode.DISABLED.value | |
print("Auto set langchain_mode=%s Have langchain package: %s" % (langchain_mode, have_langchain), flush=True) | |
# go ahead and add | |
if langchain_mode not in langchain_modes: | |
langchain_modes.append(langchain_mode) | |
if is_public: | |
allow_upload_to_user_data = False | |
input_lines = 1 # ensure set, for ease of use | |
temperature = 0.2 if temperature is None else temperature | |
top_p = 0.85 if top_p is None else top_p | |
top_k = 70 if top_k is None else top_k | |
if is_hf: | |
do_sample = True if do_sample is None else do_sample | |
top_k_docs = 3 if top_k_docs is None else top_k_docs | |
else: | |
# by default don't sample, too chatty | |
do_sample = False if do_sample is None else do_sample | |
top_k_docs = 4 if top_k_docs is None else top_k_docs | |
if memory_restriction_level == 2: | |
if not base_model and not inference_server and not model_lock: | |
base_model = 'h2oai/h2ogpt-oasst1-512-12b' | |
# don't set load_8bit if passed base_model, doesn't always work so can't just override | |
load_8bit = True | |
load_4bit = False # FIXME - consider using 4-bit instead of 8-bit | |
elif not inference_server: | |
top_k_docs = 10 if top_k_docs is None else top_k_docs | |
if memory_restriction_level >= 2: | |
load_8bit = True | |
load_4bit = False # FIXME - consider using 4-bit instead of 8-bit | |
if hf_embedding_model is None: | |
hf_embedding_model = "sentence-transformers/all-MiniLM-L6-v2" | |
top_k_docs = 3 if top_k_docs is None else top_k_docs | |
if top_k_docs is None: | |
top_k_docs = 3 | |
if is_public: | |
if not max_time: | |
max_time = 60 * 2 | |
if not max_max_time: | |
max_max_time = max_time | |
if not max_new_tokens: | |
max_new_tokens = 256 | |
if not max_max_new_tokens: | |
max_max_new_tokens = 512 | |
else: | |
if not max_max_time: | |
max_max_time = 60 * 20 | |
if not max_max_new_tokens: | |
max_max_new_tokens = 1024 | |
if is_hf: | |
# must override share if in spaces | |
share = False | |
if not max_time: | |
max_time = 60 * 1 | |
if not max_max_time: | |
max_max_time = max_time | |
# HF accounted for later in get_max_max_new_tokens() | |
save_dir = os.getenv('SAVE_DIR', save_dir) | |
save_dir = makedirs(save_dir, exist_ok=True, tmp_ok=True, use_base=True) | |
score_model = os.getenv('SCORE_MODEL', score_model) | |
if str(score_model) == 'None': | |
score_model = '' | |
concurrency_count = int(os.getenv('CONCURRENCY_COUNT', concurrency_count)) | |
api_open = bool(int(os.getenv('API_OPEN', str(int(api_open))))) | |
allow_api = bool(int(os.getenv('ALLOW_API', str(int(allow_api))))) | |
n_gpus = torch.cuda.device_count() if torch.cuda.is_available() else 0 | |
n_gpus, gpu_ids = cuda_vis_check(n_gpus) | |
if load_half is None and t5_type(base_model): | |
load_half = False | |
print("load_half=%s auto-set for %s to avoid bad generation" % (load_half, base_model), flush=True) | |
if n_gpus == 0 or get_device() == "mps": | |
# No CUDA GPUs usable | |
if get_device() != "mps": | |
print("No GPUs detected", flush=True) | |
enable_captions = False | |
gpu_id = None | |
load_8bit = False | |
load_4bit = False | |
low_bit_mode = 1 | |
if load_half is None: | |
# wouldn't work if specified True, but respect | |
load_half = False | |
load_gptq = '' | |
load_exllama = False | |
use_gpu_id = False | |
if get_device() == "cuda": | |
torch.backends.cudnn.benchmark = True | |
torch.backends.cudnn.enabled = False | |
torch.set_default_dtype(torch.float32) | |
if is_public and not inference_server and not model_lock: | |
# 12B uses ~94GB | |
# 6.9B uses ~47GB | |
base_model = 'h2oai/h2ogpt-oig-oasst1-512-6_9b' if not base_model else base_model | |
if hf_embedding_model is None: | |
# if no GPUs, use simpler embedding model to avoid cost in time | |
hf_embedding_model = "sentence-transformers/all-MiniLM-L6-v2" | |
if score_model == 'auto': | |
score_model = '' | |
else: | |
if load_half is None: | |
load_half = True | |
# CUDA GPUs visible | |
if score_model == 'auto': | |
if n_gpus >= 2: | |
# will by default place scoring model on last GPU | |
score_model = 'OpenAssistant/reward-model-deberta-v3-large-v2' | |
else: | |
score_model = '' | |
if hf_embedding_model is None: | |
# if still None, then set default | |
hf_embedding_model = 'hkunlp/instructor-large' | |
# get defaults | |
if base_model: | |
model_lower = base_model.lower() | |
elif model_lock: | |
# have 0th model be thought of as normal model | |
assert len(model_lock) > 0 and model_lock[0]['base_model'] | |
model_lower = model_lock[0]['base_model'].lower() | |
else: | |
model_lower = '' | |
if not gradio: | |
# force, else not single response like want to look at | |
stream_output = False | |
# else prompt removal can mess up output | |
chat = False | |
# hard-coded defaults | |
first_para = False | |
text_limit = None | |
if compile_model is None: | |
# too avoid noisy CLI | |
compile_model = not cli | |
if offload_folder: | |
offload_folder = makedirs(offload_folder, exist_ok=True, tmp_ok=True, use_base=True) | |
# defaults | |
caption_loader = None | |
doctr_loader = None | |
pix2struct_loader = None | |
image_loaders_options0, image_loaders_options, \ | |
pdf_loaders_options0, pdf_loaders_options, \ | |
url_loaders_options0, url_loaders_options = lg_to_gr(**locals()) | |
jq_schema0 = jq_schema | |
# transcribe | |
image_loaders = image_loaders_options0 | |
pdf_loaders = pdf_loaders_options0 | |
url_loaders = url_loaders_options0 | |
placeholder_instruction, placeholder_input, \ | |
stream_output, show_examples, \ | |
prompt_type, prompt_dict, \ | |
temperature, top_p, top_k, num_beams, \ | |
max_new_tokens, min_new_tokens, early_stopping, max_time, \ | |
repetition_penalty, num_return_sequences, \ | |
do_sample, \ | |
src_lang, tgt_lang, \ | |
examples, \ | |
task_info = \ | |
get_generate_params(model_lower, | |
chat, | |
stream_output, show_examples, | |
prompt_type, prompt_dict, | |
system_prompt, | |
pre_prompt_query, prompt_query, | |
pre_prompt_summary, prompt_summary, | |
temperature, top_p, top_k, num_beams, | |
max_new_tokens, min_new_tokens, early_stopping, max_time, | |
repetition_penalty, num_return_sequences, | |
do_sample, | |
top_k_docs, | |
chunk, | |
chunk_size, | |
image_loaders, | |
pdf_loaders, | |
url_loaders, | |
jq_schema, | |
docs_ordering_type, | |
min_max_new_tokens, | |
verbose, | |
) | |
git_hash = get_githash() if is_public or os.getenv('GET_GITHASH') else "GET_GITHASH" | |
locals_dict = locals() | |
locals_print = '\n'.join(['%s: %s' % (k, v) for k, v in locals_dict.items()]) | |
if verbose: | |
print(f"Generating model with params:\n{locals_print}", flush=True) | |
print("Command: %s\nHash: %s" % (str(' '.join(sys.argv)), git_hash), flush=True) | |
if langchain_mode != LangChainMode.DISABLED.value: | |
# SECOND PLACE where LangChain referenced, but all imports are kept local so not required | |
from gpt_langchain import prep_langchain, get_some_dbs_from_hf, get_persist_directory | |
if is_hf: | |
get_some_dbs_from_hf() | |
dbs = {} | |
for langchain_mode1 in langchain_modes: | |
langchain_type = langchain_mode_types.get(langchain_mode1, LangChainTypes.EITHER.value) | |
if langchain_type == LangChainTypes.PERSONAL.value: | |
# shouldn't prepare per-user databases here | |
continue | |
persist_directory1, langchain_type = get_persist_directory(langchain_mode1, langchain_type=langchain_type) | |
langchain_mode_types[langchain_mode1] = langchain_type | |
if langchain_type == LangChainTypes.PERSONAL.value: | |
# shouldn't prepare per-user databases here | |
continue | |
try: | |
db = prep_langchain(persist_directory1, | |
load_db_if_exists, | |
db_type, use_openai_embedding, | |
langchain_mode1, langchain_mode_paths, langchain_mode_types, | |
hf_embedding_model, | |
migrate_embedding_model, | |
auto_migrate_db, | |
kwargs_make_db=locals(), | |
verbose=verbose) | |
finally: | |
# in case updated embeddings or created new embeddings | |
clear_torch_cache() | |
dbs[langchain_mode1] = db | |
# remove None db's so can just rely upon k in dbs for if hav db | |
dbs = {k: v for k, v in dbs.items() if v is not None} | |
else: | |
dbs = {} | |
# import control | |
if os.environ.get("TEST_LANGCHAIN_IMPORT"): | |
assert 'gpt_langchain' not in sys.modules, "Dev bug, import of langchain when should not have" | |
assert 'langchain' not in sys.modules, "Dev bug, import of langchain when should not have" | |
other_model_state_defaults = dict(load_8bit=load_8bit, load_4bit=load_4bit, low_bit_mode=low_bit_mode, | |
load_half=load_half, | |
load_gptq=load_gptq, load_exllama=load_exllama, use_safetensors=use_safetensors, | |
revision=revision, use_gpu_id=use_gpu_id, gpu_id=gpu_id, | |
compile_model=compile_model, | |
use_cache=use_cache, | |
llamacpp_dict=llamacpp_dict, model_path_llama=model_path_llama, | |
model_name_gptj=model_name_gptj, | |
model_name_gpt4all_llama=model_name_gpt4all_llama, | |
model_name_exllama_if_no_config=model_name_exllama_if_no_config, | |
) | |
model_state_none = dict(model=None, tokenizer=None, device=None, | |
base_model=None, tokenizer_base_model=None, lora_weights=None, | |
inference_server=None, prompt_type=None, prompt_dict=None, | |
visible_models=None, h2ogpt_key=None, | |
) | |
model_state_none.update(other_model_state_defaults) | |
my_db_state0 = {LangChainMode.MY_DATA.value: [None, None, None]} | |
selection_docs_state0 = dict(langchain_modes=langchain_modes, | |
langchain_mode_paths=langchain_mode_paths, | |
langchain_mode_types=langchain_mode_types) | |
selection_docs_state = copy.deepcopy(selection_docs_state0) | |
if cli or not gradio: | |
# initial state for query prompt | |
model_name = base_model | |
pre_prompt_query, prompt_query, pre_prompt_summary, prompt_summary = \ | |
get_langchain_prompts(pre_prompt_query, prompt_query, | |
pre_prompt_summary, prompt_summary, | |
model_name, inference_server, | |
model_path_llama) | |
if cli: | |
from cli import run_cli | |
return run_cli(**get_kwargs(run_cli, exclude_names=['model_state0'], **locals())) | |
elif not gradio: | |
from eval import run_eval | |
return run_eval(**get_kwargs(run_eval, exclude_names=['model_state0'], **locals())) | |
elif gradio or prepare_offline_level > 0: | |
# imported here so don't require gradio to run generate | |
from gradio_runner import go_gradio | |
# get default model | |
model_states = [] | |
model_list = [dict(base_model=base_model, tokenizer_base_model=tokenizer_base_model, lora_weights=lora_weights, | |
inference_server=inference_server, prompt_type=prompt_type, prompt_dict=prompt_dict, | |
visible_models=None, h2ogpt_key=None)] | |
model_list[0].update(other_model_state_defaults) | |
# FIXME: hyper per model, not about model loading | |
# for k in gen_hyper: | |
# model_list[k] = locals()[k] | |
model_list0 = copy.deepcopy(model_list) # just strings, safe to deepcopy | |
model_state0 = model_state_none.copy() | |
assert len(model_state_none) == len(model_state0) | |
if model_lock: | |
model_list = model_lock | |
# do reverse, so first is default base_model etc., so some logic works in go_gradio() more easily | |
for model_dict in reversed(model_list): | |
# handle defaults user didn't have to pass | |
# special defaults, ignore defaults for these if not specifically set, replace with '' | |
model_dict['base_model'] = model_dict.get('base_model', '') | |
model_dict['tokenizer_base_model'] = model_dict.get('tokenizer_base_model', '') | |
model_dict['lora_weights'] = model_dict.get('lora_weights', '') | |
model_dict['inference_server'] = model_dict.get('inference_server', '') | |
if prepare_offline_level >= 2: | |
if 'openai' not in model_dict['inference_server'] and 'replicate' not in model_dict['inference_server']: | |
# assume want locally, but OpenAI and replicate are never local for model part | |
model_dict['inference_server'] = '' | |
prompt_type_infer = not model_dict.get('prompt_type') | |
model_dict['prompt_type'] = model_dict.get('prompt_type', | |
model_list0[0]['prompt_type']) # don't use mutated value | |
# rest of generic defaults | |
for k in model_list0[0]: | |
if k not in model_dict: | |
model_dict[k] = model_list0[0][k] | |
# begin prompt adjustments | |
# get query prompt for (say) last base model if using model lock | |
pre_prompt_query1, prompt_query1, pre_prompt_summary1, prompt_summary1 = ( | |
get_langchain_prompts(pre_prompt_query, prompt_query, | |
pre_prompt_summary, prompt_summary, | |
model_dict['base_model'], | |
model_dict['inference_server'], | |
model_dict['model_path_llama'])) | |
# if mixed setup, choose non-empty so best models best | |
# FIXME: Make per model dict passed through to evaluate | |
pre_prompt_query = pre_prompt_query or pre_prompt_query1 | |
prompt_query = prompt_query or prompt_query1 | |
pre_prompt_summary = pre_prompt_summary or pre_prompt_summary1 | |
prompt_summary = prompt_summary or prompt_summary1 | |
# try to infer, ignore empty initial state leading to get_generate_params -> 'plain' | |
if prompt_type_infer: | |
model_lower1 = model_dict['base_model'].lower() | |
if model_lower1 in inv_prompt_type_to_model_lower: | |
model_dict['prompt_type'] = inv_prompt_type_to_model_lower[model_lower1] | |
model_dict['prompt_dict'], error0 = get_prompt(model_dict['prompt_type'], '', | |
chat=False, context='', reduced=False, | |
making_context=False, | |
return_dict=True, | |
system_prompt=system_prompt) | |
else: | |
model_dict['prompt_dict'] = prompt_dict | |
else: | |
model_dict['prompt_dict'] = prompt_dict | |
model_dict['prompt_dict'] = model_dict.get('prompt_dict', model_dict['prompt_dict']) | |
# end prompt adjustments | |
all_kwargs = locals().copy() | |
all_kwargs.update(model_dict) | |
if model_dict['base_model'] and not login_mode_if_model0: | |
model0, tokenizer0, device = get_model(reward_type=False, | |
**get_kwargs(get_model, exclude_names=['reward_type'], | |
**all_kwargs)) | |
else: | |
# if empty model, then don't load anything, just get gradio up | |
model0, tokenizer0, device = None, None, None | |
if model0 is None: | |
if fail_if_cannot_connect: | |
raise RuntimeError("Could not connect, see logs") | |
# skip | |
if isinstance(model_lock, list): | |
model_lock.remove(model_dict) | |
continue | |
model_state_trial = dict(model=model0, tokenizer=tokenizer0, device=device) | |
model_state_trial.update(model_dict) | |
diff_keys = set(list(model_state_none.keys())).symmetric_difference(model_state_trial.keys()) | |
assert len(model_state_none) == len(model_state_trial), diff_keys | |
print("Model %s" % model_dict, flush=True) | |
if model_lock: | |
# last in iteration will be first | |
model_states.insert(0, model_state_trial) | |
# fill model_state0 so go_gradio() easier, manage model_states separately | |
model_state0 = model_state_trial.copy() | |
else: | |
model_state0 = model_state_trial.copy() | |
assert len(model_state_none) == len(model_state0) | |
visible_models = str_to_list(visible_models, allow_none=True) # None means first model | |
all_models = [x.get('base_model', xi) for xi, x in enumerate(model_states)] | |
