h2ogpt-chatbot2 / finetune.py
pseudotensor's picture
Update with h2oGPT hash 13a8343d2a96885985bda8c4480bbb23cf55bb9b
eeb7ca1
raw
history blame
31.1 kB
import os
import sys
from functools import partial
from typing import List, Union
import fire
import numpy as np
from loaders import get_loaders, get_tokenizer
from prompter import generate_prompt, prompt_types, PromptType
from utils import get_githash, copy_code
import torch
def log(*args, **kwargs):
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
if 'flush' not in kwargs:
kwargs['flush'] = True
print(*args, **kwargs)
# supported by huggingface evaluate
supported_metrics = ['bleu', 'rouge', 'sacrebleu', 'meteor']
def train(
save_code: bool = False,
run_id: int = None,
base_model: str = 'h2oai/h2ogpt-oig-oasst1-512-6_9b',
# base_model: str = 'h2oai/h2ogpt-oasst1-512-12b',
# base_model: str = 'h2oai/h2ogpt-oasst1-512-20b',
# base_model: str = 'EleutherAI/gpt-neox-20b',
# base_model: str = 'EleutherAI/pythia-12b-deduped',
# base_model: str = 'togethercomputer/GPT-NeoXT-Chat-Base-20B',
# base_model: str = 'decapoda-research/llama-7b-hf',
# base_model: str = 'decapoda-research/llama-13b-hf',
# base_model: str = 'decapoda-research/llama-30b-hf',
# base_model: str = 'EleutherAI/gpt-j-6B',
# only needed if base_model is self-exported HF state without tokenizer
tokenizer_base_model: str = None,
# tokenizer_base_model: str = 'EleutherAI/gpt-neox-20b',
data_path: str = "h2oai/openassistant_oasst1_h2ogpt",
data_col_dict: dict = None,
# data_path: str = "./dai_docs.train.json",
prompt_type: Union[str, int] = "plain", # "plain", "instruct", "quality", "human_bot", "dai_faq"
valid_path: str = None,
# valid_path: str = "./dai_docs.valid.json",
# data_mix_in_path: str = "laion/OIG", # way too big, medium quality
data_mix_in_path: str = "0-hero/OIG-small-chip2", # high quality, 50 MB, good enough for now
data_mix_in_factor: float = 0.0, # >1: more mix-in data, <1: more of data_path data
data_mix_in_col_dict: dict = {'user': 'instruction', 'chip2': 'output'},
data_mix_in_prompt_type: str = "instruct", # just instruction->output, same as instruct
output_dir: str = None,
# LoRA checkpoint continuation
lora_weights: str = "",
# batching training hyperparams
batch_size: int = 128,
micro_batch_size: int = 4,
gradient_checkpointing=False, # unnecessary with gradient accumulation enabled
fp16=True,
train_8bit=False,
train_4bit=False,
# general training hyperparams
num_epochs: float = 1,
learning_rate: float = 3e-4,
# validation settings
val_set_size: int = None,
val_metrics: List[str] = [],
eval_steps: int = None, # to control eval steps via steps
eval_epochs: float = None, # to control eval steps via epochs
# lora hyperparams
lora_r: int = 8,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
lora_target_modules: List[str] = None,
llama_type: bool = None,
llama_flash_attn: bool = False,
# llm hyperparams
train_on_inputs: bool = True, # if False, masks out inputs in loss
group_by_length: bool = False, # if True, faster, but produces an odd training loss curve
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
cutoff_len: int = 512, # larger values use more memory
drop_truncations: bool = False, # if True, drop any truncated long sequences
# torch training params
ddp: bool = True, # set to False if OOM with True, for multi-GPU model parallelism
local_files_only: bool = False, # else will download new versions, normally unwanted
resume_download: bool = True,
use_auth_token: Union[str, bool] = False, # True requires CLI did huggingface-cli login before running
warmup_steps: int = 100,
logging_steps: int = 1,
save_steps: int = None, # must be round multiple of eval_steps
save_total_limit: int = 3,
add_eos_token: bool = False,
):
if llama_flash_attn:
# Need to call this before importing transformers.
from llama_flash_attn_monkey_patch import replace_llama_attn_with_flash_attn
replace_llama_attn_with_flash_attn()
# allow set token directly
use_auth_token = os.environ.get("HUGGINGFACE_API_TOKEN", use_auth_token)
prompt_type = str(prompt_type) # migration from integers
assert prompt_type in prompt_types
world_size = int(os.getenv("WORLD_SIZE", 1))
local_rank = int(os.getenv("LOCAL_RANK", 0))
rank = int(os.getenv("RANK", 0))
print(f"local_rank: {local_rank}")
print(f"global rank: {rank}")
gpus = max(world_size, torch.cuda.device_count())
run_id = run_id or 0
if not data_path:
raise ValueError("No data_path provided")
if not output_dir:
output_dir = f"{base_model.split('/')[-1]}.{data_path.replace('/', '')}.{num_epochs}_epochs.{get_githash() or 'nogit'}.{run_id}"
if os.path.exists(output_dir) and not resume_from_checkpoint:
raise FileExistsError(
f"output_dir {output_dir} based on run_id {run_id} already exists. Please pick a different run_id.")
else:
if os.path.exists(output_dir) and not resume_from_checkpoint:
raise FileExistsError(
f"output_dir {output_dir} already exists. Please pick a different output_dir, or specify a run_id instead.")
device_map = "auto"
if save_code:
copy_code(run_id)
if tokenizer_base_model is None:
tokenizer_base_model = base_model
if llama_type is None:
llama_type = "llama" in base_model.lower()
if llama_type and llama_flash_attn:
import pkg_resources
try:
pkg_resources.get_distribution('flash_attn')
can_do_flash_attn = True
except (pkg_resources.DistributionNotFound, pkg_resources.ContextualVersionConflict):
can_do_flash_attn = False
if not can_do_flash_attn:
raise RuntimeError("""Flash attention not installed.
NOTE: for current pytorch 2.0, flash attention requires installing cuda 11.7 via https://developer.nvidia.com/cuda-11-7-0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=20.04&target_type=runfile_local and then when running, to avoid installing driver, docs, samples, just install toolkit. Then when pip installing flash attention do:
CUDA_HOME=/usr/local/cuda-11.7 pip install flash-attn""")
assert (
base_model
), "Please specify a --base_model, e.g. --base_model='decapoda-research/llama-7b-hf'"
gradient_accumulation_steps = batch_size // micro_batch_size
assert gradient_accumulation_steps >= world_size, "must increase batch_size for multi-GPU"
device_map = "auto"
locals_dict = locals()
locals_print = '\n'.join(['%s: %s' % (k, v) for k, v in locals_dict.items()])
log(f"Training model with params:\n{locals_print}")
log("Command: %s\nHash: %s" % (str(' '.join(sys.argv)), get_githash()))
max_memory = None
if gpus > 1:
if ddp:
log("Distributed: data parallel")
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
else:
free_in_GB = int(min(torch.cuda.mem_get_info()) / 1024 ** 3)
max_memory = f"{free_in_GB - 2}GB"
max_memory = {i: max_memory for i in range(gpus)}
log("world_size: %d" % world_size)
log("num_gpus: %d" % gpus)
log("max mem: %s" % max_memory)
model_loader, tokenizer_loader = get_loaders(llama_type=llama_type, model_name=base_model, reward_type=False)
model = model_loader.from_pretrained(
base_model,
load_in_8bit=train_8bit,
load_in_4bit=train_4bit,
device_map=device_map,
