diff --git "a/gradio_runner.py" "b/gradio_runner.py" deleted file mode 100644--- "a/gradio_runner.py" +++ /dev/null @@ -1,2933 +0,0 @@ -import ast -import copy -import functools -import inspect -import itertools -import json -import os -import pprint -import random -import shutil -import sys -import time -import traceback -import typing -import uuid -import filelock -import pandas as pd -import requests -import tabulate -from iterators import TimeoutIterator - -from gradio_utils.css import get_css -from gradio_utils.prompt_form import make_chatbots - -# This is a hack to prevent Gradio from phoning home when it gets imported -os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False' - - -def my_get(url, **kwargs): - print('Gradio HTTP request redirected to localhost :)', flush=True) - kwargs.setdefault('allow_redirects', True) - return requests.api.request('get', 'http://127.0.0.1/', **kwargs) - - -original_get = requests.get -requests.get = my_get -import gradio as gr - -requests.get = original_get - - -def fix_pydantic_duplicate_validators_error(): - try: - from pydantic import class_validators - - class_validators.in_ipython = lambda: True # type: ignore[attr-defined] - except ImportError: - pass - - -fix_pydantic_duplicate_validators_error() - -from enums import DocumentSubset, no_model_str, no_lora_str, no_server_str, LangChainAction, LangChainMode, \ - DocumentChoice, langchain_modes_intrinsic -from gradio_themes import H2oTheme, SoftTheme, get_h2o_title, get_simple_title, get_dark_js, spacing_xsm, radius_xsm, \ - text_xsm -from prompter import prompt_type_to_model_name, prompt_types_strings, inv_prompt_type_to_model_lower, non_hf_types, \ - get_prompt -from utils import flatten_list, zip_data, s3up, clear_torch_cache, get_torch_allocated, system_info_print, \ - ping, get_short_name, makedirs, get_kwargs, remove, system_info, ping_gpu, get_url, get_local_ip, \ - save_collection_names -from gen import get_model, languages_covered, evaluate, score_qa, inputs_kwargs_list, scratch_base_dir, \ - get_max_max_new_tokens, get_minmax_top_k_docs, history_to_context, langchain_actions, langchain_agents_list, \ - update_langchain -from evaluate_params import eval_func_param_names, no_default_param_names, eval_func_param_names_defaults, \ - input_args_list - -from apscheduler.schedulers.background import BackgroundScheduler - - -def fix_text_for_gradio(text, fix_new_lines=False, fix_latex_dollars=True): - if fix_latex_dollars: - ts = text.split('```') - for parti, part in enumerate(ts): - inside = parti % 2 == 1 - if not inside: - ts[parti] = ts[parti].replace('$', '﹩') - text = '```'.join(ts) - - if fix_new_lines: - # let Gradio handle code, since got improved recently - ## FIXME: below conflicts with Gradio, but need to see if can handle multiple \n\n\n etc. properly as is. - # ensure good visually, else markdown ignores multiple \n - # handle code blocks - ts = text.split('```') - for parti, part in enumerate(ts): - inside = parti % 2 == 1 - if not inside: - ts[parti] = ts[parti].replace('\n', '
') - text = '```'.join(ts) - return text - - -def go_gradio(**kwargs): - allow_api = kwargs['allow_api'] - is_public = kwargs['is_public'] - is_hf = kwargs['is_hf'] - memory_restriction_level = kwargs['memory_restriction_level'] - n_gpus = kwargs['n_gpus'] - admin_pass = kwargs['admin_pass'] - model_states = kwargs['model_states'] - dbs = kwargs['dbs'] - db_type = kwargs['db_type'] - visible_langchain_actions = kwargs['visible_langchain_actions'] - visible_langchain_agents = kwargs['visible_langchain_agents'] - allow_upload_to_user_data = kwargs['allow_upload_to_user_data'] - allow_upload_to_my_data = kwargs['allow_upload_to_my_data'] - enable_sources_list = kwargs['enable_sources_list'] - enable_url_upload = kwargs['enable_url_upload'] - enable_text_upload = kwargs['enable_text_upload'] - use_openai_embedding = kwargs['use_openai_embedding'] - hf_embedding_model = kwargs['hf_embedding_model'] - enable_captions = kwargs['enable_captions'] - captions_model = kwargs['captions_model'] - enable_ocr = kwargs['enable_ocr'] - enable_pdf_ocr = kwargs['enable_pdf_ocr'] - caption_loader = kwargs['caption_loader'] - - # for dynamic state per user session in gradio - model_state0 = kwargs['model_state0'] - score_model_state0 = kwargs['score_model_state0'] - my_db_state0 = kwargs['my_db_state0'] - selection_docs_state0 = kwargs['selection_docs_state0'] - # for evaluate defaults - langchain_modes0 = kwargs['langchain_modes'] - visible_langchain_modes0 = kwargs['visible_langchain_modes'] - langchain_mode_paths0 = kwargs['langchain_mode_paths'] - - # easy update of kwargs needed for evaluate() etc. - queue = True - allow_upload = allow_upload_to_user_data or allow_upload_to_my_data - kwargs.update(locals()) - - # import control - if kwargs['langchain_mode'] != 'Disabled': - from gpt_langchain import file_types, have_arxiv - else: - have_arxiv = False - file_types = [] - - if 'mbart-' in kwargs['model_lower']: - instruction_label_nochat = "Text to translate" - else: - instruction_label_nochat = "Instruction (Shift-Enter or push Submit to send message," \ - " use Enter for multiple input lines)" - - title = 'h2oGPT' - description = """h2oGPT H2O LLM Studio
🤗 Models""" - description_bottom = "If this host is busy, try
[Multi-Model](https://gpt.h2o.ai)
[Falcon 40B](https://falcon.h2o.ai)
[Vicuna 33B](https://wizardvicuna.h2o.ai)
[MPT 30B-Chat](https://mpt.h2o.ai)
[HF Spaces1](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot)
[HF Spaces2](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot2)
" - if is_hf: - description_bottom += '''Duplicate Space''' - task_info_md = '' - css_code = get_css(kwargs) - - if kwargs['gradio_offline_level'] >= 0: - # avoid GoogleFont that pulls from internet - if kwargs['gradio_offline_level'] == 1: - # front end would still have to download fonts or have cached it at some point - base_font = 'Source Sans Pro' - else: - base_font = 'Helvetica' - theme_kwargs = dict(font=(base_font, 'ui-sans-serif', 'system-ui', 'sans-serif'), - font_mono=('IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace')) - else: - theme_kwargs = dict() - if kwargs['gradio_size'] == 'xsmall': - theme_kwargs.update(dict(spacing_size=spacing_xsm, text_size=text_xsm, radius_size=radius_xsm)) - elif kwargs['gradio_size'] in [None, 'small']: - theme_kwargs.update(dict(spacing_size=gr.themes.sizes.spacing_sm, text_size=gr.themes.sizes.text_sm, - radius_size=gr.themes.sizes.spacing_sm)) - elif kwargs['gradio_size'] == 'large': - theme_kwargs.update(dict(spacing_size=gr.themes.sizes.spacing_lg, text_size=gr.themes.sizes.text_lg), - radius_size=gr.themes.sizes.spacing_lg) - elif kwargs['gradio_size'] == 'medium': - theme_kwargs.update(dict(spacing_size=gr.themes.sizes.spacing_md, text_size=gr.themes.sizes.text_md, - radius_size=gr.themes.sizes.spacing_md)) - - theme = H2oTheme(**theme_kwargs) if kwargs['h2ocolors'] else SoftTheme(**theme_kwargs) - demo = gr.Blocks(theme=theme, css=css_code, title="h2oGPT", analytics_enabled=False) - callback = gr.CSVLogger() - - model_options0 = flatten_list(list(prompt_type_to_model_name.values())) + kwargs['extra_model_options'] - if kwargs['base_model'].strip() not in model_options0: - model_options0 = [kwargs['base_model'].strip()] + model_options0 - lora_options = kwargs['extra_lora_options'] - if kwargs['lora_weights'].strip() not in lora_options: - lora_options = [kwargs['lora_weights'].strip()] + lora_options - server_options = kwargs['extra_server_options'] - if kwargs['inference_server'].strip() not in server_options: - server_options = [kwargs['inference_server'].strip()] + server_options - if os.getenv('OPENAI_API_KEY'): - if 'openai_chat' not in server_options: - server_options += ['openai_chat'] - if 'openai' not in server_options: - server_options += ['openai'] - - # always add in no lora case - # add fake space so doesn't go away in gradio dropdown - model_options0 = [no_model_str] + model_options0 - lora_options = [no_lora_str] + lora_options - server_options = [no_server_str] + server_options - # always add in no model case so can free memory - # add fake space so doesn't go away in gradio dropdown - - # transcribe, will be detranscribed before use by evaluate() - if not kwargs['base_model'].strip(): - kwargs['base_model'] = no_model_str - - if not kwargs['lora_weights'].strip(): - kwargs['lora_weights'] = no_lora_str - - if not kwargs['inference_server'].strip(): - kwargs['inference_server'] = no_server_str - - # transcribe for gradio - kwargs['gpu_id'] = str(kwargs['gpu_id']) - - no_model_msg = 'h2oGPT [ !!! Please Load Model in Models Tab !!! ]' - output_label0 = f'h2oGPT [Model: {kwargs.get("base_model")}]' if kwargs.get( - 'base_model') else no_model_msg - output_label0_model2 = no_model_msg - - def update_prompt(prompt_type1, prompt_dict1, model_state1, which_model=0): - if not prompt_type1 or which_model != 0: - # keep prompt_type and prompt_dict in sync if possible - prompt_type1 = kwargs.get('prompt_type', prompt_type1) - prompt_dict1 = kwargs.get('prompt_dict', prompt_dict1) - # prefer model specific prompt type instead of global one - if not prompt_type1 or which_model != 0: - prompt_type1 = model_state1.get('prompt_type', prompt_type1) - prompt_dict1 = model_state1.get('prompt_dict', prompt_dict1) - - if not prompt_dict1 or which_model != 0: - # if still not defined, try to get - prompt_dict1 = kwargs.get('prompt_dict', prompt_dict1) - if not prompt_dict1 or which_model != 0: - prompt_dict1 = model_state1.get('prompt_dict', prompt_dict1) - return prompt_type1, prompt_dict1 - - default_kwargs = {k: kwargs[k] for k in eval_func_param_names_defaults} - # ensure prompt_type consistent with prep_bot(), so nochat API works same way - default_kwargs['prompt_type'], default_kwargs['prompt_dict'] = \ - update_prompt(default_kwargs['prompt_type'], default_kwargs['prompt_dict'], - model_state1=model_state0, which_model=0) - for k in no_default_param_names: - default_kwargs[k] = '' - - def dummy_fun(x): - # need dummy function to block new input from being sent until output is done, - # else gets input_list at time of submit that is old, and shows up as truncated in chatbot - return x - - def allow_empty_instruction(langchain_mode1, document_subset1, langchain_action1): - allow = False - allow |= langchain_action1 not in LangChainAction.QUERY.value - allow |= document_subset1 in DocumentSubset.TopKSources.name - if langchain_mode1 in [LangChainMode.LLM.value]: - allow = False - return allow - - with demo: - # avoid actual model/tokenizer here or anything that would be bad to deepcopy - # https://github.com/gradio-app/gradio/issues/3558 - model_state = gr.State( - dict(model='model', tokenizer='tokenizer', device=kwargs['device'], - base_model=kwargs['base_model'], - tokenizer_base_model=kwargs['tokenizer_base_model'], - lora_weights=kwargs['lora_weights'], - inference_server=kwargs['inference_server'], - prompt_type=kwargs['prompt_type'], - prompt_dict=kwargs['prompt_dict'], - ) - ) - - def