visible_models_state0 = [x.get('base_model', xi) for xi, x in enumerate(model_states) if | |
visible_models is None or | |
x.get('base_model', xi) in visible_models or | |
xi in visible_models] | |
# update to be consistent with what is passed from CLI and model chose | |
# do after go over all models if multi-model, so don't contaminate | |
# This is just so UI shows reasonable correct value, not 2048 dummy value | |
if len(model_states) >= 1: | |
max_seq_len = model_states[0]['tokenizer'].model_max_length | |
# get score model | |
all_kwargs = locals().copy() | |
smodel, stokenizer, sdevice = get_score_model(reward_type=True, | |
**get_kwargs(get_score_model, exclude_names=['reward_type'], | |
**all_kwargs)) | |
score_model_state0 = dict(model=smodel, tokenizer=stokenizer, device=sdevice, | |
base_model=score_model, tokenizer_base_model='', lora_weights='', | |
inference_server='', prompt_type='', prompt_dict='', | |
visible_models=None, h2ogpt_key=None) | |
if enable_captions: | |
if pre_load_caption_model: | |
from image_captions import H2OImageCaptionLoader | |
caption_loader = H2OImageCaptionLoader(caption_gpu=caption_gpu).load_model() | |
else: | |
caption_loader = 'gpu' if n_gpus > 0 and caption_gpu else 'cpu' | |
else: | |
caption_loader = False | |
if pre_load_embedding_model and \ | |
langchain_mode != LangChainMode.DISABLED.value and \ | |
not use_openai_embedding: | |
from src.gpt_langchain import get_embedding | |
hf_embedding_model = dict(name=hf_embedding_model, | |
model=get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model, | |
preload=True)) | |
if enable_doctr or enable_pdf_ocr in [True, 'auto', 'on']: | |
doctr_loader = 'gpu' if n_gpus > 0 and doctr_gpu else 'cpu' | |
else: | |
doctr_loader = False | |
# assume gradio needs everything | |
go_gradio(**locals()) | |
def get_config(base_model, | |
use_auth_token=False, | |
trust_remote_code=True, | |
offload_folder=None, | |
revision=None, | |
rope_scaling=None, | |
triton_attn=False, | |
long_sequence=True, | |
return_model=False, | |
raise_exception=False, | |
max_seq_len=None, | |
verbose=False, | |
): | |
from accelerate import init_empty_weights | |
with init_empty_weights(): | |
from transformers import AutoConfig | |
try: | |
config = AutoConfig.from_pretrained(base_model, use_auth_token=use_auth_token, | |
trust_remote_code=trust_remote_code, | |
offload_folder=offload_folder, | |
revision=revision, | |
rope_scaling=rope_scaling if rope_scaling else None) | |
except OSError as e: | |
if raise_exception: | |
raise | |
if 'not a local folder and is not a valid model identifier listed on' in str( | |
e) or '404 Client Error' in str(e) or "couldn't connect" in str(e): | |
# e.g. llama, gpjt, etc. | |
# e.g. HF TGI but not model on HF or private etc. | |
if max_seq_len is None and base_model.lower() in non_hf_types: | |
print("Could not determine --max_seq_len, setting to 2048. Pass if not correct", flush=True) | |
max_seq_len = 2048 | |
# HF TGI server only should really require prompt_type, not HF model state | |
return None, None, max_seq_len | |
else: | |
raise | |
if triton_attn and 'mpt-' in base_model.lower(): | |
config.attn_config['attn_impl'] = 'triton' | |
if long_sequence: | |
if 'mpt-7b-storywriter' in base_model.lower(): | |
config.update({"max_seq_len": 83968}) | |
if 'mosaicml/mpt-7b-chat' in base_model.lower(): | |
config.update({"max_seq_len": 4096}) | |
if 'mpt-30b' in base_model.lower(): | |
config.update({"max_seq_len": 2 * 8192}) | |
if return_model and \ | |
issubclass(config.__class__, tuple(AutoModel._model_mapping.keys())): | |
model = AutoModel.from_config( | |
config, | |
trust_remote_code=trust_remote_code, | |
) | |
else: | |
# can't infer | |
model = None | |
if 'falcon' in base_model.lower(): | |
config.use_cache = False | |
# allow override | |
if max_seq_len is not None: | |
print("Overriding max_seq_len -> %d" % max_seq_len, flush=True) | |
else: | |
if hasattr(config, 'max_seq_len'): | |
max_seq_len = int(config.max_seq_len) | |
elif hasattr(config, 'max_position_embeddings') and isinstance(config.max_position_embeddings, int): | |
# help automatically limit inputs to generate | |
max_seq_len = config.max_position_embeddings | |
if verbose: | |
print("Used max_position_embeddings=%s as base model (pre-rope) max_seq_len." | |
" If not desired, pass --max_seq_len and set to some integer value." % config.max_position_embeddings, | |
flush=True) | |
elif hasattr(config, 'n_ctx'): | |
# e.g. gpt2 | |
max_seq_len = int(config.n_ctx) | |
else: | |
print("Could not determine --max_seq_len, setting to 2048. Pass if not correct", flush=True) | |
max_seq_len = 2048 | |
# FIXME: | |
# raise RuntimeError("Could not determine max_seq_len," | |
# " please pass --max_seq_len and set to some value, e.g. 2048.") | |
if rope_scaling: | |
if rope_scaling.get('factor'): | |
# HF transformers | |
max_seq_len *= rope_scaling.get('factor') | |
elif rope_scaling.get('alpha_value'): | |
# exllama | |
# Note: exllama's own tokenizer has this set correctly in loaders.py, this config will be unused | |
max_seq_len *= rope_scaling.get('alpha_value') | |
print("Automatically setting max_seq_len=%d for RoPE scaling" % max_seq_len, flush=True) | |
return config, model, max_seq_len | |
def get_non_lora_model(base_model, model_loader, load_half, | |
load_gptq, | |
load_exllama, | |
use_safetensors, | |
revision, | |
model_kwargs, reward_type, | |
config, model, | |
gpu_id=0, | |
): | |
""" | |
Ensure model gets on correct device | |
""" | |
if model is not None: | |
# NOTE: Can specify max_memory={0: max_mem, 1: max_mem}, to shard model | |
# NOTE: Some models require avoiding sharding some layers, | |
# then would pass no_split_module_classes and give list of those layers. | |
from accelerate import infer_auto_device_map | |
device_map = infer_auto_device_map( | |
model, | |
dtype=torch.float16 if load_half else torch.float32, | |
) | |
if hasattr(model, 'model'): | |
device_map_model = infer_auto_device_map( | |
model.model, | |
dtype=torch.float16 if load_half else torch.float32, | |
) | |
device_map.update(device_map_model) | |
else: | |
device_map = "auto" | |
n_gpus = torch.cuda.device_count() if torch.cuda.is_available() else 0 | |
n_gpus, gpu_ids = cuda_vis_check(n_gpus) | |
if n_gpus > 0: | |
if gpu_id >= 0: | |
# FIXME: If really distributes model, tend to get things like: ValueError: gpt_neox.embed_in.weight doesn't have any device set. | |
# So avoid for now, just put on first GPU, unless score_model, put on last | |
if reward_type: | |
device_map = {'': n_gpus - 1} | |
else: | |
device_map = {'': min(n_gpus - 1, gpu_id)} | |
if gpu_id == -1: | |
device_map = {'': 'cuda'} | |
else: | |
device_map = {'': 'cpu'} | |
model_kwargs['load_in_8bit'] = False | |
model_kwargs['load_in_4bit'] = False | |
print('device_map: %s' % device_map, flush=True) | |
load_in_8bit = model_kwargs.get('load_in_8bit', False) | |
load_in_4bit = model_kwargs.get('load_in_4bit', False) | |
model_kwargs['device_map'] = device_map | |
model_kwargs['use_safetensors'] = use_safetensors | |
model_kwargs['revision'] = revision | |
pop_unused_model_kwargs(model_kwargs) | |
if load_exllama: | |
model = model_loader | |
elif load_gptq: | |
if 'Llama-2-70B-chat-GPTQ' in base_model: | |
model_kwargs.update(dict(inject_fused_attention=False)) | |
model_kwargs.pop('torch_dtype', None) | |
model_kwargs.pop('device_map') | |
model = model_loader( | |
model_name_or_path=base_model, | |
model_basename=load_gptq, | |
**model_kwargs, | |
) | |
elif load_in_8bit or load_in_4bit or not load_half: | |
model = model_loader( | |
base_model, | |
config=config, | |
**model_kwargs, | |
) | |
else: | |
model = model_loader( | |
base_model, | |
config=config, | |
**model_kwargs, | |
) | |
if not getattr(model, "is_quantized", False): | |
model = model.half() | |
return model | |
def get_client_from_inference_server(inference_server, base_model=None, raise_connection_exception=False): | |
inference_server, headers = get_hf_server(inference_server) | |
# preload client since slow for gradio case especially | |
from gradio_utils.grclient import GradioClient | |
gr_client = None | |
hf_client = None | |
if headers is None: | |
try: | |
print("GR Client Begin: %s %s" % (inference_server, base_model), flush=True) | |
# first do sanity check if alive, else gradio client takes too long by default | |
requests.get(inference_server, timeout=int(os.getenv('REQUEST_TIMEOUT', '30'))) | |
gr_client = GradioClient(inference_server) | |
print("GR Client End: %s" % inference_server, flush=True) | |
except (OSError, ValueError) as e: | |
# Occurs when wrong endpoint and should have been HF client, so don't hard raise, just move to HF | |
gr_client = None | |
print("GR Client Failed %s %s: %s" % (inference_server, base_model, str(e)), flush=True) | |
except (ConnectTimeoutError, ConnectTimeout, MaxRetryError, ConnectionError, ConnectionError2, | |
JSONDecodeError, ReadTimeout2, KeyError) as e: | |
t, v, tb = sys.exc_info() | |
ex = ''.join(traceback.format_exception(t, v, tb)) | |
print("GR Client Failed %s %s: %s" % (inference_server, base_model, str(ex)), flush=True) | |
if raise_connection_exception: | |
raise | |
if gr_client is None: | |
res = None | |
from text_generation import Client as HFClient | |
print("HF Client Begin: %s %s" % (inference_server, base_model)) | |
try: | |
hf_client = HFClient(inference_server, headers=headers, timeout=int(os.getenv('REQUEST_TIMEOUT', '30'))) | |
# quick check valid TGI endpoint | |
res = hf_client.generate('What?', max_new_tokens=1) | |
hf_client = HFClient(inference_server, headers=headers, timeout=300) | |
except (ConnectTimeoutError, ConnectTimeout, MaxRetryError, ConnectionError, ConnectionError2, | |
JSONDecodeError, ReadTimeout2, KeyError) as e: | |
hf_client = None | |
t, v, tb = sys.exc_info() | |
ex = ''.join(traceback.format_exception(t, v, tb)) | |
print("HF Client Failed %s %s: %s" % (inference_server, base_model, str(ex))) | |
if raise_connection_exception: | |
raise | |
print("HF Client End: %s %s : %s" % (inference_server, base_model, res)) | |
return inference_server, gr_client, hf_client | |
def get_model( | |
load_8bit: bool = False, | |
load_4bit: bool = False, | |
low_bit_mode: int = 1, | |
load_half: bool = True, | |
load_gptq: str = '', | |
load_exllama: bool = False, | |
use_safetensors: bool = False, | |
revision: str = None, | |
use_gpu_id: bool = True, | |
base_model: str = '', | |
inference_server: str = "", | |
tokenizer_base_model: str = '', | |
lora_weights: str = "", | |
gpu_id: int = 0, | |
n_jobs=None, | |
reward_type: bool = None, | |
local_files_only: bool = False, | |
resume_download: bool = True, | |
use_auth_token: Union[str, bool] = False, | |
trust_remote_code: bool = True, | |
offload_folder: str = None, | |
rope_scaling: dict = None, | |
max_seq_len: int = None, | |
compile_model: bool = True, | |
llamacpp_dict=None, | |
verbose: bool = False, | |
): | |
""" | |
:param load_8bit: load model in 8-bit, not supported by all models | |
:param load_4bit: load model in 4-bit, not supported by all models | |
:param low_bit_mode: See gen.py | |
:param load_half: load model in 16-bit | |
:param load_gptq: GPTQ model_basename | |
:param load_exllama: whether to use exllama | |
:param use_safetensors: use safetensors file | |
:param revision: | |
:param use_gpu_id: Use torch infer of optimal placement of layers on devices (for non-lora case) | |
For non-LORA case, False will spread shards across multiple GPUs, but this can lead to cuda:x cuda:y mismatches | |
So it is not the default | |
:param base_model: name/path of base model | |
:param inference_server: whether base_model is hosted locally ('') or via http (url) | |
:param tokenizer_base_model: name/path of tokenizer | |
:param lora_weights: name/path | |
:param gpu_id: which GPU (0..n_gpus-1) or allow all GPUs if relevant (-1) | |
:param n_jobs: number of cores to use (e.g. for llama CPU model) | |
:param reward_type: reward type model for sequence classification | |
:param local_files_only: use local files instead of from HF | |
:param resume_download: resume downloads from HF | |
:param use_auth_token: assumes user did on CLI `huggingface-cli login` to access private repo | |
:param trust_remote_code: trust code needed by model | |
:param offload_folder: offload folder | |
:param rope_scaling: scaling for rope-based models, e.g. "{'type':'dynamic', 'factor':4}" | |
:param max_seq_len: override for maximum sequence length for model | |
:param max_seq_len: if set, use as max_seq_len for model | |
:param compile_model: whether to compile torch model | |
:param llamacpp_dict: dict of llama.cpp and GPT4All model options | |
:param verbose: | |
:return: | |
""" | |
print("Starting get_model: %s %s" % (base_model, inference_server), flush=True) | |
triton_attn = False | |
long_sequence = True | |
config_kwargs = dict(use_auth_token=use_auth_token, | |
trust_remote_code=trust_remote_code, | |
offload_folder=offload_folder, | |
rope_scaling=rope_scaling, | |
triton_attn=triton_attn, | |
long_sequence=long_sequence, | |
revision=revision, | |
max_seq_len=max_seq_len, | |
verbose=verbose) | |
config, _, max_seq_len = get_config(base_model, **config_kwargs, raise_exception=False) | |
if base_model in non_hf_types: | |
assert config is None, "Expected config None for %s" % base_model | |
llama_type_from_config = 'llama' in str(config).lower() | |
llama_type_from_name = "llama" in base_model.lower() | |
llama_type = llama_type_from_config or llama_type_from_name | |
if "xgen" in base_model.lower() or 'llama2' in base_model.lower() or 'llama-2' in base_model.lower(): | |
llama_type = False | |
if llama_type: | |
if verbose: | |
print("Detected as llama type from" | |
" config (%s) or name (%s)" % (llama_type_from_config, llama_type_from_name), flush=True) | |
model_name_exllama_if_no_config = '' if not llamacpp_dict else llamacpp_dict.get('model_name_exllama_if_no_config', | |
'') | |
model_loader, tokenizer_loader, conditional_type = ( | |
get_loaders(model_name=base_model, reward_type=reward_type, llama_type=llama_type, | |
load_gptq=load_gptq, load_exllama=load_exllama, config=config, | |
rope_scaling=rope_scaling, max_seq_len=max_seq_len, | |
model_name_exllama_if_no_config=model_name_exllama_if_no_config)) | |
tokenizer_kwargs = dict(local_files_only=local_files_only, | |
resume_download=resume_download, | |
use_auth_token=use_auth_token, | |
trust_remote_code=trust_remote_code, | |
offload_folder=offload_folder, | |
revision=revision, | |
padding_side='left', | |
config=config, | |
) | |
if not tokenizer_base_model: | |
tokenizer_base_model = base_model | |
if load_exllama: | |
tokenizer = tokenizer_loader | |
elif config is not None and tokenizer_loader is not None and not isinstance(tokenizer_loader, str): | |
if load_exllama: | |
tokenizer = tokenizer_loader | |
else: | |