torch_dtype=torch.float16,
max_memory=max_memory,
local_files_only=local_files_only,
trust_remote_code=True,
resume_download=resume_download,
use_auth_token=use_auth_token,
)
if gpus > 1:
if not ddp:
log("model parallel")
model.is_parallelizable = True
model.model_parallel = True
tokenizer = get_tokenizer(tokenizer_loader, tokenizer_base_model, local_files_only, resume_download, use_auth_token)
if train_8bit or train_4bit:
from peft import (
prepare_model_for_kbit_training,
)
model = prepare_model_for_kbit_training(model)
from peft import LoraConfig, get_peft_model, set_peft_model_state_dict
try:
from peft import utils
lora_mappings = utils.TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING.copy()
except AttributeError:
from peft import mapping
lora_mappings = mapping.TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING.copy()
lora_mappings['distilgpt2'] = ["c_attn"]
if lora_weights:
from peft import PeftModel
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
device_map=device_map,
local_files_only=local_files_only,
resume_download=resume_download,
use_auth_token=use_auth_token,
)
elif lora_r > 0:
if lora_target_modules is None:
base_model_lower = base_model.lower()
if base_model_lower in lora_mappings:
lora_target_modules_cand = [lora_mappings[base_model_lower]]
else:
lora_target_modules_cand = [["query_key_value"], ["q_proj", "v_proj"]]
else:
lora_target_modules_cand = [lora_target_modules]
for lora_target_modules in lora_target_modules_cand:
try:
config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
break
except ValueError as e:
if "Target modules" in str(e) and "not found" in str(e):
continue
else:
raise
from peft import PeftModel
assert isinstance(model, PeftModel), "LoRA failed. Please provide --lora_target_modules explicitly."
if resume_from_checkpoint:
# Check the available weights and load them
checkpoint_name = os.path.join(
resume_from_checkpoint, "pytorch_model.bin"
) # Full checkpoint
if not os.path.exists(checkpoint_name):
checkpoint_name = os.path.join(
resume_from_checkpoint, "adapter_model.bin"
) # only LoRA model - LoRA config above has to fit
resume_from_checkpoint = False # So the trainer won't try loading its state
# The two files above have a different name depending on how they were saved, but are actually the same.
if os.path.exists(checkpoint_name):
log(f"Restarting from {checkpoint_name}")
adapters_weights = torch.load(checkpoint_name)
set_peft_model_state_dict(model, adapters_weights)
else:
log(f"Checkpoint {checkpoint_name} not found")
print(model)
try:
# only for PeftModel
model.print_trainable_parameters() # Be more transparent about the % of trainable params.
except:
pass
metrics = {}
for name in supported_metrics:
if name in val_metrics:
import evaluate # Causes hang for 'python generate.py' on dual 4090 if imported early, 100% reproducible
metrics[name] = evaluate.load(name)
log("Using Validation Metrics: %s" % str(list(metrics.keys())))
log("Supported Metrics: %s" % supported_metrics)
if val_set_size is None:
if len(metrics) == 0:
val_set_size = 1000
else:
val_set_size = 100
log("Auto set val_set_size %s" % val_set_size)
elif val_set_size < 1.0 and val_set_size != 0:
raise RuntimeError("Fractional validation size not supported.")