update_langchain_mode_paths(db1s, selection_docs_state1): - if allow_upload_to_my_data: - selection_docs_state1['langchain_mode_paths'].update({k: None for k in db1s}) - dup = selection_docs_state1['langchain_mode_paths'].copy() - for k, v in dup.items(): - if k not in selection_docs_state1['visible_langchain_modes']: - selection_docs_state1['langchain_mode_paths'].pop(k) - return selection_docs_state1 - - # Setup some gradio states for per-user dynamic state - model_state2 = gr.State(kwargs['model_state_none'].copy()) - model_options_state = gr.State([model_options0]) - lora_options_state = gr.State([lora_options]) - server_options_state = gr.State([server_options]) - my_db_state = gr.State(my_db_state0) - chat_state = gr.State({}) - docs_state00 = kwargs['document_choice'] + [DocumentChoice.ALL.value] - docs_state0 = [] - [docs_state0.append(x) for x in docs_state00 if x not in docs_state0] - docs_state = gr.State(docs_state0) - viewable_docs_state0 = [] - viewable_docs_state = gr.State(viewable_docs_state0) - selection_docs_state0 = update_langchain_mode_paths(my_db_state0, selection_docs_state0) - selection_docs_state = gr.State(selection_docs_state0) - - gr.Markdown(f""" - {get_h2o_title(title, description) if kwargs['h2ocolors'] else get_simple_title(title, description)} - """) - - # go button visible if - base_wanted = kwargs['base_model'] != no_model_str and kwargs['login_mode_if_model0'] - go_btn = gr.Button(value="ENTER", visible=base_wanted, variant="primary") - - nas = ' '.join(['NA'] * len(kwargs['model_states'])) - res_value = "Response Score: NA" if not kwargs[ - 'model_lock'] else "Response Scores: %s" % nas - - if kwargs['langchain_mode'] != LangChainMode.DISABLED.value: - extra_prompt_form = ". For summarization, no query required, just click submit" - else: - extra_prompt_form = "" - if kwargs['input_lines'] > 1: - instruction_label = "Shift-Enter to Submit, Enter for more lines%s" % extra_prompt_form - else: - instruction_label = "Enter to Submit, Shift-Enter for more lines%s" % extra_prompt_form - - def get_langchain_choices(selection_docs_state1): - langchain_modes = selection_docs_state1['langchain_modes'] - visible_langchain_modes = selection_docs_state1['visible_langchain_modes'] - - if is_hf: - # don't show 'wiki' since only usually useful for internal testing at moment - no_show_modes = ['Disabled', 'wiki'] - else: - no_show_modes = ['Disabled'] - allowed_modes = visible_langchain_modes.copy() - # allowed_modes = [x for x in allowed_modes if x in dbs] - allowed_modes += ['LLM'] - if allow_upload_to_my_data and 'MyData' not in allowed_modes: - allowed_modes += ['MyData'] - if allow_upload_to_user_data and 'UserData' not in allowed_modes: - allowed_modes += ['UserData'] - choices = [x for x in langchain_modes if x in allowed_modes and x not in no_show_modes] - return choices - - def get_df_langchain_mode_paths(selection_docs_state1): - langchain_mode_paths = selection_docs_state1['langchain_mode_paths'] - if langchain_mode_paths: - df = pd.DataFrame.from_dict(langchain_mode_paths.items(), orient='columns') - df.columns = ['Collection', 'Path'] - else: - df = pd.DataFrame(None) - return df - - normal_block = gr.Row(visible=not base_wanted, equal_height=False) - with normal_block: - side_bar = gr.Column(elem_id="col_container", scale=1, min_width=100) - with side_bar: - with gr.Accordion("Chats", open=False, visible=True): - radio_chats = gr.Radio(value=None, label="Saved Chats", show_label=False, - visible=True, interactive=True, - type='value') - upload_visible = kwargs['langchain_mode'] != 'Disabled' and allow_upload - with gr.Accordion("Upload", open=False, visible=upload_visible): - with gr.Column(): - with gr.Row(equal_height=False): - file_types_str = '[' + ' '.join(file_types) + ' URL ArXiv TEXT' + ']' - fileup_output = gr.File(label=f'Upload {file_types_str}', - show_label=False, - file_types=file_types, - file_count="multiple", - scale=1, - min_width=0, - elem_id="warning", elem_classes="feedback") - fileup_output_text = gr.Textbox(visible=False) - url_visible = kwargs['langchain_mode'] != 'Disabled' and allow_upload and enable_url_upload - url_label = 'URL/ArXiv' if have_arxiv else 'URL' - url_text = gr.Textbox(label=url_label, - # placeholder="Enter Submits", - max_lines=1, - interactive=True) - text_visible = kwargs['langchain_mode'] != 'Disabled' and allow_upload and enable_text_upload - user_text_text = gr.Textbox(label='Paste Text', - # placeholder="Enter Submits", - interactive=True, - visible=text_visible) - github_textbox = gr.Textbox(label="Github URL", visible=False) # FIXME WIP - database_visible = kwargs['langchain_mode'] != 'Disabled' - with gr.Accordion("Resources", open=False, visible=database_visible): - langchain_choices0 = get_langchain_choices(selection_docs_state0) - langchain_mode = gr.Radio( - langchain_choices0, - value=kwargs['langchain_mode'], - label="Collections", - show_label=True, - visible=kwargs['langchain_mode'] != 'Disabled', - min_width=100) - add_chat_history_to_context = gr.Checkbox(label="Chat History", - value=kwargs['add_chat_history_to_context']) - document_subset = gr.Radio([x.name for x in DocumentSubset], - label="Subset", - value=DocumentSubset.Relevant.name, - interactive=True, - ) - allowed_actions = [x for x in langchain_actions if x in visible_langchain_actions] - langchain_action = gr.Radio( - allowed_actions, - value=allowed_actions[0] if len(allowed_actions) > 0 else None, - label="Action", - visible=True) - allowed_agents = [x for x in langchain_agents_list if x in visible_langchain_agents] - langchain_agents = gr.Dropdown( - langchain_agents_list, - value=kwargs['langchain_agents'], - label="Agents", - multiselect=True, - interactive=True, - visible=False) # WIP - col_tabs = gr.Column(elem_id="col_container", scale=10) - with (col_tabs, gr.Tabs()): - with gr.TabItem("Chat"): - if kwargs['langchain_mode'] == 'Disabled': - text_output_nochat = gr.Textbox(lines=5, label=output_label0, show_copy_button=True, - visible=not kwargs['chat']) - else: - # text looks a bit worse, but HTML links work - text_output_nochat = gr.HTML(label=output_label0, visible=not kwargs['chat']) - with gr.Row(): - # NOCHAT - instruction_nochat = gr.Textbox( - lines=kwargs['input_lines'], - label=instruction_label_nochat, - placeholder=kwargs['placeholder_instruction'], - visible=not kwargs['chat'], - ) - iinput_nochat = gr.Textbox(lines=4, label="Input context for Instruction", - placeholder=kwargs['placeholder_input'], - visible=not kwargs['chat']) - submit_nochat = gr.Button("Submit", size='sm', visible=not kwargs['chat']) - flag_btn_nochat = gr.Button("Flag", size='sm', visible=not kwargs['chat']) - score_text_nochat = gr.Textbox("Response Score: NA", show_label=False, - visible=not kwargs['chat']) - submit_nochat_api = gr.Button("Submit nochat API", visible=False) - inputs_dict_str = gr.Textbox(label='API input for nochat', show_label=False, visible=False) - text_output_nochat_api = gr.Textbox(lines=5, label='API nochat output', visible=False, - show_copy_button=True) - - # CHAT - col_chat = gr.Column(visible=kwargs['chat']) - with col_chat: - with gr.Row(): # elem_id='prompt-form-area'): - with gr.Column(scale=50): - instruction = gr.Textbox( - lines=kwargs['input_lines'], - label='Ask anything', - placeholder=instruction_label, - info=None, - elem_id='prompt-form', - container=True, - ) - submit_buttons = gr.Row(equal_height=False) - with submit_buttons: - mw1 = 50 - mw2 = 50 - with gr.Column(min_width=mw1): - submit = gr.Button(value='Submit', variant='primary', size='sm', - min_width=mw1) - stop_btn = gr.Button(value="Stop", variant='secondary', size='sm', - min_width=mw1) - save_chat_btn = gr.Button("Save", size='sm', min_width=mw1) - with gr.Column(min_width=mw2): - retry_btn = gr.Button("Redo", size='sm', min_width=mw2) - undo = gr.Button("Undo", size='sm', min_width=mw2) - clear_chat_btn = gr.Button(value="Clear", size='sm', min_width=mw2) - text_output, text_output2, text_outputs = make_chatbots(output_label0, output_label0_model2, - **kwargs) - - with gr.Row(): - with gr.Column(visible=kwargs['score_model']): - score_text = gr.Textbox(res_value, - show_label=False, - visible=True) - score_text2 = gr.Textbox("Response Score2: NA", show_label=False, - visible=False and not kwargs['model_lock']) - - with gr.TabItem("Document Selection"): - document_choice = gr.Dropdown(docs_state0, - label="Select Subset of Document(s) %s" % file_types_str, - value=[DocumentChoice.ALL.value], - interactive=True, - multiselect=True, - visible=kwargs['langchain_mode'] != 'Disabled', - ) - sources_visible = kwargs['langchain_mode'] != 'Disabled' and enable_sources_list - with gr.Row(): - with gr.Column(scale=1): - get_sources_btn = gr.Button(value="Update UI with Document(s) from DB", scale=0, size='sm', - visible=sources_visible) - show_sources_btn = gr.Button(value="Show Sources from DB", scale=0, size='sm', - visible=sources_visible) - refresh_sources_btn = gr.Button(value="Update DB with new/changed files on disk", scale=0, - size='sm', - visible=sources_visible and allow_upload_to_user_data) - with gr.Column(scale=4): - pass - with gr.Row(): - with gr.Column(scale=1): - visible_add_remove_collection = (allow_upload_to_user_data or - allow_upload_to_my_data) and \ - kwargs['langchain_mode'] != 'Disabled' - add_placeholder = "e.g. UserData2, user_path2 (optional)" \ - if not is_public else "e.g. MyData2" - remove_placeholder = "e.g. UserData2" if not is_public else "e.g. MyData2" - new_langchain_mode_text = gr.Textbox(value="", visible=visible_add_remove_collection, - label='Add Collection', - placeholder=add_placeholder, - interactive=True) - remove_langchain_mode_text = gr.Textbox(value="", visible=visible_add_remove_collection, - label='Remove Collection', - placeholder=remove_placeholder, - interactive=True) - load_langchain = gr.Button(value="Load LangChain State", scale=0, size='sm', - visible=allow_upload_to_user_data and - kwargs['langchain_mode'] != 'Disabled') - with gr.Column(scale=1): - df0 = get_df_langchain_mode_paths(selection_docs_state0) - langchain_mode_path_text = gr.Dataframe(value=df0, - visible=visible_add_remove_collection, - label='LangChain Mode-Path', - show_label=False, - interactive=False) - with gr.Column(scale=4): - pass - - sources_row = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and enable_sources_list, - equal_height=False) - with sources_row: - with gr.Column(scale=1): - file_source = gr.File(interactive=False, - label="Download File w/Sources") - with gr.Column(scale=2): - sources_text = gr.HTML(label='Sources Added', interactive=False) - - doc_exception_text = gr.Textbox(value="", label='Document Exceptions', - interactive=False, - visible=kwargs['langchain_mode'] != 'Disabled') - with gr.TabItem("Document Viewer"): - with gr.Row(visible=kwargs['langchain_mode'] != 'Disabled'): - with