tokenizer = tokenizer_loader.from_pretrained(tokenizer_base_model, **tokenizer_kwargs) | |
# sets raw (no cushion) limit | |
# If using RoPE with scaling, then for non-exllama models (e.g. HF models), | |
# then config -> tokenizer will set model_max_length correctly | |
set_model_max_len(max_seq_len, tokenizer, verbose=False) | |
# if using fake tokenizer, not really accurate when lots of numbers, give a bit of buffer, else get: | |
# Generation Failed: Input validation error: `inputs` must have less than 2048 tokens. Given: 2233 | |
tokenizer.model_max_length = tokenizer.model_max_length - 50 | |
else: | |
tokenizer = None | |
if isinstance(inference_server, str) and inference_server.startswith("http"): | |
inference_server, gr_client, hf_client = get_client_from_inference_server(inference_server, | |
base_model=base_model) | |
client = gr_client or hf_client | |
# Don't return None, None for model, tokenizer so triggers | |
if tokenizer is None: | |
# FIXME: Could use only tokenizer from llama etc. but hard to detatch from model, just use fake for now | |
if os.getenv("HARD_ASSERTS") and base_model not in non_hf_types: | |
raise RuntimeError("Unexpected tokenizer=None") | |
tokenizer = FakeTokenizer() | |
return client, tokenizer, 'http' | |
if isinstance(inference_server, str) and ( | |
inference_server.startswith('openai') or | |
inference_server.startswith('vllm') or | |
inference_server.startswith('replicate') or | |
inference_server.startswith('sagemaker') | |
): | |
if inference_server.startswith('openai'): | |
assert os.getenv('OPENAI_API_KEY'), "Set environment for OPENAI_API_KEY" | |
# Don't return None, None for model, tokenizer so triggers | |
# include small token cushion | |
max_seq_len = model_token_mapping[base_model] | |
if inference_server.startswith('replicate'): | |
assert len(inference_server.split(':')) >= 3, "Expected replicate:model string, got %s" % inference_server | |
assert os.getenv('REPLICATE_API_TOKEN'), "Set environment for REPLICATE_API_TOKEN" | |
assert max_seq_len is not None, "Please pass --max_seq_len=<max_seq_len> for replicate models." | |
try: | |
import replicate as replicate_python | |
except ImportError: | |
raise ImportError( | |
"Could not import replicate python package. " | |
"Please install it with `pip install replicate`." | |
) | |
if inference_server.startswith('sagemaker'): | |
assert len( | |
inference_server.split( | |
':')) >= 3, "Expected sagemaker_chat:<endpoint name>:<region>, got %s" % inference_server | |
assert os.getenv('AWS_ACCESS_KEY_ID'), "Set environment for AWS_ACCESS_KEY_ID" | |
assert os.getenv('AWS_SECRET_ACCESS_KEY'), "Set environment for AWS_SECRET_ACCESS_KEY" | |
# Don't return None, None for model, tokenizer so triggers | |
# include small token cushion | |
if inference_server.startswith('openai') or tokenizer is None: | |
# don't use fake (tiktoken) tokenizer for vLLM//replicate if know actual model with actual tokenizer | |
tokenizer = FakeTokenizer(model_max_length=max_seq_len - 50) | |
return inference_server, tokenizer, inference_server | |
assert not inference_server, "Malformed inference_server=%s" % inference_server | |
if base_model in non_hf_types: | |
from gpt4all_llm import get_model_tokenizer_gpt4all | |
model, tokenizer, device = get_model_tokenizer_gpt4all(base_model, n_jobs=n_jobs, | |
max_seq_len=max_seq_len, | |
llamacpp_dict=llamacpp_dict) | |
return model, tokenizer, device | |
if load_exllama: | |
return model_loader, tokenizer, 'cuda' | |
# get local torch-HF model | |
return get_hf_model(load_8bit=load_8bit, | |
load_4bit=load_4bit, | |
low_bit_mode=low_bit_mode, | |
load_half=load_half, | |
load_gptq=load_gptq, | |
use_safetensors=use_safetensors, | |
revision=revision, | |
use_gpu_id=use_gpu_id, | |
base_model=base_model, | |
tokenizer_base_model=tokenizer_base_model, | |
lora_weights=lora_weights, | |
gpu_id=gpu_id, | |
reward_type=reward_type, | |
local_files_only=local_files_only, | |
resume_download=resume_download, | |
use_auth_token=use_auth_token, | |
trust_remote_code=trust_remote_code, | |
offload_folder=offload_folder, | |
rope_scaling=rope_scaling, | |
compile_model=compile_model, | |
llama_type=llama_type, | |
config_kwargs=config_kwargs, | |
tokenizer_kwargs=tokenizer_kwargs, | |
verbose=verbose) | |
def get_hf_model(load_8bit: bool = False, | |
load_4bit: bool = False, | |
low_bit_mode: int = 1, | |
load_half: bool = True, | |
load_gptq: str = '', | |
use_safetensors: bool = False, | |
revision: str = None, | |
use_gpu_id: bool = True, | |
base_model: str = '', | |
tokenizer_base_model: str = '', | |
lora_weights: str = "", | |
gpu_id: int = 0, | |
reward_type: bool = None, | |
local_files_only: bool = False, | |
resume_download: bool = True, | |
use_auth_token: Union[str, bool] = False, | |
trust_remote_code: bool = True, | |
offload_folder: str = None, | |
rope_scaling: dict = None, | |
compile_model: bool = True, | |
llama_type: bool = False, | |
config_kwargs=None, | |
tokenizer_kwargs=None, | |
verbose: bool = False, | |
): | |
assert config_kwargs is not None | |
assert tokenizer_kwargs is not None | |
load_exllama = False # Never should be in HF code for exllama | |
if lora_weights is not None and lora_weights.strip(): | |
if verbose: | |
print("Get %s lora weights" % lora_weights, flush=True) | |
device = get_device() | |
if 'gpt2' in base_model.lower(): | |
# RuntimeError: where expected condition to be a boolean tensor, but got a tensor with dtype Half | |
load_8bit = False | |
load_4bit = False | |
assert base_model.strip(), ( | |
"Please choose a base model with --base_model (CLI) or load one from Models Tab (gradio)" | |
) | |
model_loader, tokenizer_loader, conditional_type = ( | |
get_loaders(model_name=base_model, reward_type=reward_type, llama_type=llama_type, | |
load_gptq=load_gptq, load_exllama=load_exllama)) | |
config, _, max_seq_len = get_config(base_model, return_model=False, raise_exception=True, **config_kwargs) | |
if tokenizer_loader is not None and not isinstance(tokenizer_loader, str): | |
if load_exllama: | |
tokenizer = tokenizer_loader | |
else: | |
tokenizer = tokenizer_loader.from_pretrained(tokenizer_base_model, | |
**tokenizer_kwargs) | |
else: | |
tokenizer = tokenizer_loader | |
if isinstance(tokenizer, str): | |
# already a pipeline, tokenizer_loader is string for task | |
model = model_loader(tokenizer, | |
model=base_model, | |
device=0 if device == "cuda" else -1, | |
torch_dtype=torch.float16 if device == 'cuda' else torch.float32) | |
else: | |
assert device in ["cuda", "cpu", "mps"], "Unsupported device %s" % device | |
model_kwargs = dict(local_files_only=local_files_only, | |
torch_dtype=torch.float16 if device == 'cuda' else torch.float32, | |
resume_download=resume_download, | |
use_auth_token=use_auth_token, | |
trust_remote_code=trust_remote_code, | |
offload_folder=offload_folder, | |
revision=revision, | |
# rope_scaling=rope_scaling, # only put into config | |
) | |
if 'mbart-' not in base_model.lower() and 'mpt-' not in base_model.lower(): | |
if use_gpu_id and gpu_id is not None and gpu_id >= 0 and device == 'cuda': | |
device_map = {"": gpu_id} | |
else: | |
device_map = "auto" | |
model_kwargs.update(dict(load_in_8bit=load_8bit, | |
load_in_4bit=load_4bit, | |
device_map=device_map, | |
)) | |
if 'mpt-' in base_model.lower() and gpu_id is not None and gpu_id >= 0: | |
# MPT doesn't support spreading over GPUs | |
model_kwargs.update(dict(device_map={"": gpu_id} if device == 'cuda' else "cpu")) | |
if 'OpenAssistant/reward-model'.lower() in base_model.lower(): | |
# FIXME: could put on other GPUs | |
model_kwargs['device_map'] = {"": 0} if device == 'cuda' else {"": 'cpu'} | |
model_kwargs.pop('torch_dtype', None) | |
pop_unused_model_kwargs(model_kwargs) | |
n_gpus = torch.cuda.device_count() if torch.cuda.is_available() else 0 | |
n_gpus, gpu_ids = cuda_vis_check(n_gpus) | |
if low_bit_mode == 1 and n_gpus != 0: | |
from transformers import BitsAndBytesConfig | |
model_kwargs['quantization_config'] = BitsAndBytesConfig(bnb_4bit_compute_dtype=torch.bfloat16, | |
load_in_4bit=load_4bit, | |
load_in_8bit=load_8bit, | |
) | |
elif low_bit_mode == 2 and n_gpus != 0: | |
from transformers import BitsAndBytesConfig | |
model_kwargs['quantization_config'] = BitsAndBytesConfig(bnb_4bit_quant_type="nf4", | |
load_in_4bit=load_4bit, | |
load_in_8bit=load_8bit, | |
) | |
elif low_bit_mode == 3 and n_gpus != 0: | |
from transformers import BitsAndBytesConfig | |
model_kwargs['quantization_config'] = BitsAndBytesConfig(bnb_4bit_use_double_quant=True, | |
load_in_4bit=load_4bit, | |
load_in_8bit=load_8bit, | |
) | |
elif low_bit_mode == 4 and n_gpus != 0: | |
from transformers import BitsAndBytesConfig | |
model_kwargs['quantization_config'] = BitsAndBytesConfig(bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4", | |
load_in_4bit=load_4bit, | |
load_in_8bit=load_8bit, | |
) | |
if not lora_weights: | |
# torch.device context uses twice memory for AutoGPTQ | |
context = NullContext if load_gptq else torch.device | |
with context(device): | |
if use_gpu_id: | |
config, model, max_seq_len = get_config(base_model, | |
return_model=True, raise_exception=True, **config_kwargs) | |
model = get_non_lora_model(base_model, model_loader, load_half, load_gptq, | |
load_exllama, | |
use_safetensors, | |
revision, | |
model_kwargs, reward_type, | |
config, model, | |
gpu_id=gpu_id, | |
) | |
else: | |
config, _, max_seq_len = get_config(base_model, **config_kwargs) | |
if load_half and not (load_8bit or load_4bit or load_gptq): | |
model = model_loader( | |
base_model, | |
config=config, | |
**model_kwargs) | |
if not getattr(model, "is_quantized", False): | |
model = model.half() | |
else: | |
model = model_loader( | |
base_model, | |
config=config, | |
**model_kwargs) | |
elif load_8bit or load_4bit: | |
config, _, max_seq_len = get_config(base_model, **config_kwargs) | |
model = model_loader( | |
base_model, | |
config=config, | |
**model_kwargs | |
) | |
from peft import PeftModel # loads cuda, so avoid in global scope | |
model = PeftModel.from_pretrained( | |
model, | |
lora_weights, | |
torch_dtype=torch.float16 if device == 'cuda' else torch.float32, | |
local_files_only=local_files_only, | |
resume_download=resume_download, | |
use_auth_token=use_auth_token, | |
trust_remote_code=trust_remote_code, | |
offload_folder=offload_folder, | |
rope_scaling=rope_scaling, | |
revision=revision, | |
device_map={"": 0} if device == 'cuda' else {"": 'cpu'}, # seems to be required | |
) | |
else: | |
with torch.device(device): | |
config, _, max_seq_len = get_config(base_model, raise_exception=True, **config_kwargs) | |
model = model_loader( | |
base_model, | |
config=config, | |
**model_kwargs | |
) | |
from peft import PeftModel # loads cuda, so avoid in global scope | |
model = PeftModel.from_pretrained( | |
model, | |
lora_weights, | |
torch_dtype=torch.float16 if device == 'cuda' else torch.float32, | |
local_files_only=local_files_only, | |
resume_download=resume_download, | |
use_auth_token=use_auth_token, | |
trust_remote_code=trust_remote_code, | |
offload_folder=offload_folder, | |
rope_scaling=rope_scaling, | |
device_map="auto", | |
) | |
if load_half and not load_gptq: | |
if not getattr(model, "is_quantized", False): | |
model = model.half() | |
# unwind broken decapoda-research config | |
if llama_type: | |
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk | |
model.config.bos_token_id = 1 | |
model.config.eos_token_id = 2 | |
if 'gpt2' in base_model.lower(): | |
# add special tokens that otherwise all share the same id | |
tokenizer.add_special_tokens({'bos_token': '<bos>', | |
'eos_token': '<eos>', | |
'pad_token': '<pad>'}) | |
if not isinstance(tokenizer, str): | |
model.eval() | |
if torch.__version__ >= "2" and sys.platform != "win32" and compile_model: | |
model = torch.compile(model) | |
set_model_max_len(max_seq_len, tokenizer, verbose=False, reward_type=reward_type) | |
# tell if conditional type | |
model.conditional_type = conditional_type | |
tokenizer.conditional_type = conditional_type | |
return model, tokenizer, device | |
def set_model_max_len(max_seq_len, tokenizer, verbose=False, reward_type=False): | |
if reward_type: | |
# limit deberta, else uses too much memory and not worth response score | |
tokenizer.model_max_length = 512 | |
return | |
tokenizer.model_max_length = int(max_seq_len) | |
if verbose: | |
print("model_max_length=%s" % tokenizer.model_max_length, flush=True) | |
# for bug in HF transformers | |
if tokenizer.model_max_length > 100000000: | |
tokenizer.model_max_length = 2048 | |
def pop_unused_model_kwargs(model_kwargs): | |
""" | |
in-place pop unused kwargs that are not dependency-upgrade friendly | |
no point passing in False, is default, and helps avoid needing to update requirements for new deps | |
:param model_kwargs: | |
:return: | |
""" | |
check_list = ['load_in_8bit', 'load_in_4bit'] | |
for k in check_list: | |
if k in model_kwargs and not model_kwargs[k]: | |
model_kwargs.pop(k) | |
def get_score_model(score_model: str = None, | |
load_8bit: bool = False, | |
load_4bit: bool = False, | |
low_bit_mode=1, | |
load_half: bool = True, | |
load_gptq: str = '', | |
load_exllama: bool = False, | |
use_gpu_id: bool = True, | |
base_model: str = '', | |
inference_server: str = '', | |
tokenizer_base_model: str = '', | |
lora_weights: str = "", | |
gpu_id: int = 0, | |
n_jobs=None, | |
reward_type: bool = None, | |
local_files_only: bool = False, | |
resume_download: bool = True, | |
use_auth_token: Union[str, bool] = False, | |
trust_remote_code: bool = True, | |
offload_folder: str = None, | |
rope_scaling: dict = None, | |
compile_model: bool = True, | |
llamacpp_dict: typing.Dict = None, | |
verbose: bool = False, | |
): | |
if score_model is not None and score_model.strip(): | |
load_8bit = False | |
load_4bit = False | |
low_bit_mode = 1 | |
load_half = False | |
load_gptq = '' | |
load_exllama = False | |
use_safetensors = False | |
revision = None | |
base_model = score_model.strip() | |
tokenizer_base_model = '' | |
lora_weights = '' | |
inference_server = '' | |
llama_type = False | |
max_seq_len = None | |
compile_model = False | |
llamacpp_dict = {} | |
smodel, stokenizer, sdevice = get_model(reward_type=True, | |
**get_kwargs(get_model, exclude_names=['reward_type'], **locals())) | |
else: | |
smodel, stokenizer, sdevice = None, None, None | |
return smodel, stokenizer, sdevice | |
def evaluate_fake(*args, **kwargs): | |
yield dict(response=invalid_key_msg, sources='') | |
return | |
def evaluate( | |
model_state, | |
my_db_state, | |
selection_docs_state, | |
requests_state, | |
# START NOTE: Examples must have same order of parameters | |
instruction, | |
iinput, | |
context, | |
stream_output, | |
prompt_type, | |
prompt_dict, | |
temperature, | |
top_p, | |
top_k, | |
num_beams, | |
max_new_tokens, | |
min_new_tokens, | |
early_stopping, | |
max_time, | |
repetition_penalty, | |
num_return_sequences, | |