from datasets import load_dataset, concatenate_datasets
if valid_path:
data = load_dataset("json", data_files={"train": data_path, "valid": valid_path})
else:
if "json" in data_path:
data = load_dataset("json", data_files={"train": data_path})
else:
data = load_dataset(data_path)
data = data.rename_columns(data_col_dict or {})
valid_data = None
train_data_mix_in = None
valid_data_mix_in = None
if data_mix_in_path and data_mix_in_factor > 0:
# get mix-in training/validation data - to keep model "sane"
num_rows = data["train"].num_rows
log("Loading mix-in dataset: %s" % data_mix_in_path)
if "json" in data_mix_in_path:
data_mix_in = load_dataset("json", data_files={"train": data_mix_in_path})["train"]
else:
data_mix_in = load_dataset(data_mix_in_path)["train"] # can be large
data_mix_in = data_mix_in.rename_columns(data_mix_in_col_dict or {})
mix_in_rows = int(num_rows * data_mix_in_factor)
if mix_in_rows > data_mix_in.num_rows:
# duplicate rows if mix-in is smaller than required
log("Duplicating mixin to compensate for its size for training size and mixin fraction")
data_mix_in = concatenate_datasets([data_mix_in] * int(np.ceil(mix_in_rows / data_mix_in.num_rows)))
# only get as much as we need to balance
valid_size = min(data_mix_in.num_rows // 2, val_set_size or 0)
train_size = max(1, min(data_mix_in.num_rows - valid_size, mix_in_rows))
mixin_small = data_mix_in.train_test_split(
test_size=train_size + valid_size,
shuffle=True, seed=np.random.randint(10000),
)["test"]
if valid_size:
mixin_train_test = mixin_small.train_test_split(
test_size=valid_size, shuffle=False,
)
train_data_mix_in = mixin_train_test["train"]
valid_data_mix_in = mixin_train_test["test"]
else:
train_data_mix_in = mixin_small
if "prompt_type" not in train_data_mix_in.column_names:
train_data_mix_in = train_data_mix_in.add_column(
"prompt_type",
[data_mix_in_prompt_type] * train_data_mix_in.num_rows,
)
log("Added prompt type %s to mix-in training data" % data_mix_in_prompt_type)
if valid_data_mix_in and "prompt_type" not in valid_data_mix_in.column_names:
valid_data_mix_in = valid_data_mix_in.add_column(
"prompt_type",
[data_mix_in_prompt_type] * valid_data_mix_in.num_rows,
)
log("Added prompt type %s to mix-in validation data" % data_mix_in_prompt_type)
log("Created mix-in data:\nTrain %s\nValid %s" % (train_data_mix_in, valid_data_mix_in))
# get our own training/validation data - for fine-tuning
if val_set_size > 0 and not valid_path and not data_mix_in_path:
# create valid split from train
train_val = data["train"].train_test_split(
test_size=val_set_size, shuffle=True, seed=42
)
train_data = train_val["train"]
valid_data = train_val["test"]
else:
train_data = data["train"]
if valid_path:
# use given valid split, has priority over data_mix_in_path
valid_data = data["valid"]
if "prompt_type" not in train_data.column_names:
train_data = train_data.add_column(
"prompt_type",
[prompt_type] * train_data.num_rows,
)
log("Added prompt type %s to training data" % prompt_type)
if valid_data and "prompt_type" not in valid_data.column_names:
valid_data = valid_data.add_column(
"prompt_type",
[prompt_type] * valid_data.num_rows,
)
log("Added prompt type %s to validation data" % prompt_type)
assert train_data is not None
generate_and_tokenize_prompt_fun = partial(generate_and_tokenize_prompt, prompt_type=prompt_type,
train_on_inputs=train_on_inputs, add_eos_token=add_eos_token,
cutoff_len=cutoff_len, tokenizer=tokenizer)
# shuffle and tokenize data
if train_data_mix_in:
train_data = concatenate_datasets([train_data, train_data_mix_in])
log("Tokenizing %s training rows" % train_data.num_rows)
train_data = train_data.shuffle().map(generate_and_tokenize_prompt_fun,
num_proc=os.cpu_count() // torch.cuda.device_count())
if drop_truncations:
log("avoid keeping truncated cases to avoid contaminating model with truncation cases. Original size: %s" % train_data.num_rows)
prune_long_sequences_func = partial(prune_long_sequences, cutoff_len=cutoff_len)
train_data = train_data.filter(prune_long_sequences_func, num_proc=os.cpu_count() // torch.cuda.device_count())
log("avoid keeping truncated cases to avoid contaminating model with truncation cases. New size: %s" % train_data.num_rows)
train_set_size = len(train_data)
if valid_data and valid_data_mix_in:
valid_data = concatenate_datasets([valid_data, valid_data_mix_in])
elif valid_data_mix_in:
valid_data = valid_data_mix_in
if valid_data:
log("Tokenizing %s validation rows" % valid_data.num_rows)
valid_data = valid_data.shuffle().map(generate_and_tokenize_prompt_fun,
num_proc=os.cpu_count() // torch.cuda.device_count())
val_set_size = len(valid_data)
else:
val_set_size = 0
log("Final fine-tuning data:\nTrain %s\nValid %s" % (train_data, valid_data))
sample_row_dict = train_data[:1]
del sample_row_dict['input_ids']
del sample_row_dict['attention_mask']
del sample_row_dict['labels']
log("Sample input: %s" % sample_row_dict)
try:
import neptune
from transformers.integrations import NeptuneCallback
neptune_run = neptune.init_run(
source_files=[],
)
log("Connected to Neptune.")