gr.Column(scale=2): - get_viewable_sources_btn = gr.Button(value="Update UI with Document(s) from DB", scale=0, - size='sm', - visible=sources_visible) - view_document_choice = gr.Dropdown(viewable_docs_state0, - label="Select Single Document", - value=None, - interactive=True, - multiselect=False, - visible=True, - ) - with gr.Column(scale=4): - pass - document = 'http://infolab.stanford.edu/pub/papers/google.pdf' - doc_view = gr.HTML(visible=False) - doc_view2 = gr.Dataframe(visible=False) - doc_view3 = gr.JSON(visible=False) - doc_view4 = gr.Markdown(visible=False) - - with gr.TabItem("Chat History"): - with gr.Row(): - with gr.Column(scale=1): - remove_chat_btn = gr.Button(value="Remove Selected Saved Chats", visible=True, size='sm') - flag_btn = gr.Button("Flag Current Chat", size='sm') - export_chats_btn = gr.Button(value="Export Chats to Download", size='sm') - with gr.Column(scale=4): - pass - with gr.Row(): - chats_file = gr.File(interactive=False, label="Download Exported Chats") - chatsup_output = gr.File(label="Upload Chat File(s)", - file_types=['.json'], - file_count='multiple', - elem_id="warning", elem_classes="feedback") - with gr.Row(): - if 'mbart-' in kwargs['model_lower']: - src_lang = gr.Dropdown(list(languages_covered().keys()), - value=kwargs['src_lang'], - label="Input Language") - tgt_lang = gr.Dropdown(list(languages_covered().keys()), - value=kwargs['tgt_lang'], - label="Output Language") - - chat_exception_text = gr.Textbox(value="", visible=True, label='Chat Exceptions', - interactive=False) - with gr.TabItem("Expert"): - with gr.Row(): - with gr.Column(): - stream_output = gr.components.Checkbox(label="Stream output", - value=kwargs['stream_output']) - prompt_type = gr.Dropdown(prompt_types_strings, - value=kwargs['prompt_type'], label="Prompt Type", - visible=not kwargs['model_lock'], - interactive=not is_public, - ) - prompt_type2 = gr.Dropdown(prompt_types_strings, - value=kwargs['prompt_type'], label="Prompt Type Model 2", - visible=False and not kwargs['model_lock'], - interactive=not is_public) - do_sample = gr.Checkbox(label="Sample", - info="Enable sampler, required for use of temperature, top_p, top_k", - value=kwargs['do_sample']) - temperature = gr.Slider(minimum=0.01, maximum=2, - value=kwargs['temperature'], - label="Temperature", - info="Lower is deterministic (but may lead to repeats), Higher more creative (but may lead to hallucinations)") - top_p = gr.Slider(minimum=1e-3, maximum=1.0 - 1e-3, - value=kwargs['top_p'], label="Top p", - info="Cumulative probability of tokens to sample from") - top_k = gr.Slider( - minimum=1, maximum=100, step=1, - value=kwargs['top_k'], label="Top k", - info='Num. tokens to sample from' - ) - # FIXME: https://github.com/h2oai/h2ogpt/issues/106 - if os.getenv('TESTINGFAIL'): - max_beams = 8 if not (memory_restriction_level or is_public) else 1 - else: - max_beams = 1 - num_beams = gr.Slider(minimum=1, maximum=max_beams, step=1, - value=min(max_beams, kwargs['num_beams']), label="Beams", - info="Number of searches for optimal overall probability. " - "Uses more GPU memory/compute", - interactive=False) - max_max_new_tokens = get_max_max_new_tokens(model_state0, **kwargs) - max_new_tokens = gr.Slider( - minimum=1, maximum=max_max_new_tokens, step=1, - value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length", - ) - min_new_tokens = gr.Slider( - minimum=0, maximum=max_max_new_tokens, step=1, - value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length", - ) - max_new_tokens2 = gr.Slider( - minimum=1, maximum=max_max_new_tokens, step=1, - value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length 2", - visible=False and not kwargs['model_lock'], - ) - min_new_tokens2 = gr.Slider( - minimum=0, maximum=max_max_new_tokens, step=1, - value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length 2", - visible=False and not kwargs['model_lock'], - ) - early_stopping = gr.Checkbox(label="EarlyStopping", info="Stop early in beam search", - value=kwargs['early_stopping']) - max_time = gr.Slider(minimum=0, maximum=kwargs['max_max_time'], step=1, - value=min(kwargs['max_max_time'], - kwargs['max_time']), label="Max. time", - info="Max. time to search optimal output.") - repetition_penalty = gr.Slider(minimum=0.01, maximum=3.0, - value=kwargs['repetition_penalty'], - label="Repetition Penalty") - num_return_sequences = gr.Slider(minimum=1, maximum=10, step=1, - value=kwargs['num_return_sequences'], - label="Number Returns", info="Must be <= num_beams", - interactive=not is_public) - iinput = gr.Textbox(lines=4, label="Input", - placeholder=kwargs['placeholder_input'], - interactive=not is_public) - context = gr.Textbox(lines=3, label="System Pre-Context", - info="Directly pre-appended without prompt processing", - interactive=not is_public) - chat = gr.components.Checkbox(label="Chat mode", value=kwargs['chat'], - visible=False, # no longer support nochat in UI - interactive=not is_public, - ) - count_chat_tokens_btn = gr.Button(value="Count Chat Tokens", - visible=not is_public and not kwargs['model_lock'], - interactive=not is_public) - chat_token_count = gr.Textbox(label="Chat Token Count", value=None, - visible=not is_public and not kwargs['model_lock'], - interactive=False) - chunk = gr.components.Checkbox(value=kwargs['chunk'], - label="Whether to chunk documents", - info="For LangChain", - visible=kwargs['langchain_mode'] != 'Disabled', - interactive=not is_public) - min_top_k_docs, max_top_k_docs, label_top_k_docs = get_minmax_top_k_docs(is_public) - top_k_docs = gr.Slider(minimum=min_top_k_docs, maximum=max_top_k_docs, step=1, - value=kwargs['top_k_docs'], - label=label_top_k_docs, - info="For LangChain", - visible=kwargs['langchain_mode'] != 'Disabled', - interactive=not is_public) - chunk_size = gr.Number(value=kwargs['chunk_size'], - label="Chunk size for document chunking", - info="For LangChain (ignored if chunk=False)", - minimum=128, - maximum=2048, - visible=kwargs['langchain_mode'] != 'Disabled', - interactive=not is_public, - precision=0) - - with gr.TabItem("Models"): - model_lock_msg = gr.Textbox(lines=1, label="Model Lock Notice", - placeholder="Started in model_lock mode, no model changes allowed.", - visible=bool(kwargs['model_lock']), interactive=False) - load_msg = "Load-Unload Model/LORA [unload works if did not use --base_model]" if not is_public \ - else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO" - load_msg2 = "Load-Unload Model/LORA 2 [unload works if did not use --base_model]" if not is_public \ - else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO 2" - variant_load_msg = 'primary' if not is_public else 'secondary' - compare_checkbox = gr.components.Checkbox(label="Compare Mode", - value=kwargs['model_lock'], - visible=not is_public and not kwargs['model_lock']) - with gr.Row(): - n_gpus_list = [str(x) for x in list(range(-1, n_gpus))] - with gr.Column(): - with gr.Row(): - with gr.Column(scale=20, visible=not kwargs['model_lock']): - model_choice = gr.Dropdown(model_options_state.value[0], label="Choose Model", - value=kwargs['base_model']) - lora_choice = gr.Dropdown(lora_options_state.value[0], label="Choose LORA", - value=kwargs['lora_weights'], visible=kwargs['show_lora']) - server_choice = gr.Dropdown(server_options_state.value[0], label="Choose Server", - value=kwargs['inference_server'], visible=not is_public) - with gr.Column(scale=1, visible=not kwargs['model_lock']): - load_model_button = gr.Button(load_msg, variant=variant_load_msg, scale=0, - size='sm', interactive=not is_public) - model_load8bit_checkbox = gr.components.Checkbox( - label="Load 8-bit [requires support]", - value=kwargs['load_8bit'], interactive=not is_public) - model_use_gpu_id_checkbox = gr.components.Checkbox( - label="Choose Devices [If not Checked, use all GPUs]", - value=kwargs['use_gpu_id'], interactive=not is_public) - model_gpu = gr.Dropdown(n_gpus_list, - label="GPU ID [-1 = all GPUs, if Choose is enabled]", - value=kwargs['gpu_id'], interactive=not is_public) - model_used = gr.Textbox(label="Current Model", value=kwargs['base_model'], - interactive=False) - lora_used = gr.Textbox(label="Current LORA", value=kwargs['lora_weights'], - visible=kwargs['show_lora'], interactive=False) - server_used = gr.Textbox(label="Current Server", - value=kwargs['inference_server'], - visible=bool(kwargs['inference_server']) and not is_public, - interactive=False) - prompt_dict = gr.Textbox(label="Prompt (or Custom)", - value=pprint.pformat(kwargs['prompt_dict'], indent=4), - interactive=not is_public, lines=4) - col_model2 = gr.Column(visible=False) - with col_model2: - with gr.Row(): - with gr.Column(scale=20, visible=not kwargs['model_lock']): - model_choice2 = gr.Dropdown(model_options_state.value[0], label="Choose Model 2", - value=no_model_str) - lora_choice2 = gr.Dropdown(lora_options_state.value[0], label="Choose LORA 2", - value=no_lora_str, - visible=kwargs['show_lora']) - server_choice2 = gr.Dropdown(server_options_state.value[0], label="Choose Server 2", - value=no_server_str, - visible=not is_public) - with gr.Column(scale=1, visible=not kwargs['model_lock']): - load_model_button2 = gr.Button(load_msg2, variant=variant_load_msg, scale=0, - size='sm', interactive=not is_public) - model_load8bit_checkbox2 = gr.components.Checkbox( - label="Load 8-bit 2 [requires support]", - value=kwargs['load_8bit'], interactive=not is_public) - model_use_gpu_id_checkbox2 = gr.components.Checkbox( - label="Choose Devices 2 [If not Checked, use all GPUs]", - value=kwargs[ - 'use_gpu_id'], interactive=not is_public) - model_gpu2 = gr.Dropdown(n_gpus_list, - label="GPU ID 2 [-1 = all GPUs, if choose is enabled]", - value=kwargs['gpu_id'], interactive=not is_public) - # no model/lora loaded ever in model2 by default - model_used2 = gr.Textbox(label="Current Model 2", value=no_model_str, - interactive=False) - lora_used2 = gr.Textbox(label="Current LORA 2", value=no_lora_str, - visible=kwargs['show_lora'], interactive=False) - server_used2 = gr.Textbox(label="Current Server 2", value=no_server_str, - interactive=False, - visible=not is_public) - prompt_dict2 = gr.Textbox(label="Prompt (or Custom) 2", - value=pprint.pformat(kwargs['prompt_dict'], indent=4), - interactive=not is_public, lines=4) - with gr.Row(visible=not kwargs['model_lock']): - with gr.Column(scale=50): - new_model = gr.Textbox(label="New Model name/path", interactive=not is_public) - with gr.Column(scale=50): - new_lora = gr.Textbox(label="New LORA name/path", visible=kwargs['show_lora'], - interactive=not is_public) - with gr.Column(scale=50): - new_server = gr.Textbox(label="New Server url:port", interactive=not is_public) - with gr.Row(): - add_model_lora_server_button = gr.Button("Add new Model, Lora, Server url:port", scale=0, - size='sm', interactive=not is_public) - with gr.TabItem("System"): - with gr.Row(): - with gr.Column(scale=1): - side_bar_text = gr.Textbox('on', visible=False, interactive=False) - submit_buttons_text = gr.Textbox('on', visible=False, interactive=False) - - side_bar_btn = gr.Button("Toggle SideBar", variant="secondary", size="sm") - submit_buttons_btn = gr.Button("Toggle Submit Buttons", variant="secondary", size="sm") - col_tabs_scale = gr.Slider(minimum=1, maximum=20, value=10, step=1, label='Window Size') - text_outputs_height = gr.Slider(minimum=100, maximum=2000, value=kwargs['height'] or 400, - step=50, label='Chat Height') - dark_mode_btn = gr.Button("Dark Mode", variant="secondary", size="sm") - with gr.Column(scale=4): - pass - system_visible0 = not is_public and not admin_pass - admin_row = gr.Row() - with admin_row: - with gr.Column(scale=1): - admin_pass_textbox = gr.Textbox(label="Admin Password", type='password', - visible=not system_visible0) - with gr.Column(scale=4): - pass - system_row = gr.Row(visible=system_visible0) - with system_row: - with gr.Column(): - with gr.Row(): - system_btn = gr.Button(value='Get System Info', size='sm') - system_text = gr.Textbox(label='System Info', interactive=False, show_copy_button=True) - with gr.Row(): - system_input = gr.Textbox(label='System Info Dict Password', interactive=True, - visible=not is_public) - system_btn2 = gr.Button(value='Get System Info Dict', visible=not is_public, size='sm') - system_text2 = gr.Textbox(label='System Info Dict', interactive=False, - visible=not is_public, show_copy_button=True) - with gr.Row(): - system_btn3 = gr.Button(value='Get Hash', visible=not is_public, size='sm') - system_text3 = gr.Textbox(label='Hash', interactive=False, - visible=not is_public, show_copy_button=True) - - with gr.Row(): - zip_btn = gr.Button("Zip", size='sm') - zip_text = gr.Textbox(label="Zip file name", interactive=False) - file_output = gr.File(interactive=False, label="Zip file to Download") - with gr.Row(): - s3up_btn = gr.Button("S3UP", size='sm') - s3up_text = gr.Textbox(label='S3UP result', interactive=False) - - with gr.TabItem("Terms of Service"): - description = "" - description += """

DISCLAIMERS:

""" - gr.Markdown(value=description, show_label=False, interactive=False) - - with gr.TabItem("Hosts"): - gr.Markdown(f""" - {description_bottom} - {task_info_md} - """) - - # Get flagged data - zip_data1 = functools.partial(zip_data, root_dirs=['flagged_data_points', kwargs['save_dir']]) - zip_event = zip_btn.click(zip_data1, inputs=None, outputs=[file_output, zip_text], queue=False, - api_name='zip_data' if allow_api else None) - s3up_event = s3up_btn.click(s3up, inputs=zip_text, outputs=s3up_text, queue=False, - api_name='s3up_data' if allow_api else None) - - def clear_file_list(): - return None - - def make_non_interactive(*args): - if len(args) == 1: - return gr.update(interactive=False) - else: - return tuple([gr.update(interactive=False)] * len(args)) - - def make_interactive(*args): - if len(args) == 1: - return gr.update(interactive=True) - else: - return tuple([gr.update(interactive=True)] * len(args)) - - # Add to UserData or custom user db - update_db_func = functools.partial(update_user_db, - dbs=dbs, - db_type=db_type, - use_openai_embedding=use_openai_embedding, - hf_embedding_model=hf_embedding_model, - captions_model=captions_model, - enable_captions=enable_captions, - caption_loader=caption_loader, - enable_ocr=enable_ocr, - enable_pdf_ocr=enable_pdf_ocr, - verbose=kwargs['verbose'], - n_jobs=kwargs['n_jobs'], - ) - add_file_outputs = [fileup_output, langchain_mode] - add_file_kwargs = dict(fn=update_db_func, - inputs=[fileup_output, my_db_state, selection_docs_state, chunk, chunk_size, - langchain_mode], - outputs=add_file_outputs + [sources_text, doc_exception_text], - queue=queue, - api_name='add_file' if allow_api and allow_upload_to_user_data else None) - - # then no need for add buttons, only single changeable db - eventdb1a = fileup_output.upload(make_non_interactive, inputs=add_file_outputs, outputs=add_file_outputs, - show_progress='minimal') - eventdb1 = eventdb1a.then(**add_file_kwargs, show_progress='full') - eventdb1b = eventdb1.then(make_interactive, inputs=add_file_outputs, outputs=add_file_outputs, - show_progress='minimal') - - # deal with challenge to have fileup_output itself as input - add_file_kwargs2 = dict(fn=update_db_func, - inputs=[fileup_output_text, my_db_state, selection_docs_state, chunk, chunk_size, - langchain_mode], - outputs=add_file_outputs + [sources_text, doc_exception_text], - queue=queue, - api_name='add_file_api' if allow_api and allow_upload_to_user_data else None) - eventdb1_api = fileup_output_text.submit(**add_file_kwargs2, show_progress='full') - - # note for update_user_db_func output is ignored for db - - def clear_textbox(): - return gr.Textbox.update(value='') - - update_user_db_url_func = functools.partial(update_db_func, is_url=True) - - add_url_outputs = [url_text, langchain_mode] - add_url_kwargs = dict(fn=update_user_db_url_func, - inputs=[url_text, my_db_state, selection_docs_state, chunk, chunk_size, - langchain_mode], - outputs=add_url_outputs + [sources_text, doc_exception_text], - queue=queue, - api_name='add_url' if allow_api and allow_upload_to_user_data else None) - - eventdb2a = url_text.submit(fn=dummy_fun, inputs=url_text, outputs=url_text, queue=queue, - show_progress='minimal') - # work around https://github.com/gradio-app/gradio/issues/4733 - eventdb2b = eventdb2a.then(make_non_interactive, inputs=add_url_outputs, outputs=add_url_outputs, - show_progress='minimal') - eventdb2 = eventdb2b.then(**add_url_kwargs, show_progress='full') - eventdb2c = eventdb2.then(make_interactive, inputs=add_url_outputs, outputs=add_url_outputs, - show_progress='minimal') - - update_user_db_txt_func = functools.partial(update_db_func, is_txt=True) - add_text_outputs = [user_text_text, langchain_mode] - add_text_kwargs = dict(fn=update_user_db_txt_func, - inputs=[user_text_text, my_db_state, selection_docs_state, chunk, chunk_size, - langchain_mode], - outputs=add_text_outputs + [sources_text, doc_exception_text], - queue=queue, - api_name='add_text' if allow_api and allow_upload_to_user_data else None - ) - eventdb3a = user_text_text.submit(fn=dummy_fun, inputs=user_text_text, outputs=user_text_text, queue=queue, - show_progress='minimal') - eventdb3b = eventdb3a.then(make_non_interactive, inputs=add_text_outputs, outputs=add_text_outputs, - show_progress='minimal') - eventdb3 = eventdb3b.then(**add_text_kwargs, show_progress='full') - eventdb3c = eventdb3.then(make_interactive, inputs=add_text_outputs, outputs=add_text_outputs, - show_progress='minimal') - db_events = [eventdb1a, eventdb1, eventdb1b, eventdb1_api, - eventdb2a, eventdb2, eventdb2b, eventdb2c, - eventdb3a, eventdb3b, eventdb3, eventdb3c] - - get_sources1 = functools.partial(get_sources, dbs=dbs, docs_state0=docs_state0) - - # if change collection source, must clear doc selections from it to avoid inconsistency - def clear_doc_choice(): - return gr.Dropdown.update(choices=docs_state0, value=DocumentChoice.ALL.value) - - langchain_mode.change(clear_doc_choice, inputs=None, outputs=document_choice, queue=False) - - def resize_col_tabs(x): - return gr.Dropdown.update(scale=x) - - col_tabs_scale.change(fn=resize_col_tabs, inputs=col_tabs_scale, outputs=col_tabs, queue=False) - - def resize_chatbots(x, num_model_lock=0): - if num_model_lock == 0: - num_model_lock = 3 # 2 + 1 (which is dup of first) - else: - num_model_lock = 2 + num_model_lock - return tuple([gr.update(height=x)] * num_model_lock) - - resize_chatbots_func = functools.partial(resize_chatbots, num_model_lock=len(text_outputs)) - text_outputs_height.change(fn=resize_chatbots_func, inputs=text_outputs_height, - outputs=[text_output, text_output2] + text_outputs, queue=False) - - def update_dropdown(x): - return gr.Dropdown.update(choices=x, value=[docs_state0[0]]) - - get_sources_args = dict(fn=get_sources1, inputs=[my_db_state, langchain_mode], - outputs=[file_source, docs_state], - queue=queue, - api_name='get_sources' if allow_api else None) - - eventdb7 = get_sources_btn.click(**get_sources_args) \ - .then(fn=update_dropdown, inputs=docs_state, outputs=document_choice) - # show button, else only show when add. Could add to above get_sources for download/dropdown, but bit much maybe - show_sources1 = functools.partial(get_source_files_given_langchain_mode, dbs=dbs) - eventdb8 = show_sources_btn.click(fn=show_sources1, inputs=[my_db_state, langchain_mode], outputs=sources_text, - api_name='show_sources' if allow_api else None) - - def update_viewable_dropdown(x): - return gr.Dropdown.update(choices=x, - value=viewable_docs_state0[0] if len(viewable_docs_state0) > 0 else None) - - get_viewable_sources1 = functools.partial(get_sources, dbs=dbs, docs_state0=viewable_docs_state0) - get_viewable_sources_args = dict(fn=get_viewable_sources1, inputs=[my_db_state, langchain_mode], - outputs=[file_source, viewable_docs_state], - queue=queue, - api_name='get_viewable_sources' if allow_api else None) - eventdb12 = get_viewable_sources_btn.click(**get_viewable_sources_args) \ - .then(fn=update_viewable_dropdown, inputs=viewable_docs_state, - outputs=view_document_choice) - - def show_doc(file): - dummy1 = gr.update(visible=False, value=None) - dummy_ret = dummy1, dummy1, dummy1, dummy1 - if not isinstance(file, str): - return dummy_ret - - if file.endswith('.md'): - try: - with open(file, 'rt') as f: - content = f.read() - return dummy1, dummy1, dummy1, gr.update(visible=True, value=content) - except: - return dummy_ret - - if file.endswith('.py'): - try: - with open(file, 'rt') as f: - content = f.read() - content = f"```python\n{content}\n```" - return dummy1, dummy1, dummy1, gr.update(visible=True, value=content) - except: - return dummy_ret - - if file.endswith('.txt') or file.endswith('.rst') or file.endswith('.rtf') or file.endswith('.toml'): - try: - with open(file, 'rt') as f: - content = f.read() - content = f"```text\n{content}\n```" - return dummy1, dummy1, dummy1, gr.update(visible=True, value=content) - except: - return dummy_ret - - func = None - if file.endswith(".csv"): - func = pd.read_csv - elif file.endswith(".pickle"): - func = pd.read_pickle - elif file.endswith(".xls") or file.endswith("xlsx"): - func = pd.read_excel - elif file.endswith('.json'): - func = pd.read_json - elif file.endswith('.xml'): - func = pd.read_xml - if func is not None: - try: - df = func(file).head(100) - except: - return dummy_ret - return dummy1, gr.update(visible=True, value=df), dummy1, dummy1 - port = int(os.getenv('GRADIO_SERVER_PORT', '7860')) - import pathlib - absolute_path_string = os.path.abspath(file) - url_path = pathlib.Path(absolute_path_string).as_uri() - url = get_url(absolute_path_string, from_str=True) - img_url = url.replace(""" - -"""), dummy1, dummy1, dummy1 - else: - ip = get_local_ip() - document1 = url_path.replace('file://', f'http://{ip}:{port}/') - # document1 = url - return gr.update(visible=True, value=f""" - -"""), dummy1, dummy1, dummy1 - else: - return dummy_ret - - view_document_choice.select(fn=show_doc, inputs=view_document_choice, - outputs=[doc_view, doc_view2, doc_view3, doc_view4]) - - # Get inputs to evaluate() and make_db() - # don't deepcopy, can contain model itself - all_kwargs = kwargs.copy() - all_kwargs.update(locals()) - - refresh_sources1 = functools.partial(update_and_get_source_files_given_langchain_mode, - **get_kwargs(update_and_get_source_files_given_langchain_mode, - exclude_names=['db1s', 'langchain_mode', 'chunk', - 'chunk_size'], - **all_kwargs)) - eventdb9 = refresh_sources_btn.click(fn=refresh_sources1, - inputs=[my_db_state, langchain_mode, chunk, chunk_size], - outputs=sources_text, - api_name='refresh_sources' if allow_api else None) - - def check_admin_pass(x): - return gr.update(visible=x == admin_pass) - - def close_admin(x): - return gr.update(visible=not (x == admin_pass)) - - admin_pass_textbox.submit(check_admin_pass, inputs=admin_pass_textbox, outputs=system_row, queue=False) \ - .then(close_admin, inputs=admin_pass_textbox, outputs=admin_row, queue=False) - - def add_langchain_mode(db1s, selection_docs_state1, langchain_mode1, y): - for k in db1s: - set_userid(db1s[k]) - langchain_modes = selection_docs_state1['langchain_modes'] - langchain_mode_paths = selection_docs_state1['langchain_mode_paths'] - visible_langchain_modes = selection_docs_state1['visible_langchain_modes'] - - user_path = None - valid = True - y2 = y.strip().replace(' ', '').split(',') - if len(y2) >= 1: - langchain_mode2 = y2[0] - if len(langchain_mode2) >= 3 and langchain_mode2.isalnum(): - # real restriction is: - # ValueError: Expected collection name that (1) contains 3-63 characters, (2) starts and ends with an alphanumeric character, (3) otherwise contains only alphanumeric characters, underscores or hyphens (-), (4) contains no two consecutive periods (..) and (5) is not a valid IPv4 address, got me - # but just make simpler - user_path = y2[1] if len(y2) > 1 else None # assume scratch if don't have user_path - if user_path in ['', "''"]: - # for scratch spaces - user_path = None - if langchain_mode2 in langchain_modes_intrinsic: - user_path = None - textbox = "Invalid access to use internal name: %s" % langchain_mode2 - valid = False - langchain_mode2 = langchain_mode1 - elif user_path and allow_upload_to_user_data or not user_path and allow_upload_to_my_data: - langchain_mode_paths.update({langchain_mode2: user_path}) - if langchain_mode2 not in visible_langchain_modes: - visible_langchain_modes.append(langchain_mode2) - if langchain_mode2 not in langchain_modes: - langchain_modes.append(langchain_mode2) - textbox = '' - if user_path: - makedirs(user_path, exist_ok=True) - else: - valid = False - langchain_mode2 = langchain_mode1 - textbox = "Invalid access. user allowed: %s " \ - "scratch allowed: %s" % (allow_upload_to_user_data, allow_upload_to_my_data) - else: - valid = False - langchain_mode2 = langchain_mode1 - textbox = "Invalid, collection must be >=3 characters and alphanumeric" - else: - valid = False - langchain_mode2 = langchain_mode1 - textbox = "Invalid, must be like UserData2, user_path2" - selection_docs_state1 = update_langchain_mode_paths(db1s, selection_docs_state1) - df_langchain_mode_paths1 = get_df_langchain_mode_paths(selection_docs_state1) - choices = get_langchain_choices(selection_docs_state1) - - if valid and not user_path: - # needs to have key for it to make it known different from userdata case in _update_user_db() - db1s[langchain_mode2] = [None, None] - if valid: - save_collection_names(langchain_modes, visible_langchain_modes, langchain_mode_paths, LangChainMode, - db1s) - - return db1s, selection_docs_state1, gr.update(choices=choices, - value=langchain_mode2), textbox, df_langchain_mode_paths1 - - def remove_langchain_mode(db1s, selection_docs_state1, langchain_mode1, langchain_mode2, dbsu=None): - for k in db1s: - set_userid(db1s[k]) - assert dbsu is not None - langchain_modes = selection_docs_state1['langchain_modes'] - langchain_mode_paths = selection_docs_state1['langchain_mode_paths'] - visible_langchain_modes = selection_docs_state1['visible_langchain_modes'] - - if langchain_mode2 in db1s and not allow_upload_to_my_data or \ - dbsu is not None and langchain_mode2 in dbsu and not allow_upload_to_user_data or \ - langchain_mode2 in langchain_modes_intrinsic: - # NOTE: Doesn't fail if remove MyData, but didn't debug odd behavior seen with upload after gone - textbox = "Invalid access, cannot remove %s" % langchain_mode2 - df_langchain_mode_paths1 = get_df_langchain_mode_paths(selection_docs_state1) - else: - # change global variables - if langchain_mode2 in visible_langchain_modes: - visible_langchain_modes.remove(langchain_mode2) - textbox = "" - else: - textbox = "%s was not visible" % langchain_mode2 - if langchain_mode2 in langchain_modes: - langchain_modes.remove(langchain_mode2) - if langchain_mode2 in langchain_mode_paths: - langchain_mode_paths.pop(langchain_mode2) - if langchain_mode2 in db1s: - # remove db entirely, so not in list, else need to manage visible list in update_langchain_mode_paths() - # FIXME: Remove location? - if langchain_mode2 != LangChainMode.MY_DATA.value: - # don't remove last MyData, used as user hash - db1s.pop(langchain_mode2) - # only show - selection_docs_state1 = update_langchain_mode_paths(db1s, selection_docs_state1) - df_langchain_mode_paths1 = get_df_langchain_mode_paths(selection_docs_state1) - - save_collection_names(langchain_modes, visible_langchain_modes, langchain_mode_paths, LangChainMode, - db1s) - - return db1s, selection_docs_state1, \ - gr.update(choices=get_langchain_choices(selection_docs_state1), - value=langchain_mode2), textbox, df_langchain_mode_paths1 - - new_langchain_mode_text.submit(fn=add_langchain_mode, - inputs=[my_db_state, selection_docs_state, langchain_mode, - new_langchain_mode_text], - outputs=[my_db_state, selection_docs_state, langchain_mode, - new_langchain_mode_text, - langchain_mode_path_text], - api_name='new_langchain_mode_text' if allow_api and allow_upload_to_user_data else None) - remove_langchain_mode_func = functools.partial(remove_langchain_mode, dbsu=dbs) - remove_langchain_mode_text.submit(fn=remove_langchain_mode_func, - inputs=[my_db_state, selection_docs_state, langchain_mode, - remove_langchain_mode_text], - outputs=[my_db_state, selection_docs_state, langchain_mode, - remove_langchain_mode_text, - langchain_mode_path_text], - api_name='remove_langchain_mode_text' if allow_api and allow_upload_to_user_data else None) - - def update_langchain_gr(db1s, selection_docs_state1, langchain_mode1): - for k in db1s: - set_userid(db1s[k]) - langchain_modes = selection_docs_state1['langchain_modes'] - langchain_mode_paths = selection_docs_state1['langchain_mode_paths'] - visible_langchain_modes = selection_docs_state1['visible_langchain_modes'] - # in-place - - # update user collaborative collections - update_langchain(langchain_modes, visible_langchain_modes, langchain_mode_paths, '') - # update scratch single-user collections - user_hash = db1s.get(LangChainMode.MY_DATA.value, '')[1] - update_langchain(langchain_modes, visible_langchain_modes, langchain_mode_paths, user_hash) - - selection_docs_state1 = update_langchain_mode_paths(db1s, selection_docs_state1) - df_langchain_mode_paths1 = get_df_langchain_mode_paths(selection_docs_state1) - return selection_docs_state1, \ - gr.update(choices=get_langchain_choices(selection_docs_state1), - value=langchain_mode1), df_langchain_mode_paths1 - - load_langchain.click(fn=update_langchain_gr, - inputs=[my_db_state, selection_docs_state, langchain_mode], - outputs=[selection_docs_state, langchain_mode, langchain_mode_path_text], - api_name='load_langchain' if allow_api and allow_upload_to_user_data else None) - - inputs_list, inputs_dict = get_inputs_list(all_kwargs, kwargs['model_lower'], model_id=1) - inputs_list2, inputs_dict2 = get_inputs_list(all_kwargs, kwargs['model_lower'], model_id=2) - from functools import partial - kwargs_evaluate = {k: v for k, v in all_kwargs.items() if k in inputs_kwargs_list} - # ensure present - for k in inputs_kwargs_list: - assert k in kwargs_evaluate, "Missing %s" % k - - def evaluate_nochat(*args1, default_kwargs1=None, str_api=False, **kwargs1): - args_list = list(args1) - if str_api: - user_kwargs = args_list[len(input_args_list)] - assert isinstance(user_kwargs, str) - user_kwargs = ast.literal_eval(user_kwargs) - else: - user_kwargs = {k: v for k, v in zip(eval_func_param_names, args_list[len(input_args_list):])} - # only used for submit_nochat_api - user_kwargs['chat'] = False - if 'stream_output' not in user_kwargs: - user_kwargs['stream_output'] = False - if 'langchain_mode' not in user_kwargs: - # if user doesn't specify, then assume disabled, not use default - user_kwargs['langchain_mode'] = 'Disabled' - if 'langchain_action' not in user_kwargs: - user_kwargs['langchain_action'] = LangChainAction.QUERY.value - if 'langchain_agents' not in user_kwargs: - user_kwargs['langchain_agents'] = [] - - set1 = set(list(default_kwargs1.keys())) - set2 = set(eval_func_param_names) - assert set1 == set2, "Set diff: %s %s: %s" % (set1, set2, set1.symmetric_difference(set2)) - # correct ordering. Note some things may not be in default_kwargs, so can't be default of user_kwargs.get() - model_state1 = args_list[0] - my_db_state1 = args_list[1] - selection_docs_state1 = args_list[2] - args_list = [user_kwargs[k] if k in user_kwargs and user_kwargs[k] is not None else default_kwargs1[k] for k - in eval_func_param_names] - assert len(args_list) == len(eval_func_param_names) - args_list = [model_state1, my_db_state1, selection_docs_state1] + args_list - - try: - for res_dict in evaluate(*tuple(args_list), **kwargs1): - if str_api: - # full return of dict - yield res_dict - elif kwargs['langchain_mode'] == 'Disabled': - yield fix_text_for_gradio(res_dict['response']) - else: - yield '