do_sample, | |
chat, | |
instruction_nochat, | |
iinput_nochat, | |
langchain_mode, | |
add_chat_history_to_context, | |
langchain_action, | |
langchain_agents, | |
top_k_docs, | |
chunk, | |
chunk_size, | |
document_subset, | |
document_choice, | |
pre_prompt_query, | |
prompt_query, | |
pre_prompt_summary, | |
prompt_summary, | |
system_prompt, | |
image_loaders, | |
pdf_loaders, | |
url_loaders, | |
jq_schema, | |
visible_models, | |
h2ogpt_key, | |
add_search_to_context, | |
chat_conversation, | |
text_context_list, | |
docs_ordering_type, | |
min_max_new_tokens, | |
# END NOTE: Examples must have same order of parameters | |
captions_model=None, | |
caption_loader=None, | |
doctr_loader=None, | |
pix2struct_loader=None, | |
async_output=None, | |
num_async=None, | |
src_lang=None, | |
tgt_lang=None, | |
debug=False, | |
concurrency_count=None, | |
save_dir=None, | |
sanitize_bot_response=False, | |
model_state0=None, | |
memory_restriction_level=None, | |
max_max_new_tokens=None, | |
is_public=None, | |
max_max_time=None, | |
raise_generate_gpu_exceptions=None, | |
lora_weights=None, | |
use_llm_if_no_docs=True, | |
load_db_if_exists=True, | |
dbs=None, | |
detect_user_path_changes_every_query=None, | |
use_openai_embedding=None, | |
use_openai_model=None, | |
hf_embedding_model=None, | |
migrate_embedding_model=None, | |
auto_migrate_db=None, | |
cut_distance=None, | |
db_type=None, | |
n_jobs=None, | |
first_para=None, | |
text_limit=None, | |
show_accordions=None, | |
top_k_docs_max_show=None, | |
show_link_in_sources=None, | |
verbose=False, | |
cli=False, | |
use_cache=None, | |
auto_reduce_chunks=None, | |
max_chunks=None, | |
headsize=None, | |
model_lock=None, | |
force_langchain_evaluate=None, | |
model_state_none=None, | |
load_exllama=None, | |
answer_with_sources=None, | |
append_sources_to_answer=None, | |
image_loaders_options0=None, | |
pdf_loaders_options0=None, | |
url_loaders_options0=None, | |
jq_schema0=None, | |
keep_sources_in_context=None, | |
): | |
# ensure passed these | |
assert concurrency_count is not None | |
assert memory_restriction_level is not None | |
assert raise_generate_gpu_exceptions is not None | |
assert use_openai_embedding is not None | |
assert use_openai_model is not None | |
assert hf_embedding_model is not None | |
assert migrate_embedding_model is not None | |
assert auto_migrate_db is not None | |
assert db_type is not None | |
assert top_k_docs is not None and isinstance(top_k_docs, int) | |
assert chunk is not None and isinstance(chunk, bool) | |
assert chunk_size is not None and isinstance(chunk_size, int) | |
assert n_jobs is not None | |
assert first_para is not None | |
assert isinstance(add_chat_history_to_context, bool) | |
assert isinstance(add_search_to_context, bool) | |
assert load_exllama is not None | |
# for lazy client (even chat client) | |
if image_loaders is None: | |
image_loaders = image_loaders_options0 | |
if pdf_loaders is None: | |
pdf_loaders = pdf_loaders_options0 | |
if url_loaders is None: | |
url_loaders = url_loaders_options0 | |
if jq_schema is None: | |
jq_schema = jq_schema0 | |
if isinstance(langchain_agents, str): | |
if langchain_agents.strip().startswith('['): | |
# already list, but as string | |
langchain_agents = str_to_list(langchain_agents) | |
else: | |
# just 1 item and make list | |
langchain_agents = [langchain_agents] | |
chat_conversation = str_to_list(chat_conversation) | |
text_context_list = str_to_list(text_context_list) | |
langchain_modes = selection_docs_state['langchain_modes'] | |
langchain_mode_paths = selection_docs_state['langchain_mode_paths'] | |
langchain_mode_types = selection_docs_state['langchain_mode_types'] | |
if debug: | |
locals_dict = locals().copy() | |
locals_dict.pop('model_state', None) | |
locals_dict.pop('model_state0', None) | |
locals_dict.pop('model_states', None) | |
print(locals_dict) | |
no_model_msg = "Please choose a base model with --base_model (CLI) or load in Models Tab (gradio).\n" \ | |
"Then start New Conversation" | |
if model_state is None: | |
model_state = model_state_none.copy() | |
if model_state0 is None: | |
# e.g. for no gradio case, set dummy value, else should be set | |
model_state0 = model_state_none.copy() | |
# model_state['model] is only 'model' if should use model_state0 | |
# model could also be None | |
have_model_lock = model_lock is not None | |
have_fresh_model = model_state['model'] not in [None, 'model', no_model_str] | |
# for gradio UI control, expect model_state and model_state0 to match, so if have_model_lock=True, then should have_fresh_model=True | |
# but gradio API control will only use nochat api etc. and won't use fresh model, so can't assert in general | |
# if have_model_lock: | |
# assert have_fresh_model, "Expected model_state and model_state0 to match if have_model_lock" | |
have_cli_model = model_state0['model'] not in [None, 'model', no_model_str] | |
if have_fresh_model: | |
# USE FRESH MODEL | |
if not have_model_lock: | |
# model_state0 is just one of model_state if model_lock, so don't nuke | |
# try to free-up original model (i.e. list was passed as reference) | |
if model_state0['model'] and hasattr(model_state0['model'], 'cpu'): | |
model_state0['model'].cpu() | |
model_state0['model'] = None | |
# try to free-up original tokenizer (i.e. list was passed as reference) | |
if model_state0['tokenizer']: | |
model_state0['tokenizer'] = None | |
clear_torch_cache() | |
chosen_model_state = model_state | |
elif have_cli_model: | |
# USE MODEL SETUP AT CLI | |
assert isinstance(model_state['model'], (type(None), str)) # expect no fresh model | |
chosen_model_state = model_state0 | |
else: | |
raise AssertionError(no_model_msg) | |
# get variables | |
model = chosen_model_state['model'] | |
tokenizer = chosen_model_state['tokenizer'] | |
device = chosen_model_state['device'] | |
base_model = chosen_model_state['base_model'] | |
tokenizer_base_model = chosen_model_state['tokenizer_base_model'] | |
lora_weights = chosen_model_state['lora_weights'] | |
inference_server = chosen_model_state['inference_server'] | |
visible_models = chosen_model_state['visible_models'] | |
# use overall key if have, so key for this gradio and any inner gradio | |
if chosen_model_state['h2ogpt_key'] is not None: | |
h2ogpt_key = chosen_model_state['h2ogpt_key'] | |
# prefer use input from API over model state | |
prompt_type = prompt_type or chosen_model_state['prompt_type'] | |
prompt_dict = prompt_dict or chosen_model_state['prompt_dict'] | |
if base_model is None: | |
raise AssertionError(no_model_msg) | |
assert base_model.strip(), no_model_msg | |
assert model, "Model is missing" | |
assert tokenizer, "Tokenizer is missing" | |
# choose chat or non-chat mode | |
if not chat: | |
instruction = instruction_nochat | |
iinput = iinput_nochat | |
# avoid instruction in chat_conversation itself, since always used as additional context to prompt in what follows | |
if isinstance(chat_conversation, list) and \ | |
len(chat_conversation) > 0 and \ | |
len(chat_conversation[-1]) == 2 and \ | |
chat_conversation[-1][0] == instruction: | |
chat_conversation = chat_conversation[:-1] | |
if not add_chat_history_to_context: | |
# make it easy to ignore without needing add_chat_history_to_context | |
# some langchain or unit test may need to then handle more general case | |
chat_conversation = [] | |
# in some cases, like lean nochat API, don't want to force sending prompt_type, allow default choice | |
model_lower = base_model.lower() | |
if not prompt_type and model_lower in inv_prompt_type_to_model_lower and prompt_type != 'custom': | |
prompt_type = inv_prompt_type_to_model_lower[model_lower] | |
if verbose: | |
print("Auto-selecting prompt_type=%s for %s" % (prompt_type, model_lower), flush=True) | |
assert prompt_type is not None, "prompt_type was None" | |
# Control generation hyperparameters | |
# adjust for bad inputs, e.g. in case also come from API that doesn't get constrained by gradio sliders | |
# below is for TGI server, not required for HF transformers | |
# limits are chosen similar to gradio_runner.py sliders/numbers | |
top_p = min(max(1e-3, top_p), 1.0 - 1e-3) | |
top_k = min(max(1, int(top_k)), 100) | |
temperature = min(max(0.01, temperature), 2.0) | |
# FIXME: https://github.com/h2oai/h2ogpt/issues/106 | |
num_beams = 1 if stream_output else num_beams # See max_beams in gradio_runner | |
max_max_new_tokens = get_max_max_new_tokens(chosen_model_state, | |
memory_restriction_level=memory_restriction_level, | |
max_new_tokens=max_new_tokens, | |
max_max_new_tokens=max_max_new_tokens) | |
if min_max_new_tokens is None: | |
# default for nochat api | |
min_max_new_tokens = 256 | |
if docs_ordering_type is None: | |
docs_ordering_type = 'reverse_ucurve_sort' | |
model_max_length = get_model_max_length(chosen_model_state) | |
max_new_tokens = min(max(1, int(max_new_tokens)), max_max_new_tokens) | |
min_new_tokens = min(max(0, int(min_new_tokens)), max_new_tokens) | |
max_time = min(max(0, max_time), max_max_time) | |
repetition_penalty = min(max(0.01, repetition_penalty), 3.0) | |
num_return_sequences = 1 if chat else min(max(1, int(num_return_sequences)), 10) | |
min_top_k_docs, max_top_k_docs, label_top_k_docs = get_minmax_top_k_docs(is_public) | |
# limit total tokens processed, e.g. for summarization, if public instance | |
if is_public: | |
total_tokens_for_docs = min(2 * model_max_length, 16384) | |
else: | |
total_tokens_for_docs = None | |
top_k_docs = min(max(min_top_k_docs, int(top_k_docs)), max_top_k_docs) | |
chunk_size = min(max(128, int(chunk_size)), 2048) | |
if not context: | |
context = '' | |
# get prompter | |
prompter = Prompter(prompt_type, prompt_dict, debug=debug, chat=chat, stream_output=stream_output, | |
system_prompt=system_prompt) | |
# THIRD PLACE where LangChain referenced, but imports only occur if enabled and have db to use | |
assert langchain_mode in langchain_modes, "Invalid langchain_mode %s not in %s" % (langchain_mode, langchain_modes) | |
assert langchain_action in langchain_actions, "Invalid langchain_action %s not in %s" % ( | |
langchain_action, langchain_actions) | |
assert len( | |
set(langchain_agents).difference(langchain_agents_list)) == 0, "Invalid langchain_agents %s" % langchain_agents | |
# get db, but also fill db state so return already has my_db_state and dbs filled so faster next query | |
if langchain_mode != LangChainMode.DISABLED.value: | |
from src.gpt_langchain import get_any_db | |
db = get_any_db(my_db_state, langchain_mode, langchain_mode_paths, langchain_mode_types, | |
dbs=dbs, | |
load_db_if_exists=load_db_if_exists, | |
db_type=db_type, | |
use_openai_embedding=use_openai_embedding, | |
hf_embedding_model=hf_embedding_model, | |
migrate_embedding_model=migrate_embedding_model, | |
auto_migrate_db=auto_migrate_db, | |
for_sources_list=True, | |
verbose=verbose, | |
n_jobs=n_jobs, | |
) | |
else: | |
db = None | |
t_generate = time.time() | |
langchain_only_model = base_model in non_hf_types or \ | |
load_exllama or \ | |
inference_server.startswith('replicate') or \ | |
inference_server.startswith('sagemaker') or \ | |
inference_server.startswith('openai_azure_chat') or \ | |
inference_server.startswith('openai_azure') | |
do_langchain_path = langchain_mode not in [False, 'Disabled', 'LLM'] or \ | |
langchain_only_model or \ | |
force_langchain_evaluate or \ | |
len(text_context_list) > 0 | |
if len(langchain_agents) > 0: | |
do_langchain_path = True | |
if add_search_to_context: | |
# easier to manage prompt etc. by doing full langchain path | |
do_langchain_path = True | |
if do_langchain_path: | |
text = '' | |
sources = '' | |
response = '' | |
# use smaller cut_distance for wiki_full since so many matches could be obtained, and often irrelevant unless close | |
from gpt_langchain import run_qa_db | |
gen_hyper_langchain = dict(do_sample=do_sample, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty, | |
top_k=top_k, | |
top_p=top_p, | |
num_beams=num_beams, | |
min_new_tokens=min_new_tokens, | |
max_new_tokens=max_new_tokens, | |
early_stopping=early_stopping, | |
max_time=max_time, | |
num_return_sequences=num_return_sequences, | |
) | |
loaders_dict, captions_model = gr_to_lg(image_loaders, | |
pdf_loaders, | |
url_loaders, | |
captions_model=captions_model, | |
) | |
loaders_dict.update(dict(captions_model=captions_model, | |
caption_loader=caption_loader, | |
doctr_loader=doctr_loader, | |
pix2struct_loader=pix2struct_loader, | |
jq_schema=jq_schema, | |
)) | |
data_point = dict(context=context, instruction=instruction, input=iinput) | |
# no longer stuff chat history directly into context this early | |
prompt_basic = prompter.generate_prompt(data_point, context_from_history=False) | |
prompt = prompt_basic | |
num_prompt_tokens = 0 | |
for r in run_qa_db( | |
inference_server=inference_server, | |
model_name=base_model, model=model, tokenizer=tokenizer, | |
langchain_only_model=langchain_only_model, | |
async_output=async_output, | |
num_async=num_async, | |
prompter=prompter, | |
use_llm_if_no_docs=use_llm_if_no_docs, | |
load_db_if_exists=load_db_if_exists, | |
db=db, | |
langchain_mode_paths=langchain_mode_paths, | |
langchain_mode_types=langchain_mode_types, | |
detect_user_path_changes_every_query=detect_user_path_changes_every_query, | |
cut_distance=1.1 if langchain_mode in ['wiki_full'] else cut_distance, | |
answer_with_sources=answer_with_sources, | |
append_sources_to_answer=append_sources_to_answer, | |
add_chat_history_to_context=add_chat_history_to_context, | |
add_search_to_context=add_search_to_context, | |
keep_sources_in_context=keep_sources_in_context, | |
memory_restriction_level=memory_restriction_level, | |
system_prompt=system_prompt, | |
use_openai_embedding=use_openai_embedding, | |
use_openai_model=use_openai_model, | |
hf_embedding_model=hf_embedding_model, | |
migrate_embedding_model=migrate_embedding_model, | |
auto_migrate_db=auto_migrate_db, | |
first_para=first_para, | |
text_limit=text_limit, | |
show_accordions=show_accordions, | |
top_k_docs_max_show=top_k_docs_max_show, | |
show_link_in_sources=show_link_in_sources, | |
# evaluate args items | |
query=instruction, | |
iinput=iinput, | |
context=context, | |
stream_output=stream_output, | |
chunk=chunk, | |
chunk_size=chunk_size, | |
**loaders_dict, | |
langchain_mode=langchain_mode, | |
langchain_action=langchain_action, | |
langchain_agents=langchain_agents, | |
document_subset=document_subset, | |
document_choice=document_choice, | |
top_k_docs=top_k_docs, | |
prompt_type=prompt_type, | |
prompt_dict=prompt_dict, | |
pre_prompt_query=pre_prompt_query, | |
prompt_query=prompt_query, | |
pre_prompt_summary=pre_prompt_summary, | |
prompt_summary=prompt_summary, | |
text_context_list=text_context_list, | |
chat_conversation=chat_conversation, | |
visible_models=visible_models, | |
h2ogpt_key=h2ogpt_key, | |
docs_ordering_type=docs_ordering_type, | |