except ImportError:
neptune_run = None
log("Please pip install neptune for tracking.")
except neptune.exceptions.NeptuneMissingApiTokenException:
neptune_run = None
os.environ["NEPTUNE_MODE"] = 'debug'
log("No neptune configured, set NEPTUNE_API_TOKEN env var.")
if neptune_run:
neptune_callback = NeptuneCallback(run=neptune_run)
callbacks = [neptune_callback]
else:
from transformers.integrations import TensorBoardCallback, is_tensorboard_available
if is_tensorboard_available:
# tensorboard --logdir=runs/
from torch.utils.tensorboard import SummaryWriter
tb_writer = SummaryWriter()
callbacks = [TensorBoardCallback(tb_writer=tb_writer)]
else:
callbacks = []
expected_steps = (train_set_size * num_epochs) // batch_size
if eval_steps is None and eval_epochs is None:
# 20 evaluations for a run
eval_steps = max(1, int(expected_steps / 20))
log("Auto set eval_steps to %s out of %s total training steps" % (eval_steps, expected_steps))
elif eval_steps is None and eval_epochs is not None:
eval_steps = max(1, int(expected_steps * eval_epochs / num_epochs))
log("Auto converted eval_epochs=%s to eval_steps %s"
" out of %s total training steps" % (eval_epochs, eval_steps, expected_steps))
if save_steps is None:
save_steps = eval_steps
log("Auto step save_steps to %s" % save_steps)
elif save_steps > eval_steps:
# save steps must be round multiple of eval_steps
save_steps0 = save_steps
save_steps = max(1, (save_steps // eval_steps)) * eval_steps
if save_steps0 != save_steps:
log("Auto converted save_steps from %s to %s" % (save_steps0, save_steps))
def compute_metrics(eval_preds):
# e.g. see: https://huggingface.co/docs/transformers/v4.25.1/en/tasks/translation#evaluate
inputs = eval_preds.inputs
label_ids = eval_preds.label_ids
predictions = eval_preds.predictions
# inputs = np.where(inputs != -100, inputs, tokenizer.pad_token_id)
# decoded_inputs = tokenizer.batch_decode(inputs, skip_special_tokens=True)
# decoded_inputs = [pred.strip() for pred in decoded_inputs]
label_ids = np.where(label_ids != -100, label_ids, tokenizer.pad_token_id)
# tokenizer behavior like generate time
decoded_labels = tokenizer.batch_decode(label_ids, skip_special_tokens=True,
clean_up_tokenization_spaces=True)
decoded_labels = [pred.strip() for pred in decoded_labels]
predictions = np.argmax(predictions, -1)
predictions = np.where(predictions != -100, predictions, tokenizer.pad_token_id)
# tokenizer behavior like generate time
decoded_predictions = tokenizer.batch_decode(predictions, skip_special_tokens=True,
clean_up_tokenization_spaces=True)
decoded_predictions = [pred.strip() for pred in decoded_predictions]
result = {}
for metric in metrics.values():
result1 = metric.compute(predictions=decoded_predictions, references=decoded_labels)
# get rid of lists, for precision etc., for now
numeric_results = {k: v for k, v in result1.items() if isinstance(v, (int, float))}
result.update(numeric_results)
return result
# the callback that computes metrics of interest
if val_metrics:
trainer_kwargs = dict(compute_metrics=compute_metrics)
else:
trainer_kwargs = dict()
import transformers
trainer = transformers.Trainer(
model=model,
tokenizer=tokenizer,
train_dataset=train_data,
eval_dataset=valid_data,