' + fix_text_for_gradio(res_dict['response']) - finally: - clear_torch_cache() - clear_embeddings(user_kwargs['langchain_mode'], my_db_state1) - - fun = partial(evaluate_nochat, - default_kwargs1=default_kwargs, - str_api=False, - **kwargs_evaluate) - fun2 = partial(evaluate_nochat, - default_kwargs1=default_kwargs, - str_api=False, - **kwargs_evaluate) - fun_with_dict_str = partial(evaluate_nochat, - default_kwargs1=default_kwargs, - str_api=True, - **kwargs_evaluate - ) - - dark_mode_btn.click( - None, - None, - None, - _js=get_dark_js(), - api_name="dark" if allow_api else None, - queue=False, - ) - - def visible_toggle(x): - x = 'off' if x == 'on' else 'on' - return x, gr.Column.update(visible=True if x == 'on' else False) - - side_bar_btn.click(fn=visible_toggle, - inputs=side_bar_text, - outputs=[side_bar_text, side_bar], - queue=False) - - submit_buttons_btn.click(fn=visible_toggle, - inputs=submit_buttons_text, - outputs=[submit_buttons_text, submit_buttons], - queue=False) - - # examples after submit or any other buttons for chat or no chat - if kwargs['examples'] is not None and kwargs['show_examples']: - gr.Examples(examples=kwargs['examples'], inputs=inputs_list) - - # Score - def score_last_response(*args, nochat=False, num_model_lock=0): - try: - if num_model_lock > 0: - # then lock way - args_list = list(args).copy() - outputs = args_list[-num_model_lock:] - score_texts1 = [] - for output in outputs: - # same input, put into form good for _score_last_response() - args_list[-1] = output - score_texts1.append( - _score_last_response(*tuple(args_list), nochat=nochat, - num_model_lock=num_model_lock, prefix='')) - if len(score_texts1) > 1: - return "Response Scores: %s" % ' '.join(score_texts1) - else: - return "Response Scores: %s" % score_texts1[0] - else: - return _score_last_response(*args, nochat=nochat, num_model_lock=num_model_lock) - finally: - clear_torch_cache() - - def _score_last_response(*args, nochat=False, num_model_lock=0, prefix='Response Score: '): - """ Similar to user() """ - args_list = list(args) - smodel = score_model_state0['model'] - stokenizer = score_model_state0['tokenizer'] - sdevice = score_model_state0['device'] - - if memory_restriction_level > 0: - max_length_tokenize = 768 - 256 if memory_restriction_level <= 2 else 512 - 256 - elif hasattr(stokenizer, 'model_max_length'): - max_length_tokenize = stokenizer.model_max_length - else: - # limit to 1024, not worth OOMing on reward score - max_length_tokenize = 2048 - 1024 - cutoff_len = max_length_tokenize * 4 # restrict deberta related to max for LLM - - if not nochat: - history = args_list[-1] - if history is None: - history = [] - if smodel is not None and \ - stokenizer is not None and \ - sdevice is not None and \ - history is not None and len(history) > 0 and \ - history[-1] is not None and \ - len(history[-1]) >= 2: - os.environ['TOKENIZERS_PARALLELISM'] = 'false' - - question = history[-1][0] - - answer = history[-1][1] - else: - return '%sNA' % prefix - else: - answer = args_list[-1] - instruction_nochat_arg_id = eval_func_param_names.index('instruction_nochat') - question = args_list[instruction_nochat_arg_id] - - if question is None: - return '%sBad Question' % prefix - if answer is None: - return '%sBad Answer' % prefix - try: - score = score_qa(smodel, stokenizer, max_length_tokenize, question, answer, cutoff_len) - finally: - clear_torch_cache() - if isinstance(score, str): - return '%sNA' % prefix - return '{}{:.1%}'.format(prefix, score) - - def noop_score_last_response(*args, **kwargs): - return "Response Score: Disabled" - - if kwargs['score_model']: - score_fun = score_last_response - else: - score_fun = noop_score_last_response - - score_args = dict(fn=score_fun, - inputs=inputs_list + [text_output], - outputs=[score_text], - ) - score_args2 = dict(fn=partial(score_fun), - inputs=inputs_list2 + [text_output2], - outputs=[score_text2], - ) - score_fun_func = functools.partial(score_fun, num_model_lock=len(text_outputs)) - all_score_args = dict(fn=score_fun_func, - inputs=inputs_list + text_outputs, - outputs=score_text, - ) - - score_args_nochat = dict(fn=partial(score_fun, nochat=True), - inputs=inputs_list + [text_output_nochat], - outputs=[score_text_nochat], - ) - - def update_history(*args, undo=False, retry=False, sanitize_user_prompt=False): - """ - User that fills history for bot - :param args: - :param undo: - :param retry: - :param sanitize_user_prompt: - :return: - """ - args_list = list(args) - user_message = args_list[eval_func_param_names.index('instruction')] # chat only - input1 = args_list[eval_func_param_names.index('iinput')] # chat only - prompt_type1 = args_list[eval_func_param_names.index('prompt_type')] - langchain_mode1 = args_list[eval_func_param_names.index('langchain_mode')] - langchain_action1 = args_list[eval_func_param_names.index('langchain_action')] - langchain_agents1 = args_list[eval_func_param_names.index('langchain_agents')] - document_subset1 = args_list[eval_func_param_names.index('document_subset')] - document_choice1 = args_list[eval_func_param_names.index('document_choice')] - if not prompt_type1: - # shouldn't have to specify if CLI launched model - prompt_type1 = kwargs['prompt_type'] - # apply back - args_list[eval_func_param_names.index('prompt_type')] = prompt_type1 - if input1 and not user_message.endswith(':'): - user_message1 = user_message + ":" + input1 - elif input1: - user_message1 = user_message + input1 - else: - user_message1 = user_message - if sanitize_user_prompt: - from better_profanity import profanity - user_message1 = profanity.censor(user_message1) - - history = args_list[-1] - if history is None: - # bad history - history = [] - history = history.copy() - - if undo: - if len(history) > 0: - history.pop() - return history - if retry: - if history: - history[-1][1] = None - return history - if user_message1 in ['', None, '\n']: - if not allow_empty_instruction(langchain_mode1, document_subset1, langchain_action1): - # reject non-retry submit/enter - return history - user_message1 = fix_text_for_gradio(user_message1) - return history + [[user_message1, None]] - - def user(*args, undo=False, retry=False, sanitize_user_prompt=False): - return update_history(*args, undo=undo, retry=retry, sanitize_user_prompt=sanitize_user_prompt) - - def all_user(*args, undo=False, retry=False, sanitize_user_prompt=False, num_model_lock=0): - args_list = list(args) - history_list = args_list[-num_model_lock:] - assert len(history_list) > 0, "Bad history list: %s" % history_list - for hi, history in enumerate(history_list): - if num_model_lock > 0: - hargs = args_list[:-num_model_lock].copy() - else: - hargs = args_list.copy() - hargs += [history] - history_list[hi] = update_history(*hargs, undo=undo, retry=retry, - sanitize_user_prompt=sanitize_user_prompt) - if len(history_list) > 1: - return tuple(history_list) - else: - return history_list[0] - - def get_model_max_length(model_state1): - if model_state1 and not isinstance(model_state1["tokenizer"], str): - tokenizer = model_state1["tokenizer"] - elif model_state0 and not isinstance(model_state0["tokenizer"], str): - tokenizer = model_state0["tokenizer"] - else: - tokenizer = None - if tokenizer is not None: - return tokenizer.model_max_length - else: - return 2000 - - def prep_bot(*args, retry=False, which_model=0): - """ - - :param args: - :param retry: - :param which_model: identifies which model if doing model_lock - API only called for which_model=0, default for inputs_list, but rest should ignore inputs_list - :return: last element is True if should run bot, False if should just yield history - """ - isize = len(input_args_list) + 1 # states + chat history - # don't deepcopy, can contain model itself - args_list = list(args).copy() - model_state1 = args_list[-isize] - my_db_state1 = args_list[-isize + 1] - selection_docs_state1 = args_list[-isize + 2] - history = args_list[-1] - prompt_type1 = args_list[eval_func_param_names.index('prompt_type')] - prompt_dict1 = args_list[eval_func_param_names.index('prompt_dict')] - - if model_state1['model'] is None or model_state1['model'] == no_model_str: - return history, None, None, None - - args_list = args_list[:-isize] # only keep rest needed for evaluate() - langchain_mode1 = args_list[eval_func_param_names.index('langchain_mode')] - add_chat_history_to_context1 = args_list[eval_func_param_names.index('add_chat_history_to_context')] - langchain_action1 = args_list[eval_func_param_names.index('langchain_action')] - langchain_agents1 = args_list[eval_func_param_names.index('langchain_agents')] - document_subset1 = args_list[eval_func_param_names.index('document_subset')] - document_choice1 = args_list[eval_func_param_names.index('document_choice')] - if not history: - print("No history", flush=True) - history = [] - return history, None, None, None - instruction1 = history[-1][0] - if retry and history: - # if retry, pop history and move onto bot stuff - instruction1 = history[-1][0] - history[-1][1] = None - elif not instruction1: - if not allow_empty_instruction(langchain_mode1, document_subset1, langchain_action1): - # if not retrying, then reject empty query - return history, None, None, None - elif len(history) > 0 and history[-1][1] not in [None, '']: - # reject submit button if already filled and not retrying - # None when not filling with '' to keep client happy - return history, None, None, None - - # shouldn't have to specify in API prompt_type if CLI launched model, so prefer global CLI one if have it - prompt_type1, prompt_dict1 = update_prompt(prompt_type1, prompt_dict1, model_state1, - which_model=which_model) - # apply back to args_list for evaluate() - args_list[eval_func_param_names.index('prompt_type')] = prompt_type1 - args_list[eval_func_param_names.index('prompt_dict')] = prompt_dict1 - - chat1 = args_list[eval_func_param_names.index('chat')] - model_max_length1 = get_model_max_length(model_state1) - context1 = history_to_context(history, langchain_mode1, - add_chat_history_to_context1, - prompt_type1, prompt_dict1, chat1, - model_max_length1, memory_restriction_level, - kwargs['keep_sources_in_context']) - args_list[0] = instruction1 # override original instruction with history from user - args_list[2] = context1 - - fun1 = partial(evaluate, - model_state1, - my_db_state1, - selection_docs_state1, - *tuple(args_list), - **kwargs_evaluate) - - return history, fun1, langchain_mode1, my_db_state1 - - def get_response(fun1, history): - """ - bot that consumes history for user input - instruction (from input_list) itself is not consumed by bot - :return: - """ - if not fun1: - yield history, '' - return - try: - for output_fun in fun1(): - output = output_fun['response'] - extra = output_fun['sources'] # FIXME: can show sources in separate text box etc. - # ensure good visually, else markdown ignores multiple \n - bot_message = fix_text_for_gradio(output) - history[-1][1] = bot_message - yield history, '' - except StopIteration: - yield history, '' - except RuntimeError as e: - if "generator raised StopIteration" in str(e): - # assume last entry was bad, undo - history.pop() - yield history, '' - else: - if history and len(history) > 0 and len(history[0]) > 1 and history[-1][1] is None: - history[-1][1] = '' - yield history, str(e) - raise - except Exception as e: - # put error into user input - ex = "Exception: %s" % str(e) - if history and len(history) > 0 and len(history[0]) > 1 and history[-1][1] is None: - history[-1][1] = '' - yield history, ex - raise - finally: - clear_torch_cache() - return - - def clear_embeddings(langchain_mode1, db1s): - # clear any use of embedding that sits on GPU, else keeps accumulating GPU usage even if clear torch cache - if db_type == 'chroma' and langchain_mode1 not in ['LLM', 'Disabled', None, '']: - from gpt_langchain import clear_embedding - db = dbs.get('langchain_mode1') - if db is not None and not isinstance(db, str): - clear_embedding(db) - if