min_max_new_tokens=min_max_new_tokens, | |
**gen_hyper_langchain, | |
db_type=db_type, | |
n_jobs=n_jobs, | |
verbose=verbose, | |
cli=cli, | |
sanitize_bot_response=sanitize_bot_response, | |
lora_weights=lora_weights, | |
auto_reduce_chunks=auto_reduce_chunks, | |
max_chunks=max_chunks, | |
total_tokens_for_docs=total_tokens_for_docs, | |
headsize=headsize, | |
): | |
# doesn't accumulate, new answer every yield, so only save that full answer | |
response = r['response'] | |
sources = r['sources'] | |
prompt = r['prompt'] | |
num_prompt_tokens = r['num_prompt_tokens'] | |
yield dict(response=response, sources=sources, save_dict=dict()) | |
if save_dir: | |
# estimate using tiktoken | |
extra_dict = gen_hyper_langchain.copy() | |
extra_dict.update(prompt_type=prompt_type, | |
inference_server=inference_server, | |
langchain_mode=langchain_mode, | |
langchain_action=langchain_action, | |
langchain_agents=langchain_agents, | |
document_subset=document_subset, | |
document_choice=document_choice, | |
chat_conversation=chat_conversation, | |
add_search_to_context=add_search_to_context, | |
num_prompt_tokens=num_prompt_tokens, | |
instruction=instruction, | |
iinput=iinput, | |
context=context, | |
t_generate=time.time() - t_generate, | |
ntokens=None, | |
tokens_persecond=None, | |
) | |
save_dict = dict(prompt=prompt, | |
output=response, base_model=base_model, save_dir=save_dir, | |
where_from='run_qa_db', | |
extra_dict=extra_dict) | |
yield dict(response=response, sources=sources, save_dict=save_dict) | |
if verbose: | |
print( | |
'Post-Generate Langchain: %s decoded_output: %s' % | |
(str(datetime.now()), len(response) if response else -1), | |
flush=True) | |
if response or sources or langchain_only_model: | |
# if got no response (e.g. not showing sources and got no sources, | |
# so nothing to give to LLM), then slip through and ask LLM | |
# Or if llama/gptj, then just return since they had no response and can't go down below code path | |
# don't clear torch cache here, delays multi-generation, and bot(), all_bot(), and evaluate_nochat() do it | |
return | |
# NOT LANGCHAIN PATH, raw LLM | |
# restrict instruction + , typically what has large input | |
prompt, \ | |
instruction, iinput, context, \ | |
num_prompt_tokens, max_new_tokens, num_prompt_tokens0, num_prompt_tokens_actual, \ | |
chat_index, external_handle_chat_conversation, \ | |
top_k_docs_trial, one_doc_size = \ | |
get_limited_prompt(instruction, | |
iinput, | |
tokenizer, | |
prompter=prompter, | |
inference_server=inference_server, | |
# prompt_type=prompt_type, | |
# prompt_dict=prompt_dict, | |
# chat=chat, | |
max_new_tokens=max_new_tokens, | |
# system_prompt=system_prompt, | |
context=context, | |
chat_conversation=chat_conversation, | |
keep_sources_in_context=keep_sources_in_context, | |
model_max_length=model_max_length, | |
memory_restriction_level=memory_restriction_level, | |
langchain_mode=langchain_mode, | |
add_chat_history_to_context=add_chat_history_to_context, | |
min_max_new_tokens=min_max_new_tokens, | |
) | |
if inference_server.startswith('vllm') or \ | |
inference_server.startswith('openai') or \ | |
inference_server.startswith('http'): | |
if inference_server.startswith('vllm') or inference_server.startswith('openai'): | |
assert not inference_server.startswith('openai_azure_chat'), "Not fo Azure, use langchain path" | |
assert not inference_server.startswith('openai_azure'), "Not for Azure, use langchain path" | |
openai, inf_type, deployment_name, base_url, api_version = set_openai(inference_server) | |
where_from = inf_type | |
terminate_response = prompter.terminate_response or [] | |
stop_sequences = list(set(terminate_response + [prompter.PreResponse])) | |
stop_sequences = [x for x in stop_sequences if x] | |
# OpenAI will complain if ask for too many new tokens, takes it as min in some sense, wrongly so. | |
max_new_tokens_openai = min(max_new_tokens, model_max_length - num_prompt_tokens) | |
gen_server_kwargs = dict(temperature=temperature if do_sample else 0, | |
max_tokens=max_new_tokens_openai, | |
top_p=top_p if do_sample else 1, | |
frequency_penalty=0, | |
n=num_return_sequences, | |
presence_penalty=1.07 - repetition_penalty + 0.6, # so good default | |
) | |
if inf_type == 'vllm' or inference_server == 'openai': | |
responses = openai.Completion.create( | |
model=base_model, | |
prompt=prompt, | |
**gen_server_kwargs, | |
stop=stop_sequences, | |
stream=stream_output, | |
) | |
text = '' | |
sources = '' | |
response = '' | |
if not stream_output: | |
text = responses['choices'][0]['text'] | |
response = prompter.get_response(prompt + text, prompt=prompt, | |
sanitize_bot_response=sanitize_bot_response) | |
yield dict(response=response, sources=sources, save_dict=dict()) | |
else: | |
collected_events = [] | |
for event in responses: | |
collected_events.append(event) # save the event response | |
event_text = event['choices'][0]['text'] # extract the text | |
text += event_text # append the text | |
response = prompter.get_response(prompt + text, prompt=prompt, | |
sanitize_bot_response=sanitize_bot_response) | |
yield dict(response=response, sources=sources, save_dict=dict()) | |
elif inf_type == 'vllm_chat' or inference_server == 'openai_chat': | |
if system_prompt in [None, 'None', 'auto']: | |
openai_system_prompt = "You are a helpful assistant." | |
else: | |
openai_system_prompt = system_prompt | |
messages0 = [] | |
if openai_system_prompt: | |
messages0.append({"role": "system", "content": openai_system_prompt}) | |
if chat_conversation and add_chat_history_to_context: | |
assert external_handle_chat_conversation, "Should be handling only externally" | |
# chat_index handles token counting issues | |
for message1 in chat_conversation[chat_index:]: | |
if len(message1) == 2: | |
messages0.append( | |
{'role': 'user', 'content': message1[0] if message1[0] is not None else ''}) | |
messages0.append( | |
{'role': 'assistant', 'content': message1[1] if message1[1] is not None else ''}) | |
messages0.append({'role': 'user', 'content': prompt if prompt is not None else ''}) | |
responses = openai.ChatCompletion.create( | |
model=base_model, | |
messages=messages0, | |
stream=stream_output, | |
**gen_server_kwargs, | |
) | |
text = "" | |
sources = '' | |
response = "" | |
if not stream_output: | |
text = responses["choices"][0]["message"]["content"] | |
response = prompter.get_response(prompt + text, prompt=prompt, | |
sanitize_bot_response=sanitize_bot_response) | |
yield dict(response=response, sources=sources, save_dict=dict()) | |
else: | |
for chunk in responses: | |
delta = chunk["choices"][0]["delta"] | |
if 'content' in delta: | |
text += delta['content'] | |
response = prompter.get_response(prompt + text, prompt=prompt, | |
sanitize_bot_response=sanitize_bot_response) | |
yield dict(response=response, sources=sources, save_dict=dict()) | |
else: | |
raise RuntimeError("No such OpenAI mode: %s" % inference_server) | |
elif inference_server.startswith('http'): | |
inference_server, headers = get_hf_server(inference_server) | |
from gradio_utils.grclient import GradioClient | |
from text_generation import Client as HFClient | |
if isinstance(model, GradioClient): | |
gr_client = model | |
hf_client = None | |
elif isinstance(model, HFClient): | |
gr_client = None | |
hf_client = model | |
else: | |
inference_server, gr_client, hf_client = get_client_from_inference_server(inference_server, | |
base_model=base_model) | |
# quick sanity check to avoid long timeouts, just see if can reach server | |
requests.get(inference_server, timeout=int(os.getenv('REQUEST_TIMEOUT_FAST', '10'))) | |
if gr_client is not None: | |
# Note: h2oGPT gradio server could handle input token size issues for prompt, | |
# but best to handle here so send less data to server | |
chat_client = False | |
where_from = "gr_client" | |
client_langchain_mode = 'Disabled' | |
client_add_chat_history_to_context = True | |
client_add_search_to_context = False | |
client_langchain_action = LangChainAction.QUERY.value | |
client_langchain_agents = [] | |
gen_server_kwargs = dict(temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
num_beams=num_beams, | |
max_new_tokens=max_new_tokens, | |
min_new_tokens=min_new_tokens, | |
early_stopping=early_stopping, | |
max_time=max_time, | |
repetition_penalty=repetition_penalty, | |
num_return_sequences=num_return_sequences, | |
do_sample=do_sample, | |
chat=chat_client, | |
) | |
# account for gradio into gradio that handles prompting, avoid duplicating prompter prompt injection | |
if prompt_type in [None, '', PromptType.plain.name, PromptType.plain.value, | |
str(PromptType.plain.value)]: | |
# if our prompt is plain, assume either correct or gradio server knows different prompt type, | |
# so pass empty prompt_Type | |
gr_prompt_type = '' | |
gr_prompt_dict = '' | |
gr_prompt = prompt # already prepared prompt | |
gr_context = '' | |
gr_iinput = '' | |
else: | |
# if already have prompt_type that is not plain, None, or '', then already applied some prompting | |
# But assume server can handle prompting, and need to avoid double-up. | |
# Also assume server can do better job of using stopping.py to stop early, so avoid local prompting, let server handle | |
# So avoid "prompt" and let gradio server reconstruct from prompt_type we passed | |
# Note it's ok that prompter.get_response() has prompt+text, prompt=prompt passed, | |
# because just means extra processing and removal of prompt, but that has no human-bot prompting doesn't matter | |
# since those won't appear | |
gr_context = context | |
gr_prompt = instruction | |
gr_iinput = iinput | |
gr_prompt_type = prompt_type | |
gr_prompt_dict = prompt_dict | |
client_kwargs = dict(instruction=gr_prompt if chat_client else '', # only for chat=True | |
iinput=gr_iinput, # only for chat=True | |
context=gr_context, | |
# streaming output is supported, loops over and outputs each generation in streaming mode | |
# but leave stream_output=False for simple input/output mode | |
stream_output=stream_output, | |
**gen_server_kwargs, | |
prompt_type=gr_prompt_type, | |
prompt_dict=gr_prompt_dict, | |
instruction_nochat=gr_prompt if not chat_client else '', | |
iinput_nochat=gr_iinput, # only for chat=False | |
langchain_mode=client_langchain_mode, | |
add_chat_history_to_context=client_add_chat_history_to_context, | |
langchain_action=client_langchain_action, | |
langchain_agents=client_langchain_agents, | |
top_k_docs=top_k_docs, | |
chunk=chunk, | |
chunk_size=chunk_size, | |
document_subset=DocumentSubset.Relevant.name, | |
document_choice=[DocumentChoice.ALL.value], | |
pre_prompt_query=pre_prompt_query, | |
prompt_query=prompt_query, | |
pre_prompt_summary=pre_prompt_summary, | |
prompt_summary=prompt_summary, | |
system_prompt=system_prompt, | |
image_loaders=image_loaders, | |
pdf_loaders=pdf_loaders, | |
url_loaders=url_loaders, | |
jq_schema=jq_schema, | |
visible_models=visible_models, | |
h2ogpt_key=h2ogpt_key, | |
add_search_to_context=client_add_search_to_context, | |
docs_ordering_type=None, | |
min_max_new_tokens=min_max_new_tokens, | |
) | |
api_name = '/submit_nochat_api' # NOTE: like submit_nochat but stable API for string dict passing | |
response = '' | |
text = '' | |
sources = '' | |
if not stream_output: | |
res = gr_client.predict(str(dict(client_kwargs)), api_name=api_name) | |
res_dict = ast.literal_eval(res) | |
text = res_dict['response'] | |
sources = res_dict['sources'] | |
response = prompter.get_response(prompt + text, prompt=prompt, | |
sanitize_bot_response=sanitize_bot_response) | |
yield dict(response=response, sources=sources, save_dict=dict()) | |
else: | |
job = gr_client.submit(str(dict(client_kwargs)), api_name=api_name) | |
res_dict = dict(response=text, sources=sources, save_dict=dict()) | |
text0 = '' | |
while not job.done(): | |
if job.communicator.job.latest_status.code.name == 'FINISHED': | |
break | |
e = job.future._exception | |
if e is not None: | |
break | |
outputs_list = job.communicator.job.outputs | |
if outputs_list: | |
res = job.communicator.job.outputs[-1] | |
res_dict = ast.literal_eval(res) | |
text = res_dict['response'] | |
sources = res_dict['sources'] | |
if gr_prompt_type == 'plain': | |
# then gradio server passes back full prompt + text | |
prompt_and_text = text | |
else: | |
prompt_and_text = prompt + text | |
response = prompter.get_response(prompt_and_text, prompt=prompt, | |
sanitize_bot_response=sanitize_bot_response) | |
text_chunk = response[len(text0):] | |
if not text_chunk: | |
continue | |
# save old | |
text0 = response | |
yield dict(response=response, sources=sources, save_dict=dict()) | |
time.sleep(0.01) | |
# ensure get last output to avoid race | |
res_all = job.outputs() | |
if len(res_all) > 0: | |
res = res_all[-1] | |
res_dict = ast.literal_eval(res) | |
text = res_dict['response'] | |
sources = res_dict['sources'] | |
else: | |
# go with old text if last call didn't work | |
e = job.future._exception | |
if e is not None: | |
stre = str(e) | |
strex = ''.join(traceback.format_tb(e.__traceback__)) | |
else: | |
stre = '' | |
strex = '' | |
print("Bad final response: %s %s %s %s %s: %s %s" % (base_model, inference_server, | |
res_all, prompt, text, stre, strex), | |
flush=True) | |
if gr_prompt_type == 'plain': | |
# then gradio server passes back full prompt + text | |
prompt_and_text = text | |
else: | |
prompt_and_text = prompt + text | |
response = prompter.get_response(prompt_and_text, prompt=prompt, | |
sanitize_bot_response=sanitize_bot_response) | |
yield dict(response=response, sources=sources, save_dict=dict()) | |
elif hf_client: | |
# HF inference server needs control over input tokens | |
where_from = "hf_client" | |
response = '' | |
extra = '' | |
sources = '' | |
# prompt must include all human-bot like tokens, already added by prompt | |
# https://github.com/huggingface/text-generation-inference/tree/main/clients/python#types | |
terminate_response = prompter.terminate_response or [] | |
stop_sequences = list(set(terminate_response + [prompter.PreResponse])) | |
stop_sequences = [x for x in stop_sequences if x] | |
gen_server_kwargs = dict(do_sample=do_sample, | |
max_new_tokens=max_new_tokens, | |
# best_of=None, | |
repetition_penalty=repetition_penalty, | |
return_full_text=False, | |
seed=SEED, | |
stop_sequences=stop_sequences, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
# truncate=False, # behaves oddly | |
# typical_p=top_p, | |
# watermark=False, | |
# decoder_input_details=False, | |
) | |
# work-around for timeout at constructor time, will be issue if multi-threading, | |
# so just do something reasonable or max_time if larger | |
# lower bound because client is re-used if multi-threading | |
hf_client.timeout = max(300, max_time) | |
if not stream_output: | |
text = hf_client.generate(prompt, **gen_server_kwargs).generated_text | |
response = prompter.get_response(prompt + text, prompt=prompt, | |