# FIXME: might need Seq2SeqTrainingArguments for some models
args=transformers.TrainingArguments(
per_device_train_batch_size=micro_batch_size,
per_device_eval_batch_size=1,
eval_accumulation_steps=10,
# predict_with_generate=True, # SEQ2SEQ only
include_inputs_for_metrics=True,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=warmup_steps,
num_train_epochs=num_epochs,
learning_rate=learning_rate,
gradient_checkpointing=gradient_checkpointing,
fp16=fp16,
# cosnider 8-bit adam: https://huggingface.co/docs/transformers/v4.18.0/en/performance#8bit-adam
optim="adamw_torch", # consider "adafactor" to save memory
logging_steps=logging_steps,
logging_strategy="steps",
evaluation_strategy="steps" if val_set_size > 0 else "no",
save_strategy="steps",
eval_steps=eval_steps if val_set_size > 0 else None,
save_steps=save_steps,
output_dir=output_dir,
save_total_limit=save_total_limit,
load_best_model_at_end=True if val_set_size > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=group_by_length,
# fsdp="shard_grad_op auto_wrap" if gpus > 1 and not ddp else None,
# fsdp_min_num_params=20000 if gpus > 1 and not ddp else None,
report_to='tensorboard' if not neptune_run else 'neptune',
),
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
callbacks=callbacks,
**trainer_kwargs,
)
model.config.use_cache = False
old_state_dict = model.state_dict
from peft import get_peft_model_state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
).__get__(model, type(model))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
# WIP (not generally replacing layers until pytorch 2.1)
if not llama_flash_attn:
torch.backends.cuda.enable_flash_sdp(True)
if gpus > 1 and not ddp:
assert trainer.is_model_parallel
else:
assert not trainer.is_model_parallel
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
model.save_pretrained(output_dir)
log("\n If there's a warning about missing keys above, please disregard :)")
def tokenize(prompt, tokenizer, cutoff_len, add_eos_token=False):
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
result = tokenizer(
prompt,
truncation=True,
max_length=cutoff_len,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < cutoff_len
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def prune_long_sequences(data_point, cutoff_len=None):
"""
Prune if too long for tokenizer, so truncation doesn't lead training to learn from truncated language
:param data_point:
:param cutoff_len:
:return:
"""
assert cutoff_len is not None
return len(data_point['input_ids']) < cutoff_len
def generate_and_tokenize_prompt(data_point, prompt_type=None, train_on_inputs=False, add_eos_token=False,
cutoff_len=None, tokenizer=None):
assert prompt_type is not None
assert cutoff_len is not None
assert tokenizer is not None
prompt_dict = '' # only for custom prompt_type
assert prompt_type != PromptType.custom.name, "custom not setup for finetune"
full_prompt, _, _, _ = generate_prompt(data_point, prompt_type, prompt_dict, False, False)
tokenized_full_prompt = tokenize(full_prompt, tokenizer, cutoff_len, add_eos_token=add_eos_token)
if not train_on_inputs:
user_prompt, _, _, _ = generate_prompt({**data_point, "output": ""}, prompt_type, prompt_dict, False, False)
tokenized_user_prompt = tokenize(user_prompt, tokenizer, cutoff_len, add_eos_token=add_eos_token)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