db1s is not None and langchain_mode1 in db1s: - db1 = db1s[langchain_mode1] - if len(db1) == 2: - clear_embedding(db1[0]) - - def bot(*args, retry=False): - history, fun1, langchain_mode1, db1 = prep_bot(*args, retry=retry) - try: - for res in get_response(fun1, history): - yield res - finally: - clear_torch_cache() - clear_embeddings(langchain_mode1, db1) - - def all_bot(*args, retry=False, model_states1=None): - args_list = list(args).copy() - chatbots = args_list[-len(model_states1):] - args_list0 = args_list[:-len(model_states1)] # same for all models - exceptions = [] - stream_output1 = args_list[eval_func_param_names.index('stream_output')] - max_time1 = args_list[eval_func_param_names.index('max_time')] - langchain_mode1 = args_list[eval_func_param_names.index('langchain_mode')] - isize = len(input_args_list) + 1 # states + chat history - db1s = None - try: - gen_list = [] - for chatboti, (chatbot1, model_state1) in enumerate(zip(chatbots, model_states1)): - args_list1 = args_list0.copy() - args_list1.insert(-isize + 2, - model_state1) # insert at -2 so is at -3, and after chatbot1 added, at -4 - # if at start, have None in response still, replace with '' so client etc. acts like normal - # assumes other parts of code treat '' and None as if no response yet from bot - # can't do this later in bot code as racy with threaded generators - if len(chatbot1) > 0 and len(chatbot1[-1]) == 2 and chatbot1[-1][1] is None: - chatbot1[-1][1] = '' - args_list1.append(chatbot1) - # so consistent with prep_bot() - # with model_state1 at -3, my_db_state1 at -2, and history(chatbot) at -1 - # langchain_mode1 and my_db_state1 should be same for every bot - history, fun1, langchain_mode1, db1s = prep_bot(*tuple(args_list1), retry=retry, - which_model=chatboti) - gen1 = get_response(fun1, history) - if stream_output1: - gen1 = TimeoutIterator(gen1, timeout=0.01, sentinel=None, raise_on_exception=False) - # else timeout will truncate output for non-streaming case - gen_list.append(gen1) - - bots_old = chatbots.copy() - exceptions_old = [''] * len(bots_old) - tgen0 = time.time() - for res1 in itertools.zip_longest(*gen_list): - if time.time() - tgen0 > max_time1: - print("Took too long: %s" % max_time1, flush=True) - break - - bots = [x[0] if x is not None and not isinstance(x, BaseException) else y for x, y in - zip(res1, bots_old)] - bots_old = bots.copy() - - def larger_str(x, y): - return x if len(x) > len(y) else y - - exceptions = [x[1] if x is not None and not isinstance(x, BaseException) else larger_str(str(x), y) - for x, y in zip(res1, exceptions_old)] - exceptions_old = exceptions.copy() - - def choose_exc(x): - # don't expose ports etc. to exceptions window - if is_public: - return "Endpoint unavailable or failed" - else: - return x - - exceptions_str = '\n'.join( - ['Model %s: %s' % (iix, choose_exc(x)) for iix, x in enumerate(exceptions) if - x not in [None, '', 'None']]) - if len(bots) > 1: - yield tuple(bots + [exceptions_str]) - else: - yield bots[0], exceptions_str - if exceptions: - exceptions = [x for x in exceptions if x not in ['', None, 'None']] - if exceptions: - print("Generate exceptions: %s" % exceptions, flush=True) - finally: - clear_torch_cache() - clear_embeddings(langchain_mode1, db1s) - - # NORMAL MODEL - user_args = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']), - inputs=inputs_list + [text_output], - outputs=text_output, - ) - bot_args = dict(fn=bot, - inputs=inputs_list + [model_state, my_db_state, selection_docs_state] + [text_output], - outputs=[text_output, chat_exception_text], - ) - retry_bot_args = dict(fn=functools.partial(bot, retry=True), - inputs=inputs_list + [model_state, my_db_state, selection_docs_state] + [text_output], - outputs=[text_output, chat_exception_text], - ) - retry_user_args = dict(fn=functools.partial(user, retry=True), - inputs=inputs_list + [text_output], - outputs=text_output, - ) - undo_user_args = dict(fn=functools.partial(user, undo=True), - inputs=inputs_list + [text_output], - outputs=text_output, - ) - - # MODEL2 - user_args2 = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']), - inputs=inputs_list2 + [text_output2], - outputs=text_output2, - ) - bot_args2 = dict(fn=bot, - inputs=inputs_list2 + [model_state2, my_db_state, selection_docs_state] + [text_output2], - outputs=[text_output2, chat_exception_text], - ) - retry_bot_args2 = dict(fn=functools.partial(bot, retry=True), - inputs=inputs_list2 + [model_state2, my_db_state, selection_docs_state] + [text_output2], - outputs=[text_output2, chat_exception_text], - ) - retry_user_args2 = dict(fn=functools.partial(user, retry=True), - inputs=inputs_list2 + [text_output2], - outputs=text_output2, - ) - undo_user_args2 = dict(fn=functools.partial(user, undo=True), - inputs=inputs_list2 + [text_output2], - outputs=text_output2, - ) - - # MODEL N - all_user_args = dict(fn=functools.partial(all_user, - sanitize_user_prompt=kwargs['sanitize_user_prompt'], - num_model_lock=len(text_outputs), - ), - inputs=inputs_list + text_outputs, - outputs=text_outputs, - ) - all_bot_args = dict(fn=functools.partial(all_bot, model_states1=model_states), - inputs=inputs_list + [my_db_state, selection_docs_state] + text_outputs, - outputs=text_outputs + [chat_exception_text], - ) - all_retry_bot_args = dict(fn=functools.partial(all_bot, model_states1=model_states, retry=True), - inputs=inputs_list + [my_db_state, selection_docs_state] + text_outputs, - outputs=text_outputs + [chat_exception_text], - ) - all_retry_user_args = dict(fn=functools.partial(all_user, retry=True, - sanitize_user_prompt=kwargs['sanitize_user_prompt'], - num_model_lock=len(text_outputs), - ), - inputs=inputs_list + text_outputs, - outputs=text_outputs, - ) - all_undo_user_args = dict(fn=functools.partial(all_user, undo=True, - sanitize_user_prompt=kwargs['sanitize_user_prompt'], - num_model_lock=len(text_outputs), - ), - inputs=inputs_list + text_outputs, - outputs=text_outputs, - ) - - def clear_instruct(): - return gr.Textbox.update(value='') - - def deselect_radio_chats(): - return gr.update(value=None) - - def clear_all(): - return gr.Textbox.update(value=''), gr.Textbox.update(value=''), gr.update(value=None), \ - gr.Textbox.update(value=''), gr.Textbox.update(value='') - - if kwargs['model_states']: - submits1 = submits2 = submits3 = [] - submits4 = [] - - fun_source = [instruction.submit, submit.click, retry_btn.click] - fun_name = ['instruction', 'submit', 'retry'] - user_args = [all_user_args, all_user_args, all_retry_user_args] - bot_args = [all_bot_args, all_bot_args, all_retry_bot_args] - for userargs1, botarg1, funn1, funs1 in zip(user_args, bot_args, fun_name, fun_source): - submit_event11 = funs1(fn=dummy_fun, - inputs=instruction, outputs=instruction, queue=queue) - submit_event1a = submit_event11.then(**userargs1, queue=queue, - api_name='%s' % funn1 if allow_api else None) - # if hit enter on new instruction for submitting new query, no longer the saved chat - submit_event1b = submit_event1a.then(clear_all, inputs=None, - outputs=[instruction, iinput, radio_chats, score_text, - score_text2], - queue=queue) - submit_event1c = submit_event1b.then(**botarg1, - api_name='%s_bot' % funn1 if allow_api else None, - queue=queue) - submit_event1d = submit_event1c.then(**all_score_args, - api_name='%s_bot_score' % funn1 if allow_api else None, - queue=queue) - - submits1.extend([submit_event1a, submit_event1b, submit_event1c, submit_event1d]) - - # if undo, no longer the saved chat - submit_event4 = undo.click(fn=dummy_fun, - inputs=instruction, outputs=instruction, queue=queue) \ - .then(**all_undo_user_args, api_name='undo' if allow_api else None) \ - .then(clear_all, inputs=None, outputs=[instruction, iinput, radio_chats, score_text, - score_text2], queue=queue) \ - .then(**all_score_args, api_name='undo_score' if allow_api else None) - submits4 = [submit_event4] - - else: - # in case 2nd model, consume instruction first, so can clear quickly - # bot doesn't consume instruction itself, just history from user, so why works - submit_event11 = instruction.submit(fn=dummy_fun, - inputs=instruction, outputs=instruction, queue=queue) - submit_event1a = submit_event11.then(**user_args, queue=queue, - api_name='instruction' if allow_api else None) - # if hit enter on new instruction for submitting new query, no longer the saved chat - submit_event1a2 = submit_event1a.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=queue) - submit_event1b = submit_event1a2.then(**user_args2, api_name='instruction2' if allow_api else None) - submit_event1c = submit_event1b.then(clear_instruct, None, instruction) \ - .then(clear_instruct, None, iinput) - submit_event1d = submit_event1c.then(**bot_args, api_name='instruction_bot' if allow_api else None, - queue=queue) - submit_event1e = submit_event1d.then(**score_args, - api_name='instruction_bot_score' if allow_api else None, - queue=queue) - submit_event1f = submit_event1e.then(**bot_args2, api_name='instruction_bot2' if allow_api else None, - queue=queue) - submit_event1g = submit_event1f.then(**score_args2, - api_name='instruction_bot_score2' if allow_api else None, queue=queue) - - submits1 = [submit_event1a, submit_event1a2, submit_event1b, submit_event1c, submit_event1d, - submit_event1e, - submit_event1f, submit_event1g] - - submit_event21 = submit.click(fn=dummy_fun, - inputs=instruction, outputs=instruction, queue=queue) - submit_event2a = submit_event21.then(**user_args, api_name='submit' if allow_api else None) - # if submit new query, no longer the saved chat - submit_event2a2 = submit_event2a.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=queue) - submit_event2b = submit_event2a2.then(**user_args2, api_name='submit2' if allow_api else None) - submit_event2c = submit_event2b.then(clear_all, inputs=None, - outputs=[instruction, iinput, radio_chats, score_text, score_text2], - queue=queue) - submit_event2d = submit_event2c.then(**bot_args, api_name='submit_bot' if allow_api else None, queue=queue) - submit_event2e = submit_event2d.then(**score_args, - api_name='submit_bot_score' if allow_api else None, - queue=queue) - submit_event2f = submit_event2e.then(**bot_args2, api_name='submit_bot2' if allow_api else None, - queue=queue) - submit_event2g = submit_event2f.then(**score_args2, - api_name='submit_bot_score2' if allow_api else None, - queue=queue) - - submits2 = [submit_event2a, submit_event2a2, submit_event2b, submit_event2c, submit_event2d, - submit_event2e, - submit_event2f, submit_event2g] - - submit_event31 = retry_btn.click(fn=dummy_fun, - inputs=instruction, outputs=instruction, queue=queue) - submit_event3a = submit_event31.then(**user_args, api_name='retry' if allow_api else None) - # if retry, no longer the saved chat - submit_event3a2 = submit_event3a.