sanitize_bot_response=sanitize_bot_response) | |
yield dict(response=response, sources=sources, save_dict=dict()) | |
else: | |
text = "" | |
for responses in hf_client.generate_stream(prompt, **gen_server_kwargs): | |
if not responses.token.special: | |
# stop_sequences | |
text_chunk = responses.token.text | |
text += text_chunk | |
response = prompter.get_response(prompt + text, prompt=prompt, | |
sanitize_bot_response=sanitize_bot_response) | |
sources = '' | |
yield dict(response=response, sources=sources, save_dict=dict()) | |
else: | |
raise RuntimeError("Failed to get client: %s" % inference_server) | |
else: | |
raise RuntimeError("No such inference_server %s" % inference_server) | |
if save_dir and text: | |
# save prompt + new text | |
extra_dict = gen_server_kwargs.copy() | |
extra_dict.update(dict(inference_server=inference_server, num_prompt_tokens=num_prompt_tokens, | |
t_generate=time.time() - t_generate, | |
ntokens=None, | |
tokens_persecond=None, | |
)) | |
save_dict = dict(prompt=prompt, output=text, base_model=base_model, save_dir=save_dir, | |
where_from=where_from, extra_dict=extra_dict) | |
yield dict(response=response, sources=sources, save_dict=save_dict) | |
return | |
else: | |
assert not inference_server, "inference_server=%s not supported" % inference_server | |
if isinstance(tokenizer, str): | |
# pipeline | |
if tokenizer == "summarization": | |
key = 'summary_text' | |
else: | |
raise RuntimeError("No such task type %s" % tokenizer) | |
# NOTE: uses max_length only | |
sources = '' | |
yield dict(response=model(prompt, max_length=max_new_tokens)[0][key], sources=sources, save_dict=dict()) | |
if 'mbart-' in base_model.lower(): | |
assert src_lang is not None | |
tokenizer.src_lang = languages_covered()[src_lang] | |
stopping_criteria = get_stopping(prompt_type, prompt_dict, tokenizer, device, base_model, | |
model_max_length=model_max_length, | |
prompter=prompter) | |
inputs = tokenizer(prompt, return_tensors="pt") | |
if debug and len(inputs["input_ids"]) > 0: | |
print('input_ids length', len(inputs["input_ids"][0]), flush=True) | |
input_ids = inputs["input_ids"].to(device) | |
# CRITICAL LIMIT else will fail | |
max_max_tokens = tokenizer.model_max_length | |
max_input_tokens = max(0, int(max_max_tokens - min_new_tokens)) | |
# NOTE: Don't limit up front due to max_new_tokens, let go up to max or reach max_max_tokens in stopping.py | |
assert isinstance(max_input_tokens, int), "Bad type for max_input_tokens=%s %s" % ( | |
max_input_tokens, type(max_input_tokens)) | |
input_ids = input_ids[:, -max_input_tokens:] | |
# required for falcon if multiple threads or asyncio accesses to model during generation | |
if use_cache is None: | |
use_cache = False if 'falcon' in base_model else True | |
gen_config_kwargs = dict(num_beams=num_beams, | |
do_sample=do_sample, | |
repetition_penalty=float(repetition_penalty), | |
num_return_sequences=num_return_sequences, | |
renormalize_logits=True, | |
remove_invalid_values=True, | |
use_cache=use_cache, | |
) | |
if do_sample: | |
gen_config_kwargs.update(dict(temperature=float(temperature), | |
top_p=float(top_p), | |
top_k=top_k)) | |
if True: | |
# unclear impact, some odd things going on inside | |
# leads to: | |
# The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results. | |
# Setting `pad_token_id` to `eos_token_id`:2 for open-end generation. | |
# or leads to: | |
# Using cls_token, but it is not set yet. | |
# Using mask_token, but it is not set yet. | |
# Using pad_token, but it is not set yet. | |
# Using sep_token, but it is not set yet. | |
token_ids = ['eos_token_id', 'pad_token_id', 'bos_token_id', 'cls_token_id', 'sep_token_id'] | |
for token_id in token_ids: | |
if hasattr(tokenizer, token_id) and getattr(tokenizer, token_id) is not None: | |
gen_config_kwargs.update({token_id: getattr(tokenizer, token_id)}) | |
generation_config = GenerationConfig(**gen_config_kwargs) | |
gen_kwargs = dict(input_ids=input_ids, | |
generation_config=generation_config, | |
return_dict_in_generate=True, | |
output_scores=True, | |
max_new_tokens=max_new_tokens, # prompt + new | |
min_new_tokens=min_new_tokens, # prompt + new | |
early_stopping=early_stopping, # False, True, "never" | |
max_time=max_time, | |
stopping_criteria=stopping_criteria, | |
) | |
if 'gpt2' in base_model.lower(): | |
gen_kwargs.update(dict(bos_token_id=tokenizer.bos_token_id, pad_token_id=tokenizer.eos_token_id)) | |
elif 'mbart-' in base_model.lower(): | |
assert tgt_lang is not None | |
tgt_lang = languages_covered()[tgt_lang] | |
gen_kwargs.update(dict(forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang])) | |
else: | |
token_ids = ['eos_token_id', 'bos_token_id', 'pad_token_id'] | |
for token_id in token_ids: | |
if hasattr(tokenizer, token_id) and getattr(tokenizer, token_id) is not None: | |
gen_kwargs.update({token_id: getattr(tokenizer, token_id)}) | |
decoder_kwargs = dict(skip_special_tokens=True, | |
clean_up_tokenization_spaces=True) | |
decoder = functools.partial(tokenizer.decode, | |
**decoder_kwargs | |
) | |
with torch.no_grad(): | |
have_lora_weights = lora_weights not in [no_lora_str, '', None] | |
context_class_cast = NullContext if device == 'cpu' or have_lora_weights or device == 'mps' else torch.autocast | |
if t5_type(base_model): | |
# issues when casting to float16, can mess up t5 model, e.g. only when not streaming, or other odd behaviors | |
context_class_cast = NullContext | |
with context_class_cast(device): | |
# protection for gradio not keeping track of closed users, | |
# else hit bitsandbytes lack of thread safety: | |
# https://github.com/h2oai/h2ogpt/issues/104 | |
# but only makes sense if concurrency_count == 1 | |
context_class = NullContext # if concurrency_count > 1 else filelock.FileLock | |
if verbose: | |
print('Pre-Generate: %s' % str(datetime.now()), flush=True) | |
decoded_output = None | |
response = '' | |
with context_class("generate.lock"): | |
if verbose: | |
print('Generate: %s' % str(datetime.now()), flush=True) | |
always_use_streaming_method = True # to deal with complex parsing of prompt vs. generation due to odd tokenizing | |
if stream_output or always_use_streaming_method: | |
skip_prompt = True # True means first output excludes prompt | |
streamer = H2OTextIteratorStreamer(tokenizer, skip_prompt=skip_prompt, block=False, | |
**decoder_kwargs) | |
gen_kwargs.update(dict(streamer=streamer)) | |
target = wrapped_partial(generate_with_exceptions, model.generate, | |
raise_generate_gpu_exceptions=raise_generate_gpu_exceptions, | |
**gen_kwargs) | |
bucket = queue.Queue() | |
thread = EThread(target=target, streamer=streamer, bucket=bucket) | |
thread.start() | |
ret = dict(response='', sources='', save_dict=dict()) | |
outputs = "" | |
sources = '' | |
try: | |
for new_text in streamer: | |
if bucket.qsize() > 0 or thread.exc: | |
thread.join() | |
outputs += new_text | |
response = prompter.get_response(outputs, prompt=None, | |
only_new_text=True, | |
sanitize_bot_response=sanitize_bot_response) | |
ret = dict(response=response, sources=sources, save_dict=dict()) | |
if stream_output: | |
yield ret | |
if not stream_output: | |
yield ret | |
except BaseException: | |
# if any exception, raise that exception if was from thread, first | |
if thread.exc: | |
raise thread.exc | |
raise | |
finally: | |
# don't clear torch cache here, delays multi-generation, and bot(), all_bot(), and evaluate_nochat() do it | |
# in case no exception and didn't join with thread yet, then join | |
if not thread.exc: | |
thread.join() | |
# in case raise StopIteration or broke queue loop in streamer, but still have exception | |
if thread.exc: | |
raise thread.exc | |
decoded_output = outputs | |
ntokens = len(outputs) // 4 # hack for now | |
else: | |
# below length removal doesn't work in general, because encoding does not match internal of model generation | |
input_ids_len = gen_kwargs['input_ids'][0].shape[0] | |
try: | |
outputs = model.generate(**gen_kwargs) | |
finally: | |
pass | |
# don't clear torch cache here, delays multi-generation, and bot(), all_bot(), and evaluate_nochat() do it | |
# skip first IDs | |
ntokens = sum([len(s) - input_ids_len for s in outputs.sequences]) if save_dir else -1 | |
outputs = [decoder(s[input_ids_len:]) for s in outputs.sequences] | |
sources = '' | |
response = prompter.get_response(outputs, prompt=None, | |
only_new_text=True, | |
sanitize_bot_response=sanitize_bot_response) | |
yield dict(response=response, sources=sources, save_dict=dict()) | |
if outputs and len(outputs) >= 1: | |
decoded_output = prompt + outputs[0] | |
if save_dir and decoded_output: | |
extra_dict = gen_config_kwargs.copy() | |
extra_dict.update(dict(num_prompt_tokens=num_prompt_tokens, | |
t_generate=time.time() - t_generate, | |
ntokens=ntokens, | |
tokens_persecond=ntokens / (time.time() - t_generate), | |
)) | |
save_dict = dict(prompt=prompt, output=decoded_output, base_model=base_model, save_dir=save_dir, | |
where_from="evaluate_%s" % str(stream_output), | |
extra_dict=extra_dict) | |
yield dict(response=response, sources=sources, save_dict=save_dict) | |
if verbose: | |
print('Post-Generate: %s decoded_output: %s' % ( | |
str(datetime.now()), len(decoded_output) if decoded_output else -1), flush=True) | |
inputs_list_names = list(inspect.signature(evaluate).parameters) | |
state_names = input_args_list.copy() # doesn't have to be the same, but state_names must match evaluate() and how filled then | |
inputs_kwargs_list = [x for x in inputs_list_names if x not in eval_func_param_names + state_names] | |
def get_cutoffs(memory_restriction_level, for_context=False, model_max_length=2048): | |
# help to avoid errors like: | |
# RuntimeError: The size of tensor a (2048) must match the size of tensor b (2049) at non-singleton dimension 3 | |
# RuntimeError: expected scalar type Half but found Float | |
# with - 256 | |
if memory_restriction_level > 0: | |
max_length_tokenize = 768 - 256 if memory_restriction_level <= 2 else 512 - 256 | |
else: | |
# at least give room for 1 paragraph output | |
max_length_tokenize = model_max_length - 256 | |
cutoff_len = max_length_tokenize * 4 # if reaches limit, then can't generate new tokens | |
output_smallest = 30 * 4 | |
max_prompt_length = cutoff_len - output_smallest | |
if for_context: | |
# then lower even more to avoid later chop, since just estimate tokens in context bot | |
max_prompt_length = max(64, int(max_prompt_length * 0.8)) | |
return cutoff_len, output_smallest, max_length_tokenize, max_prompt_length | |
class H2OTextIteratorStreamer(TextIteratorStreamer): | |
""" | |
normally, timeout required for now to handle exceptions, else get() | |
but with H2O version of TextIteratorStreamer, loop over block to handle | |
""" | |
def __init__(self, tokenizer, skip_prompt: bool = False, timeout: typing.Optional[float] = None, | |
block=True, **decode_kwargs): | |
super().__init__(tokenizer, skip_prompt, **decode_kwargs) | |
self.text_queue = queue.Queue() | |
self.stop_signal = None | |
self.do_stop = False | |
self.timeout = timeout | |
self.block = block | |
def on_finalized_text(self, text: str, stream_end: bool = False): | |
"""Put the new text in the queue. If the stream is ending, also put a stop signal in the queue.""" | |
self.text_queue.put(text, timeout=self.timeout) | |
if stream_end: | |
self.text_queue.put(self.stop_signal, timeout=self.timeout) | |
def __iter__(self): | |
return self | |
def __next__(self): | |
while True: | |
try: | |
value = self.stop_signal # value looks unused in pycharm, not true | |
if self.do_stop: | |
print("hit stop", flush=True) | |
# could raise or break, maybe best to raise and make parent see if any exception in thread | |
self.clear_queue() | |
self.do_stop = False | |
raise StopIteration() | |
# break | |
value = self.text_queue.get(block=self.block, timeout=self.timeout) | |
break | |
except queue.Empty: | |
time.sleep(0.01) | |
if value == self.stop_signal: | |
self.clear_queue() | |
self.do_stop = False | |
raise StopIteration() | |
else: | |
return value | |
def clear_queue(self): | |
# make sure streamer is reusable after stop hit | |
with self.text_queue.mutex: | |
self.text_queue.queue.clear() | |
def put(self, value): | |
""" | |
Receives tokens, decodes them, and prints them to stdout as soon as they form entire words. | |
# same as base class, except remove hack w.r.t. text.rfind(" ") that ruins LLaMa2 | |
""" | |
if len(value.shape) > 1 and value.shape[0] > 1: | |
raise ValueError("TextStreamer only supports batch size 1") | |
elif len(value.shape) > 1: | |
value = value[0] | |
if self.skip_prompt and self.next_tokens_are_prompt: | |
self.next_tokens_are_prompt = False | |
return | |
# Add the new token to the cache and decodes the entire thing. | |
self.token_cache.extend(value.tolist()) | |
text = self.tokenizer.decode(self.token_cache, **self.decode_kwargs) | |
# After the symbol for a new line, we flush the cache. | |
if text.endswith("\n"): | |
printable_text = text[self.print_len:] | |
self.token_cache = [] | |
self.print_len = 0 | |
# If the last token is a CJK character, we print the characters. | |
elif len(text) > 0 and self._is_chinese_char(ord(text[-1])): | |
printable_text = text[self.print_len:] | |
self.print_len += len(printable_text) | |
# Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, | |
# which may change with the subsequent token -- there are probably smarter ways to do this!) | |
elif len(text) > 0 and text[-1] == '�': | |
printable_text = text[self.print_len: text.rfind(" ") + 1] | |
self.print_len += len(printable_text) | |
else: | |
printable_text = text[self.print_len:] | |
self.print_len += len(printable_text) | |
self.on_finalized_text(printable_text) | |
def generate_with_exceptions(func, *args, raise_generate_gpu_exceptions=True, **kwargs): | |
try: | |
func(*args, **kwargs) | |
except torch.cuda.OutOfMemoryError as e: | |
print("GPU OOM 2: exception: %s" % str(e), | |
flush=True) | |
if 'input_ids' in kwargs: | |
if kwargs['input_ids'] is not None: | |
kwargs['input_ids'].cpu() | |
kwargs['input_ids'] = None | |
traceback.print_exc() | |
clear_torch_cache() | |
return | |
except (Exception, RuntimeError) as e: | |
if 'Expected all tensors to be on the same device' in str(e) or \ | |
'expected scalar type Half but found Float' in str(e) or \ | |
'probability tensor contains either' in str(e) or \ | |
'cublasLt ran into an error!' in str(e) or \ | |
'mat1 and mat2 shapes cannot be multiplied' in str(e): | |
print( | |
"GPU Error: exception: %s" % str(e), | |
flush=True) | |
traceback.print_exc() | |
clear_torch_cache() | |
if raise_generate_gpu_exceptions: | |
raise | |
return | |
else: | |
clear_torch_cache() | |
if raise_generate_gpu_exceptions: | |
raise | |
def get_generate_params(model_lower, | |
chat, | |
stream_output, show_examples, | |
prompt_type, prompt_dict, | |
system_prompt, | |
pre_prompt_query, prompt_query, | |