if add_eos_token:
user_prompt_len -= 1
# ignore_index=-100 ensures torch/tf don't include padding token id in CrossEntropyLoss
tokenized_full_prompt["labels"] = [
-100
] * user_prompt_len + tokenized_full_prompt["labels"][
user_prompt_len:
] # could be sped up, probably
return tokenized_full_prompt
def test_debug():
fire.Fire(train)
if __name__ == "__main__":
CONFIG = "NCCL_P2P_LEVEL=LOC WORLD_SIZE=5 torchrun --nnodes=5 --master_addr=10.10.10.2 --master_port=1111 --nproc_per_node=1"
CMD = "finetune.py --data_path=config.json --num_epochs=1 --base_model=decapoda-research/llama-13b-hf"
log(f"""
Example runs on 4 GPUs:
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='decapoda-research/llama-7b-hf' --data_path=data/config.json --run_id=0 &> 0.log
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='decapoda-research/llama-30b-hf' --data_path=data/config.json --batch_size=16 --micro_batch_size=1 --run_id=1 --save_code=True &> 1.log
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='EleutherAI/gpt-j-6B' --data_path=data/config.json --run_id=2 &> 2.log
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='EleutherAI/gpt-neox-20b' --data_path=data/config.json --run_id=8 --batch_size=16 --micro_batch_size=4 &> 8.log
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --data_path=data/config.json --prompt_type='dai_faq' --run_id=13 --batch_size=16 --micro_batch_size=4 --num_epochs=100 --val_set_size=0 data_mix_in_path='' &> 13.log
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --data_path=data/config.json --run_id=28 --batch_size=16 --micro_batch_size=4 --num_epochs=8 --val_set_size=0 --data_mix_in_factor=0.1 --data_mix_in_prompt_type='human_bot' --save_code=True --cutoff_len=512 &> 28.log
All metrics:
CUDA_VISIBLE_DEVICES= finetune.py --data_mix_in_factor=0 --eval_steps=100 --warmup_steps=2 --val_set_size=100 --val_metrics="['bleu', 'rouge', 'sacrebleu', 'meteor']"
# Fine-tune 20B on 24GB GPUs across 3 nodes with 3+2+2 GPUs
rippa>
NCCL_P2P_LEVEL=LOC WORLD_SIZE=7 CUDA_VISIBLE_DEVICES="0,1,2" torchrun --node_rank 0 --nproc_per_node=3 --master_port=1234 --nnodes=3 --master_addr=10.10.10.2 finetune.py --data_path=merged_shuffled_OIG_87f6a1e788.json --micro_batch_size=1 --batch_size=7 --cutoff_len=512 --run_id=17 &>log.17.rank0
ova>
NCCL_P2P_LEVEL=LOC WORLD_SIZE=7 CUDA_VISIBLE_DEVICES="0,1" torchrun --node_rank 1 --nproc_per_node=2 --master_port=1234 --nnodes=3 --master_addr=10.10.10.2 finetune.py --data_path=merged_shuffled_OIG_87f6a1e788.json --micro_batch_size=1 --batch_size=7 --cutoff_len=512 --run_id=17 &>log.17.rank1
timemachine>
NCCL_P2P_LEVEL=LOC WORLD_SIZE=7 CUDA_VISIBLE_DEVICES="0,1" torchrun --node_rank 2 --nproc_per_node=2 --master_port=1234 --nnodes=3 --master_addr=10.10.10.2 finetune.py --data_path=merged_shuffled_OIG_87f6a1e788.json --micro_batch_size=1 --batch_size=7 --cutoff_len=512 --run_id=17 &>log.17.rank2
""", flush=True)
if os.environ.get("LOCAL_RANK") is None:
# then not using torchrun, so can't do distributed, ensure CVD set
assert os.environ.get(
"CUDA_VISIBLE_DEVICES") is not None, "Run python script using: torchrun finetune.py OR set CUDA_VISIBLE_DEVICES to single GPU"
fire.Fire(train)