h2ogpt-chatbot2 / src /serpapi.py
pseudotensor's picture
Update with h2oGPT hash 964011d09a2f696fca4cc476e53152d266d29351
a728cd0
raw
history blame
8.43 kB
import functools
import typing
import aiohttp
from langchain.docstore.document import Document
from langchain import SerpAPIWrapper
from src.utils_langchain import _chunk_sources, add_parser, _add_meta
from urllib.parse import urlparse
class H2OSerpAPIWrapper(SerpAPIWrapper):
def get_search_documents(self, query,
query_action=True,
chunk=True, chunk_size=512,
db_type='chroma',
headsize=50,
top_k_docs=-1):
docs = self.run(query, headsize)
chunk_sources = functools.partial(_chunk_sources, chunk=chunk, chunk_size=chunk_size, db_type=db_type)
docs = chunk_sources(docs)
# choose chunk type
if query_action:
docs = [x for x in docs if x.metadata['chunk_id'] >= 0]
else:
docs = [x for x in docs if x.metadata['chunk_id'] == -1]
# get score assuming search results scale with ranking
delta = 0.05
[x.metadata.update(score=0.1 + delta * x.metadata['chunk_id'] if x.metadata['chunk_id'] >= 0 else -1) for x in
docs]
# ensure see all results up to cutoff or mixing with non-web docs
if top_k_docs >= 1:
top_k_docs = max(top_k_docs, len(docs))
return docs, top_k_docs
async def arun(self, query: str, headsize: int, **kwargs: typing.Any) -> list:
"""Run query through SerpAPI and parse result async."""
return self._process_response(await self.aresults(query), query, headsize)
def run(self, query: str, headsize: int, **kwargs: typing.Any) -> list:
"""Run query through SerpAPI and parse result."""
return self._process_response(self.results(query), query, headsize)
@staticmethod
def _process_response(res: dict, query: str, headsize: int) -> list:
try:
return H2OSerpAPIWrapper.__process_response(res, query, headsize)
except Exception as e:
print("SERP search failed: %s" % str(e))
return []
@staticmethod
def __process_response(res: dict, query: str, headsize: int) -> list:
docs = []
res1 = SerpAPIWrapper._process_response(res)
if res1:
if isinstance(res1, str) and not res1.startswith('['): # avoid snippets
docs += [Document(page_content='Web search result %s: ' % len(docs) + res1,
metadata=dict(source='Web Search %s for %s' % (len(docs), query), score=0.0))]
elif isinstance(res1, list):
for x in res1:
date = ''
content = ''
if 'source' in x:
source = x['source']
content += '%s says' % source
else:
content = 'Web search result %s: ' % len(docs)
if 'date' in x:
date = x['date']
content += ' %s' % date
if 'title' in x:
content += ': %s' % x['title']
if 'snippet' in x:
content += ': %s' % x['snippet']
if 'link' in x:
link = x['link']
domain = urlparse(link).netloc
font_size = 2
source_name = domain
http_content = """<font size="%s"><a href="%s" target="_blank" rel="noopener noreferrer">%s</a></font>""" % (
font_size, link, source_name)
source = 'Web Search %s' % len(docs) + \
' from Date: %s Domain: %s Link: %s' % (date, domain, http_content)
if date:
content += ' around %s' % date
content += ' according to %s' % domain
else:
source = 'Web Search %s for %s' % (len(docs), query)
docs += [Document(page_content=content, metadata=dict(source=source, score=0.0))]
if "knowledge_graph" in res.keys():
knowledge_graph = res["knowledge_graph"]
title = knowledge_graph["title"] if "title" in knowledge_graph else ""
if "description" in knowledge_graph.keys():
docs += [Document(page_content='Web search result %s: ' % len(docs) + knowledge_graph["description"],
metadata=dict(source='Web Search %s with knowledge_graph description for %s' % (
len(docs), query), score=0.0))]
for key, value in knowledge_graph.items():
if (
type(key) == str
and type(value) == str
and key not in ["title", "description"]
and not key.endswith("_stick")
and not key.endswith("_link")
and not value.startswith("http")
):
docs += [Document(page_content='Web search result %s: ' % len(docs) + f"{title} {key}: {value}.",
metadata=dict(
source='Web Search %s with knowledge_graph for %s' % (len(docs), query),
score=0.0))]
if "organic_results" in res.keys():
for org_res in res["organic_results"]:
keys_to_try = ['snippet', 'snippet_highlighted_words', 'rich_snippet', 'rich_snippet_table', 'link']
for key in keys_to_try:
if key in org_res.keys():
date = ''
domain = ''
link = ''
snippet1 = ''
if key != 'link':
snippet1 = org_res[key]
if 'date' in org_res.keys():
date = org_res['date']
snippet1 += ' on %s' % date
else:
date = 'unknown date'
if 'link' in org_res.keys():
link = org_res['link']
domain = urlparse(link).netloc
if key == 'link':
# worst case, only url might have REST info
snippet1 += ' Link at %s: <a href="%s">%s</a>' % (domain, link, domain)
else:
snippet1 += ' according to %s' % domain
if snippet1:
font_size = 2
source_name = domain
http_content = """<font size="%s"><a href="%s" target="_blank" rel="noopener noreferrer">%s</a></font>""" % (
font_size, link, source_name)
source = 'Web Search %s' % len(docs) + \
' from Date: %s Domain: %s Link: %s' % (date, domain, http_content)
domain_simple = domain.replace('www.', '').replace('.com', '')
snippet1 = '%s says on %s: %s' % (domain_simple, date, snippet1)
docs += [Document(page_content=snippet1, metadata=dict(source=source), score=0.0)]
break
if "buying_guide" in res.keys():
docs += [Document(page_content='Web search result %s: ' % len(docs) + res["buying_guide"],
metadata=dict(source='Web Search %s with buying_guide for %s' % (len(docs), query)),
score=0.0)]
if "local_results" in res.keys() and "places" in res["local_results"].keys():
docs += [Document(page_content='Web search result %s: ' % len(docs) + res["local_results"]["places"],
metadata=dict(
source='Web Search %s with local_results_places for %s' % (len(docs), query)),
score=0.0)]
# add meta
add_meta = functools.partial(_add_meta, headsize=headsize, parser='SERPAPI')
add_meta(docs, query)
return docs