pre_prompt_summary, prompt_summary, | |
temperature, top_p, top_k, num_beams, | |
max_new_tokens, min_new_tokens, early_stopping, max_time, | |
repetition_penalty, num_return_sequences, | |
do_sample, | |
top_k_docs, chunk, chunk_size, | |
image_loaders, | |
pdf_loaders, | |
url_loaders, | |
jq_schema, | |
docs_ordering_type, | |
min_max_new_tokens, | |
verbose, | |
): | |
use_defaults = False | |
use_default_examples = True | |
examples = [] | |
task_info = 'LLM' | |
if model_lower: | |
print(f"Using Model {model_lower}", flush=True) | |
else: | |
if verbose: | |
print("No model defined yet", flush=True) | |
min_new_tokens = min_new_tokens if min_new_tokens is not None else 0 | |
early_stopping = early_stopping if early_stopping is not None else False | |
max_time_defaults = 60 * 3 | |
max_time = max_time if max_time is not None else max_time_defaults | |
if not prompt_type and model_lower in inv_prompt_type_to_model_lower and prompt_type != 'custom': | |
prompt_type = inv_prompt_type_to_model_lower[model_lower] | |
if verbose: | |
print("Auto-selecting prompt_type=%s for %s" % (prompt_type, model_lower), flush=True) | |
# examples at first don't include chat, instruction_nochat, iinput_nochat, added at end | |
if show_examples is None: | |
if chat: | |
show_examples = False | |
else: | |
show_examples = True | |
summarize_example1 = """Jeff: Can I train a ? Transformers model on Amazon SageMaker? | |
Philipp: Sure you can use the new Hugging Face Deep Learning Container. | |
Jeff: ok. | |
Jeff: and how can I get started? | |
Jeff: where can I find documentation? | |
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face""" | |
use_placeholder_instruction_as_example = False | |
if 'bart-large-cnn-samsum' in model_lower or 'flan-t5-base-samsum' in model_lower: | |
placeholder_instruction = summarize_example1 | |
placeholder_input = "" | |
use_defaults = True | |
use_default_examples = False | |
use_placeholder_instruction_as_example = True | |
task_info = "Summarization" | |
elif 't5-' in model_lower or 't5' == model_lower or 'flan-' in model_lower: | |
placeholder_instruction = "The square root of x is the cube root of y. What is y to the power of 2, if x = 4?" | |
placeholder_input = "" | |
use_defaults = True | |
use_default_examples = True | |
task_info = "Multi-Task: Q/A, translation, Chain-of-Thought, Logical Reasoning, Summarization, etc. Best to use task prefix as trained on, e.g. `translate English to German: ` (space after colon)" | |
elif 'mbart-' in model_lower: | |
placeholder_instruction = "The girl has long hair." | |
placeholder_input = "" | |
use_defaults = True | |
use_default_examples = False | |
use_placeholder_instruction_as_example = True | |
elif 'gpt2' in model_lower: | |
placeholder_instruction = "The sky is" | |
placeholder_input = "" | |
prompt_type = prompt_type or 'plain' | |
use_default_examples = True # some will be odd "continuations" but can be ok | |
use_placeholder_instruction_as_example = True | |
task_info = "Auto-complete phrase, code, etc." | |
use_defaults = True | |
else: | |
if chat: | |
placeholder_instruction = "" | |
else: | |
placeholder_instruction = "Give detailed answer for whether Einstein or Newton is smarter." | |
placeholder_input = "" | |
if not prompt_type and model_lower in inv_prompt_type_to_model_lower and prompt_type != 'custom': | |
prompt_type = inv_prompt_type_to_model_lower[model_lower] | |
elif model_lower: | |
# default is plain, because might rely upon trust_remote_code to handle prompting | |
prompt_type = prompt_type or 'plain' | |
else: | |
prompt_type = '' | |
task_info = "No task" | |
if prompt_type == 'instruct': | |
task_info = "Answer question or follow imperative as instruction with optionally input." | |
elif prompt_type == 'plain': | |
task_info = "Auto-complete phrase, code, etc." | |
elif prompt_type == 'human_bot': | |
if chat: | |
task_info = "Chat (Shift-Enter to give question/imperative, input concatenated with instruction)" | |
else: | |
task_info = "Ask question/imperative (input concatenated with instruction)" | |
# revert to plain if still nothing | |
prompt_type = prompt_type or 'plain' | |
if use_defaults: | |
temperature = 1.0 if temperature is None else temperature | |
top_p = 1.0 if top_p is None else top_p | |
top_k = 40 if top_k is None else top_k | |
num_beams = num_beams or 1 | |
max_new_tokens = max_new_tokens or 512 | |
repetition_penalty = repetition_penalty or 1.07 | |
num_return_sequences = min(num_beams, num_return_sequences or 1) | |
do_sample = False if do_sample is None else do_sample | |
else: | |
temperature = 0.1 if temperature is None else temperature | |
top_p = 0.75 if top_p is None else top_p | |
top_k = 40 if top_k is None else top_k | |
num_beams = num_beams or 1 | |
max_new_tokens = max_new_tokens or 1024 | |
repetition_penalty = repetition_penalty or 1.07 | |
num_return_sequences = min(num_beams, num_return_sequences or 1) | |
do_sample = False if do_sample is None else do_sample | |
# doesn't include chat, instruction_nochat, iinput_nochat, added later | |
params_list = ["", | |
stream_output, | |
prompt_type, prompt_dict, | |
temperature, top_p, top_k, num_beams, | |
max_new_tokens, min_new_tokens, | |
early_stopping, max_time, repetition_penalty, num_return_sequences, do_sample] | |
if use_placeholder_instruction_as_example: | |
examples += [[placeholder_instruction, ''] + params_list] | |
if use_default_examples: | |
examples += [ | |
["Translate English to French", "Good morning"] + params_list, | |
["Give detailed answer for whether Einstein or Newton is smarter.", ''] + params_list, | |
["Explain in detailed list, all the best practices for coding in python.", ''] + params_list, | |
[ | |
"Create a markdown table with 3 rows for the primary colors, and 2 columns, with color name and hex codes.", | |
''] + params_list, | |
['Translate to German: My name is Arthur', ''] + params_list, | |
["Please answer to the following question. Who is going to be the next Ballon d'or?", ''] + params_list, | |
['Can Geoffrey Hinton have a conversation with George Washington? Give the rationale before answering.', | |
''] + params_list, | |
['Please answer the following question. What is the boiling point of Nitrogen?', ''] + params_list, | |
['Answer the following yes/no question. Can you write a whole Haiku in a single tweet?', ''] + params_list, | |
["Simplify the following expression: (False or False and True). Explain your answer.", ''] + params_list, | |
[ | |
"Premise: At my age you will probably have learnt one lesson. Hypothesis: It's not certain how many lessons you'll learn by your thirties. Does the premise entail the hypothesis?", | |
''] + params_list, | |
['The square root of x is the cube root of y. What is y to the power of 2, if x = 4?', ''] + params_list, | |
[ | |
'Answer the following question by reasoning step by step. The cafeteria had 23 apples. If they used 20 for lunch, and bought 6 more, how many apple do they have?', | |
''] + params_list, | |
["""def area_of_rectangle(a: float, b: float): | |
\"\"\"Return the area of the rectangle.\"\"\"""", ''] + params_list, | |
["""# a function in native python: | |
def mean(a): | |
return sum(a)/len(a) | |
# the same function using numpy: | |
import numpy as np | |
def mean(a):""", ''] + params_list, | |
["""X = np.random.randn(100, 100) | |
y = np.random.randint(0, 1, 100) | |
# fit random forest classifier with 20 estimators""", ''] + params_list, | |
] | |
# add summary example | |
examples += [ | |
[summarize_example1, 'Summarize' if prompt_type not in ['plain', 'instruct_simple'] else ''] + params_list] | |
src_lang = "English" | |
tgt_lang = "Russian" | |
# move to correct position | |
for example in examples: | |
example += [chat, '', '', LangChainMode.DISABLED.value, True, | |
LangChainAction.QUERY.value, [], | |
top_k_docs, chunk, chunk_size, DocumentSubset.Relevant.name, [], | |
pre_prompt_query, prompt_query, | |
pre_prompt_summary, prompt_summary, | |
system_prompt, | |
image_loaders, | |
pdf_loaders, | |
url_loaders, | |
jq_schema, | |
None, | |
None, | |
False, | |
None, | |
None, | |
docs_ordering_type, | |
min_max_new_tokens, | |
] | |
# adjust examples if non-chat mode | |
if not chat: | |
example[eval_func_param_names.index('instruction_nochat')] = example[ | |
eval_func_param_names.index('instruction')] | |
example[eval_func_param_names.index('instruction')] = '' | |
example[eval_func_param_names.index('iinput_nochat')] = example[eval_func_param_names.index('iinput')] | |
example[eval_func_param_names.index('iinput')] = '' | |
assert len(example) == len(eval_func_param_names), "Wrong example: %s %s" % ( | |
len(example), len(eval_func_param_names)) | |
if prompt_type == PromptType.custom.name and not prompt_dict: | |
raise ValueError("Unexpected to get non-empty prompt_dict=%s for prompt_type=%s" % (prompt_dict, prompt_type)) | |
# get prompt_dict from prompt_type, so user can see in UI etc., or for custom do nothing except check format | |
prompt_dict, error0 = get_prompt(prompt_type, prompt_dict, | |
chat=False, context='', reduced=False, making_context=False, return_dict=True, | |
system_prompt=system_prompt) | |
if error0: | |
raise RuntimeError("Prompt wrong: %s" % error0) | |
return placeholder_instruction, placeholder_input, \ | |
stream_output, show_examples, \ | |
prompt_type, prompt_dict, \ | |
temperature, top_p, top_k, num_beams, \ | |
max_new_tokens, min_new_tokens, early_stopping, max_time, \ | |
repetition_penalty, num_return_sequences, \ | |
do_sample, \ | |
src_lang, tgt_lang, \ | |
examples, \ | |
task_info | |
def languages_covered(): | |
# https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt#languages-covered | |
covered = """Arabic (ar_AR), Czech (cs_CZ), German (de_DE), English (en_XX), Spanish (es_XX), Estonian (et_EE), Finnish (fi_FI), French (fr_XX), Gujarati (gu_IN), Hindi (hi_IN), Italian (it_IT), Japanese (ja_XX), Kazakh (kk_KZ), Korean (ko_KR), Lithuanian (lt_LT), Latvian (lv_LV), Burmese (my_MM), Nepali (ne_NP), Dutch (nl_XX), Romanian (ro_RO), Russian (ru_RU), Sinhala (si_LK), Turkish (tr_TR), Vietnamese (vi_VN), Chinese (zh_CN), Afrikaans (af_ZA), Azerbaijani (az_AZ), Bengali (bn_IN), Persian (fa_IR), Hebrew (he_IL), Croatian (hr_HR), Indonesian (id_ID), Georgian (ka_GE), Khmer (km_KH), Macedonian (mk_MK), Malayalam (ml_IN), Mongolian (mn_MN), Marathi (mr_IN), Polish (pl_PL), Pashto (ps_AF), Portuguese (pt_XX), Swedish (sv_SE), Swahili (sw_KE), Tamil (ta_IN), Telugu (te_IN), Thai (th_TH), Tagalog (tl_XX), Ukrainian (uk_UA), Urdu (ur_PK), Xhosa (xh_ZA), Galician (gl_ES), Slovene (sl_SI)""" | |
covered = covered.split(', ') | |
covered = {x.split(' ')[0]: x.split(' ')[1].replace(')', '').replace('(', '') for x in covered} | |
return covered | |
def score_qa(smodel, stokenizer, max_length_tokenize, question, answer, cutoff_len): | |
question = question[-cutoff_len:] | |
answer = answer[-cutoff_len:] | |
inputs = stokenizer(question, answer, | |
return_tensors="pt", | |
truncation=True, | |
max_length=max_length_tokenize).to(smodel.device) | |
try: | |
score = torch.sigmoid(smodel(**inputs.to(smodel.device)).logits[0].float()).cpu().detach().numpy()[0] | |
except torch.cuda.OutOfMemoryError as e: | |
print("GPU OOM 3: question: %s answer: %s exception: %s" % (question, answer, str(e)), flush=True) | |
del inputs | |
traceback.print_exc() | |
clear_torch_cache() | |
return 'Response Score: GPU OOM' | |
except (Exception, RuntimeError) as e: | |
if 'Expected all tensors to be on the same device' in str(e) or \ | |
'expected scalar type Half but found Float' in str(e) or \ | |
'probability tensor contains either' in str(e) or \ | |
'cublasLt ran into an error!' in str(e) or \ | |
'device-side assert triggered' in str(e): | |
print("GPU Error: question: %s answer: %s exception: %s" % (question, answer, str(e)), | |
flush=True) | |
traceback.print_exc() | |
clear_torch_cache() | |
return 'Response Score: GPU Error' | |
else: | |
raise | |
os.environ['TOKENIZERS_PARALLELISM'] = 'true' | |
return score | |
def check_locals(**kwargs): | |
# ensure everything in evaluate is here | |
can_skip_because_locally_generated = no_default_param_names + [ | |
# get_model: | |
'reward_type' | |
] | |
for k in eval_func_param_names: | |
if k in can_skip_because_locally_generated: | |
continue | |
assert k in kwargs, "Missing %s" % k | |
for k in inputs_kwargs_list: | |
if k in can_skip_because_locally_generated: | |
continue | |
assert k in kwargs, "Missing %s" % k | |
for k in list(inspect.signature(get_model).parameters): | |
if k in can_skip_because_locally_generated: | |
continue | |
assert k in kwargs, "Missing %s" % k | |
def get_model_max_length(model_state): | |
if not isinstance(model_state['tokenizer'], (str, type(None))): | |
return model_state['tokenizer'].model_max_length | |
else: | |
return 2048 | |
def get_max_max_new_tokens(model_state, **kwargs): | |
if not isinstance(model_state['tokenizer'], (str, type(None))): | |
max_max_new_tokens = model_state['tokenizer'].model_max_length | |
else: | |
max_max_new_tokens = None | |
if kwargs['max_max_new_tokens'] is not None and max_max_new_tokens is not None: | |
return min(max_max_new_tokens, kwargs['max_max_new_tokens']) | |
elif kwargs['max_max_new_tokens'] is not None: | |
return kwargs['max_max_new_tokens'] | |
elif kwargs['memory_restriction_level'] == 1: | |
return 768 | |
elif kwargs['memory_restriction_level'] == 2: | |
return 512 | |
elif kwargs['memory_restriction_level'] >= 3: | |
return 256 | |
else: | |
# FIXME: Need to update after new model loaded, so user can control with slider | |
return 2048 | |
def get_minmax_top_k_docs(is_public): | |
if is_public: | |
min_top_k_docs = 1 | |
max_top_k_docs = 8 | |
label_top_k_docs = "Number of document chunks" | |
else: | |
min_top_k_docs = -1 | |
max_top_k_docs = 100 | |
label_top_k_docs = "Number of document chunks (-1 = auto fill model context)" | |
return min_top_k_docs, max_top_k_docs, label_top_k_docs | |
def merge_chat_conversation_history(chat_conversation1, history): | |
# chat_conversation and history ordered so largest index of list is most recent | |
if chat_conversation1: | |
chat_conversation1 = str_to_list(chat_conversation1) | |
for conv1 in chat_conversation1: | |
assert isinstance(conv1, (list, tuple)) | |
assert len(conv1) == 2 | |
if isinstance(history, list): | |
# make copy so only local change | |
if chat_conversation1: | |
# so priority will be newest that comes from actual chat history from UI, then chat_conversation | |
history = chat_conversation1 + history.copy() | |
elif chat_conversation1: | |
history = chat_conversation1 | |
else: | |
history = [] | |
return history | |
def history_to_context(history, langchain_mode=None, | |
add_chat_history_to_context=None, | |
prompt_type=None, prompt_dict=None, chat=None, model_max_length=None, | |
memory_restriction_level=None, keep_sources_in_context=None, | |
system_prompt=None, chat_conversation=None): | |
""" | |
consumes all history up to (but not including) latest history item that is presumed to be an [instruction, None] pair | |
:param history: | |
:param langchain_mode: | |
:param add_chat_history_to_context: | |
:param prompt_type: | |
:param prompt_dict: | |
:param chat: | |
:param model_max_length: | |
:param memory_restriction_level: | |
:param keep_sources_in_context: | |
:param system_prompt: | |
:param chat_conversation: | |
:return: | |
""" | |
history = merge_chat_conversation_history(chat_conversation, history) | |
if len(history) >= 1 and len(history[-1]) >= 2 and not history[-1][1]: | |
len_history = len(history) - 1 | |
else: | |
# full history | |
len_history = len(history) | |
# ensure output will be unique to models | |
_, _, _, max_prompt_length = get_cutoffs(memory_restriction_level, | |
for_context=True, model_max_length=model_max_length) | |
context1 = '' | |
if max_prompt_length is not None and add_chat_history_to_context: | |
context1 = '' | |
# - 1 below because current instruction already in history from user() | |
for histi in range(0, len_history): | |
data_point = dict(instruction=history[histi][0], input='', output=history[histi][1]) | |
prompt, pre_response, terminate_response, chat_sep, chat_turn_sep = \ | |
generate_prompt(data_point, | |
prompt_type, | |
prompt_dict, | |
chat, | |
reduced=True, | |
making_context=True, | |
system_prompt=system_prompt, | |
histi=histi) | |
# md -> back to text, maybe not super important if model trained enough | |
if not keep_sources_in_context and langchain_mode != 'Disabled' and prompt.find(super_source_prefix) >= 0: | |
# FIXME: This is relatively slow even for small amount of text, like 0.3s each history item | |
import re | |
prompt = re.sub(f'{re.escape(super_source_prefix)}.*?{re.escape(super_source_postfix)}', '', prompt, | |
flags=re.DOTALL) | |
if prompt.endswith('\n<p>'): | |
prompt = prompt[:-4] | |
prompt = prompt.replace('<br>', chat_turn_sep) | |
if not prompt.endswith(chat_turn_sep): | |
prompt += chat_turn_sep | |
# most recent first, add older if can | |
# only include desired chat history | |
if len(prompt + context1) > max_prompt_length: | |
break | |
context1 += prompt | |
_, pre_response, terminate_response, chat_sep, chat_turn_sep = \ | |
generate_prompt({}, prompt_type, prompt_dict, | |
chat, reduced=True, | |
making_context=True, | |
system_prompt=system_prompt, | |
histi=-1) | |
if context1 and not context1.endswith(chat_turn_sep): | |
context1 += chat_turn_sep # ensure if terminates abruptly, then human continues on next line | |
return context1 | |
def get_limited_prompt(instruction, | |
iinput, | |
tokenizer, | |
prompter=None, | |
inference_server=None, | |
prompt_type=None, prompt_dict=None, chat=False, max_new_tokens=None, | |
system_prompt='', | |
context='', chat_conversation=None, text_context_list=None, | |
keep_sources_in_context=False, | |
model_max_length=None, memory_restriction_level=0, | |
langchain_mode=None, add_chat_history_to_context=True, | |
verbose=False, | |
doc_importance=0.5, | |
min_max_new_tokens=256, | |
): | |
if prompter: | |
prompt_type = prompter.prompt_type | |
prompt_dict = prompter.prompt_dict | |
chat = prompter.chat | |
stream_output = prompter.stream_output | |
system_prompt = prompter.system_prompt | |
generate_prompt_type = prompt_type | |
external_handle_chat_conversation = False | |
if any(inference_server.startswith(x) for x in ['openai_chat', 'openai_azure_chat', 'vllm_chat']): | |
# Chat APIs do not take prompting | |
# Replicate does not need prompting if no chat history, but in general can take prompting | |
# if using prompter, prompter.system_prompt will already be filled with automatic (e.g. from llama-2), | |
# so if replicate final prompt with system prompt still correct because only access prompter.system_prompt that was already set | |
# below already true for openai, | |
# but not vllm by default as that can be any model and handled by FastChat API inside vLLM itself | |
generate_prompt_type = 'plain' | |
# Chat APIs don't handle chat history via single prompt, but in messages, assumed to be handled outside this function | |
chat_conversation = [] | |
external_handle_chat_conversation = True | |
# merge handles if chat_conversation is None | |
history = [] | |
history = merge_chat_conversation_history(chat_conversation, history) | |
history_to_context_func = functools.partial(history_to_context, | |
langchain_mode=langchain_mode, | |
add_chat_history_to_context=add_chat_history_to_context, | |
prompt_type=generate_prompt_type, | |
prompt_dict=prompt_dict, | |
chat=chat, | |
model_max_length=model_max_length, | |
memory_restriction_level=memory_restriction_level, | |
keep_sources_in_context=keep_sources_in_context, | |
system_prompt=system_prompt) | |
context2 = history_to_context_func(history) | |
context1 = context | |
if context1 is None: | |
context1 = '' | |
from h2oai_pipeline import H2OTextGenerationPipeline | |
data_point_just_instruction = dict(context='', instruction=instruction, input='') | |
prompt_just_instruction = prompter.generate_prompt(data_point_just_instruction) | |
instruction, num_instruction_tokens = H2OTextGenerationPipeline.limit_prompt(instruction, tokenizer) | |
num_instruction_tokens_real = get_token_count(prompt_just_instruction, tokenizer) | |
num_instruction_tokens += (num_instruction_tokens_real - num_instruction_tokens) | |
context1, num_context1_tokens = H2OTextGenerationPipeline.limit_prompt(context1, tokenizer) | |
context2, num_context2_tokens = H2OTextGenerationPipeline.limit_prompt(context2, tokenizer) | |
iinput, num_iinput_tokens = H2OTextGenerationPipeline.limit_prompt(iinput, tokenizer) | |
if text_context_list is None: | |
text_context_list = [] | |
num_doc_tokens = sum([get_token_count(x + '\n\n', tokenizer) for x in text_context_list]) | |
num_prompt_tokens0 = (num_instruction_tokens or 0) + \ | |
(num_context1_tokens or 0) + \ | |
(num_context2_tokens or 0) + \ | |
(num_iinput_tokens or 0) + \ | |
(num_doc_tokens or 0) | |
# go down to no less than 256, about 1 paragraph | |
# use max_new_tokens before use num_prompt_tokens0 else would be negative or ~0 | |
min_max_new_tokens = min(min_max_new_tokens, max_new_tokens) | |
# by default assume can handle all chat and docs | |
chat_index = 0 | |
# allowed residual is either half of what is allowed if doc exceeds half, or is rest of what doc didn't consume | |
num_non_doc_tokens = num_prompt_tokens0 - num_doc_tokens | |
# to doc first then non-doc, shouldn't matter much either way | |
doc_max_length = max(model_max_length - num_non_doc_tokens, doc_importance * model_max_length) | |
top_k_docs, one_doc_size, num_doc_tokens = get_docs_tokens(tokenizer, text_context_list=text_context_list, | |
max_input_tokens=doc_max_length) | |
non_doc_max_length = max(model_max_length - num_doc_tokens, (1.0 - doc_importance) * model_max_length) | |
if num_non_doc_tokens > non_doc_max_length: | |
# need to limit in some way, keep portion of history but all of context and instruction | |
# 1) drop iinput (unusual to include anyways) | |
# 2) reduce history | |
# 3) reduce context1 | |
# 4) limit instruction so will fit | |
diff1 = non_doc_max_length - ( | |
num_instruction_tokens + num_context1_tokens + num_context2_tokens + min_max_new_tokens) | |
diff2 = non_doc_max_length - (num_instruction_tokens + num_context1_tokens + min_max_new_tokens) | |
diff3 = non_doc_max_length - (num_instruction_tokens + min_max_new_tokens) | |
diff4 = non_doc_max_length - min_max_new_tokens | |
if diff1 > 0: | |
# then should be able to do #1 | |
iinput = '' | |
num_iinput_tokens = 0 | |
elif diff2 > 0 > diff1: | |
# then may be able to do #1 + #2 | |
iinput = '' | |
num_iinput_tokens = 0 | |
chat_index_final = len(history) | |
for chat_index in range(len(history)): | |
# NOTE: history and chat_conversation are older for first entries | |
# FIXME: This is a slow for many short conversations | |
context2 = history_to_context_func(history[chat_index:]) | |
num_context2_tokens = get_token_count(context2, tokenizer) | |
diff1 = non_doc_max_length - ( | |
num_instruction_tokens + num_context1_tokens + num_context2_tokens + min_max_new_tokens) | |
if diff1 > 0: | |
chat_index_final = chat_index | |
if verbose: | |
print("chat_conversation used %d out of %d" % (chat_index, len(history)), flush=True) | |
break | |
chat_index = chat_index_final # i.e. if chat_index == len(history), then nothing can be consumed | |
elif diff3 > 0 > diff2: | |
# then may be able to do #1 + #2 + #3 | |
iinput = '' | |
num_iinput_tokens = 0 | |
context2 = '' | |
num_context2_tokens = 0 | |
context1, num_context1_tokens = H2OTextGenerationPipeline.limit_prompt(context1, tokenizer, | |
max_prompt_length=diff3) | |
if num_context1_tokens <= diff3: | |
pass | |
else: | |
print("failed to reduce", flush=True) | |
else: | |
# then must be able to do #1 + #2 + #3 + #4 | |
iinput = '' | |
num_iinput_tokens = 0 | |
context2 = '' | |
num_context2_tokens = 0 | |
context1 = '' | |
num_context1_tokens = 0 | |
# diff4 accounts for real prompting for instruction | |
# FIXME: history_to_context could include instruction, in case system prompt long, we overcount and could have more free tokens | |
instruction, num_instruction_tokens = H2OTextGenerationPipeline.limit_prompt(instruction, tokenizer, | |
max_prompt_length=diff4) | |
# get actual tokens | |
data_point_just_instruction = dict(context='', instruction=instruction, input='') | |
prompt_just_instruction = prompter.generate_prompt(data_point_just_instruction) | |
num_instruction_tokens_real = get_token_count(prompt_just_instruction, tokenizer) | |
num_instruction_tokens += (num_instruction_tokens_real - num_instruction_tokens) | |
# update full context | |
context = context1 + context2 | |
# update token counts (docs + non-docs, all tokens) | |
num_prompt_tokens = (num_instruction_tokens or 0) + \ | |
(num_context1_tokens or 0) + \ | |
(num_context2_tokens or 0) + \ | |
(num_iinput_tokens or 0) + \ | |
(num_doc_tokens or 0) | |
# update max_new_tokens | |
if inference_server and inference_server.startswith('http'): | |
# assume TGI/Gradio setup to consume tokens and have long output too, even if exceeds model capacity. | |
pass | |
else: | |
# limit so max_new_tokens = prompt + new < max | |
# otherwise model can fail etc. e.g. for distilgpt2 asking for 1024 tokens is enough to fail if prompt=1 token | |
max_new_tokens = min(max_new_tokens, model_max_length - num_prompt_tokens) | |
if prompter is None: | |
# get prompter | |
debug = False | |
stream_output = False # doesn't matter | |
prompter = Prompter(prompt_type, prompt_dict, debug=debug, chat=chat, stream_output=stream_output, | |
system_prompt=system_prompt) | |
if prompt_type != generate_prompt_type: | |
# override just this attribute, keep system_prompt etc. from original prompt_type | |
prompter.prompt_type = generate_prompt_type | |
data_point = dict(context=context, instruction=instruction, input=iinput) | |
# handle promptA/promptB addition if really from history. | |
# if not from history, then reduced=False inside correct | |
# if mixed, then no specific correct thing to do, so treat like history and promptA/B will come first still | |
context_from_history = len(history) > 0 and len(context1) > 0 | |
prompt = prompter.generate_prompt(data_point, context_from_history=context_from_history) | |
num_prompt_tokens_actual = get_token_count(prompt, tokenizer) | |
return prompt, \ | |
instruction, iinput, context, \ | |
num_prompt_tokens, max_new_tokens, num_prompt_tokens0, num_prompt_tokens_actual, \ | |
chat_index, external_handle_chat_conversation, \ | |
top_k_docs, one_doc_size | |
def get_docs_tokens(tokenizer, text_context_list=[], max_input_tokens=None): | |
if text_context_list is None or len(text_context_list) == 0: | |
return 0, None, 0 | |
if max_input_tokens is None: | |
max_input_tokens = tokenizer.model_max_length | |
tokens = [get_token_count(x + '\n\n', tokenizer) for x in text_context_list] | |
tokens_cumsum = np.cumsum(tokens) | |
where_res = np.where(tokens_cumsum < max_input_tokens)[0] | |
# if below condition fails, then keep top_k_docs=-1 and trigger special handling next | |
if where_res.shape[0] > 0: | |
top_k_docs = 1 + where_res[-1] | |
one_doc_size = None | |
num_doc_tokens = tokens_cumsum[top_k_docs - 1] # by index | |
else: | |
# if here, means 0 and just do best with 1 doc | |
top_k_docs = 1 | |
text_context_list = text_context_list[:top_k_docs] | |
# critical protection | |
from src.h2oai_pipeline import H2OTextGenerationPipeline | |
doc_content = text_context_list[0] | |
doc_content, new_tokens0 = H2OTextGenerationPipeline.limit_prompt(doc_content, | |
tokenizer, | |
max_prompt_length=max_input_tokens) | |
text_context_list[0] = doc_content | |
one_doc_size = len(doc_content) | |
num_doc_tokens = get_token_count(doc_content + '\n\n', tokenizer) | |
print("Unexpected large chunks and can't add to context, will add 1 anyways. Tokens %s -> %s" % ( | |
tokens[0], new_tokens0), flush=True) | |
return top_k_docs, one_doc_size, num_doc_tokens | |
def entrypoint_main(): | |
""" | |
Examples: | |
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 --master_port=1234 generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights=lora-alpaca_6B | |
python generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights='lora-alpaca_6B' | |
python generate.py --base_model='EleutherAI/gpt-neox-20b' --lora_weights='lora-alpaca_20B' | |
# generate without lora weights, no prompt | |
python generate.py --base_model='EleutherAI/gpt-neox-20b' --prompt_type='plain' | |
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq' | |
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq' --lora_weights='lora_20B_daifaq' | |
# OpenChatKit settings: | |
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0 | |
python generate.py --base_model='distilgpt2' --prompt_type='plain' --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0 --share=False | |
python generate.py --base_model='t5-large' --prompt_type='simple_instruct' | |
python generate.py --base_model='philschmid/bart-large-cnn-samsum' | |
python generate.py --base_model='philschmid/flan-t5-base-samsum' | |
python generate.py --base_model='facebook/mbart-large-50-many-to-many-mmt' | |
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot' --lora_weights='GPT-NeoXT-Chat-Base-20B.merged.json.8_epochs.57b2892c53df5b8cefac45f84d019cace803ef26.28' | |
must have 4*48GB GPU and run without 8bit in order for sharding to work with use_gpu_id=False | |
can also pass --prompt_type='human_bot' and model can somewhat handle instructions without being instruct tuned | |
python generate.py --base_model=decapoda-research/llama-65b-hf --load_8bit=False --use_gpu_id=False --prompt_type='human_bot' | |
python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6_9b | |
""" | |
H2O_Fire(main) | |
if __name__ == "__main__": | |
entrypoint_main() | |