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=queue) - submit_event3b = submit_event3a2.then(**user_args2, api_name='retry2' if allow_api else None) - submit_event3c = submit_event3b.then(clear_instruct, None, instruction) \ - .then(clear_instruct, None, iinput) - submit_event3d = submit_event3c.then(**retry_bot_args, api_name='retry_bot' if allow_api else None, - queue=queue) - submit_event3e = submit_event3d.then(**score_args, - api_name='retry_bot_score' if allow_api else None, - queue=queue) - submit_event3f = submit_event3e.then(**retry_bot_args2, api_name='retry_bot2' if allow_api else None, - queue=queue) - submit_event3g = submit_event3f.then(**score_args2, - api_name='retry_bot_score2' if allow_api else None, - queue=queue) - - submits3 = [submit_event3a, submit_event3a2, submit_event3b, submit_event3c, submit_event3d, - submit_event3e, - submit_event3f, submit_event3g] - - # if undo, no longer the saved chat - submit_event4 = undo.click(fn=dummy_fun, - inputs=instruction, outputs=instruction, queue=queue) \ - .then(**undo_user_args, api_name='undo' if allow_api else None) \ - .then(**undo_user_args2, api_name='undo2' if allow_api else None) \ - .then(clear_all, inputs=None, outputs=[instruction, iinput, radio_chats, score_text, - score_text2], queue=queue) \ - .then(**score_args, api_name='undo_score' if allow_api else None) \ - .then(**score_args2, api_name='undo_score2' if allow_api else None) - submits4 = [submit_event4] - - # MANAGE CHATS - def dedup(short_chat, short_chats): - if short_chat not in short_chats: - return short_chat - for i in range(1, 1000): - short_chat_try = short_chat + "_" + str(i) - if short_chat_try not in short_chats: - return short_chat_try - # fallback and hope for best - short_chat = short_chat + "_" + str(random.random()) - return short_chat - - def get_short_chat(x, short_chats, short_len=20, words=4): - if x and len(x[0]) == 2 and x[0][0] is not None: - short_chat = ' '.join(x[0][0][:short_len].split(' ')[:words]).strip() - if not short_chat: - # e.g.summarization, try using answer - short_chat = ' '.join(x[0][1][:short_len].split(' ')[:words]).strip() - if not short_chat: - short_chat = 'Unk' - short_chat = dedup(short_chat, short_chats) - else: - short_chat = None - return short_chat - - def is_chat_same(x, y): - #

etc. added in chat, try to remove some of that to help avoid dup entries when hit new conversation - is_same = True - # length of conversation has to be same - if len(x) != len(y): - return False - if len(x) != len(y): - return False - for stepx, stepy in zip(x, y): - if len(stepx) != len(stepy): - # something off with a conversation - return False - for stepxx, stepyy in zip(stepx, stepy): - if len(stepxx) != len(stepyy): - # something off with a conversation - return False - if len(stepxx) != 2: - # something off - return False - if len(stepyy) != 2: - # something off - return False - questionx = stepxx[0].replace('

', '').replace('

', '') if stepxx[0] is not None else None - answerx = stepxx[1].replace('

', '').replace('

', '') if stepxx[1] is not None else None - - questiony = stepyy[0].replace('

', '').replace('

', '') if stepyy[0] is not None else None - answery = stepyy[1].replace('

', '').replace('

', '') if stepyy[1] is not None else None - - if questionx != questiony or answerx != answery: - return False - return is_same - - def save_chat(*args, chat_is_list=False): - args_list = list(args) - if not chat_is_list: - # list of chatbot histories, - # can't pass in list with list of chatbot histories and state due to gradio limits - chat_list = args_list[:-1] - else: - assert len(args_list) == 2 - chat_list = args_list[0] - # if old chat file with single chatbot, get into shape - if isinstance(chat_list, list) and len(chat_list) > 0 and isinstance(chat_list[0], list) and len( - chat_list[0]) == 2 and isinstance(chat_list[0][0], str) and isinstance(chat_list[0][1], str): - chat_list = [chat_list] - # remove None histories - chat_list_not_none = [x for x in chat_list if x and len(x) > 0 and len(x[0]) == 2 and x[0][1] is not None] - chat_list_none = [x for x in chat_list if x not in chat_list_not_none] - if len(chat_list_none) > 0 and len(chat_list_not_none) == 0: - raise ValueError("Invalid chat file") - # dict with keys of short chat names, values of list of list of chatbot histories - chat_state1 = args_list[-1] - short_chats = list(chat_state1.keys()) - if len(chat_list_not_none) > 0: - # make short_chat key from only first history, based upon question that is same anyways - chat_first = chat_list_not_none[0] - short_chat = get_short_chat(chat_first, short_chats) - if short_chat: - old_chat_lists = list(chat_state1.values()) - already_exists = any([is_chat_same(chat_list, x) for x in old_chat_lists]) - if not already_exists: - chat_state1[short_chat] = chat_list.copy() - - # reverse so newest at top - choices = list(chat_state1.keys()).copy() - choices.reverse() - - return chat_state1, gr.update(choices=choices, value=None) - - def switch_chat(chat_key, chat_state1, num_model_lock=0): - chosen_chat = chat_state1[chat_key] - # deal with possible different size of chat list vs. current list - ret_chat = [None] * (2 + num_model_lock) - for chati in range(0, 2 + num_model_lock): - ret_chat[chati % len(ret_chat)] = chosen_chat[chati % len(chosen_chat)] - return tuple(ret_chat) - - def clear_texts(*args): - return tuple([gr.Textbox.update(value='')] * len(args)) - - def clear_scores(): - return gr.Textbox.update(value=res_value), \ - gr.Textbox.update(value='Response Score: NA'), \ - gr.Textbox.update(value='Response Score: NA') - - switch_chat_fun = functools.partial(switch_chat, num_model_lock=len(text_outputs)) - radio_chats.input(switch_chat_fun, - inputs=[radio_chats, chat_state], - outputs=[text_output, text_output2] + text_outputs) \ - .then(clear_scores, outputs=[score_text, score_text2, score_text_nochat]) - - def remove_chat(chat_key, chat_state1): - if isinstance(chat_key, str): - chat_state1.pop(chat_key, None) - return gr.update(choices=list(chat_state1.keys()), value=None), chat_state1 - - remove_chat_event = remove_chat_btn.click(remove_chat, - inputs=[radio_chats, chat_state], outputs=[radio_chats, chat_state], - queue=False, api_name='remove_chat') - - def get_chats1(chat_state1): - base = 'chats' - makedirs(base, exist_ok=True) - filename = os.path.join(base, 'chats_%s.json' % str(uuid.uuid4())) - with open(filename, "wt") as f: - f.write(json.dumps(chat_state1, indent=2)) - return filename - - export_chat_event = export_chats_btn.click(get_chats1, inputs=chat_state, outputs=chats_file, queue=False, - api_name='export_chats' if allow_api else None) - - def add_chats_from_file(file, chat_state1, radio_chats1, chat_exception_text1): - if not file: - return None, chat_state1, gr.update(choices=list(chat_state1.keys()), value=None), chat_exception_text1 - if isinstance(file, str): - files = [file] - else: - files = file - if not files: - return None, chat_state1, gr.update(choices=list(chat_state1.keys()), value=None), chat_exception_text1 - chat_exception_list = [] - for file1 in files: - try: - if hasattr(file1, 'name'): - file1 = file1.name - with open(file1, "rt") as f: - new_chats = json.loads(f.read()) - for chat1_k, chat1_v in new_chats.items(): - # ignore chat1_k, regenerate and de-dup to avoid loss - chat_state1, _ = save_chat(chat1_v, chat_state1, chat_is_list=True) - except BaseException as e: - t, v, tb = sys.exc_info() - ex = ''.join(traceback.format_exception(t, v, tb)) - ex_str = "File %s exception: %s" % (file1, str(e)) - print(ex_str, flush=True) - chat_exception_list.append(ex_str) - chat_exception_text1 = '\n'.join(chat_exception_list) - return None, chat_state1, gr.update(choices=list(chat_state1.keys()), value=None), chat_exception_text1 - - # note for update_user_db_func output is ignored for db - chatup_change_event = chatsup_output.change(add_chats_from_file, - inputs=[chatsup_output, chat_state, radio_chats, - chat_exception_text], - outputs=[chatsup_output, chat_state, radio_chats, - chat_exception_text], - queue=False, - api_name='add_to_chats' if allow_api else None) - - clear_chat_event = clear_chat_btn.click(fn=clear_texts, - inputs=[text_output, text_output2] + text_outputs, - outputs=[text_output, text_output2] + text_outputs, - queue=False, api_name='clear' if allow_api else None) \ - .then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=False) \ - .then(clear_scores, outputs=[score_text, score_text2, score_text_nochat]) - - clear_event = save_chat_btn.click(save_chat, - inputs=[text_output, text_output2] + text_outputs + [chat_state], - outputs=[chat_state, radio_chats], - api_name='save_chat' if allow_api else None) - if kwargs['score_model']: - clear_event2 = clear_event.then(clear_scores, outputs=[score_text, score_text2, score_text_nochat]) - - # NOTE: clear of instruction/iinput for nochat has to come after score, - # because score for nochat consumes actual textbox, while chat consumes chat history filled by user() - no_chat_args = dict(fn=fun, - inputs=[model_state, my_db_state, selection_docs_state] + inputs_list, - outputs=text_output_nochat, - queue=queue, - ) - submit_event_nochat = submit_nochat.click(**no_chat_args, api_name='submit_nochat' if allow_api else None) \ - .then(clear_torch_cache) \ - .then(**score_args_nochat, api_name='instruction_bot_score_nochat' if allow_api else None, queue=queue) \ - .then(clear_instruct, None, instruction_nochat) \ - .then(clear_instruct, None, iinput_nochat) \ - .then(clear_torch_cache) - # copy of above with text box submission - submit_event_nochat2 = instruction_nochat.submit(**no_chat_args) \ - .then(clear_torch_cache) \ - .then(**score_args_nochat, queue=queue) \ - .then(clear_instruct, None, instruction_nochat) \ - .then(clear_instruct, None, iinput_nochat) \ - .then(clear_torch_cache) - - submit_event_nochat_api = submit_nochat_api.click(fun_with_dict_str, - inputs=[model_state, my_db_state, selection_docs_state, - inputs_dict_str], - outputs=text_output_nochat_api, - queue=True, # required for generator - api_name='submit_nochat_api' if allow_api else None) \ - .then(clear_torch_cache) - - def load_model(model_name, lora_weights, server_name, model_state_old, prompt_type_old, load_8bit, - use_gpu_id, gpu_id): - # ensure no API calls reach here - if is_public: - raise RuntimeError("Illegal access for %s" % model_name) - # ensure old model removed from GPU memory - if kwargs['debug']: - print("Pre-switch pre-del GPU memory: %s" % get_torch_allocated(), flush=True) - - model0 = model_state0['model'] - if isinstance(model_state_old['model'], str) and model0 is not None: - # best can do, move model loaded at first to CPU - model0.cpu() - - if model_state_old['model'] is not None and not isinstance(model_state_old['model'], str): - try: - model_state_old['model'].cpu() - except Exception as e: - # sometimes hit NotImplementedError: Cannot copy out of meta tensor; no data! - print("Unable to put model on CPU: %s" % str(e), flush=True) - del model_state_old['model'] - model_state_old['model'] = None - - if model_state_old['tokenizer'] is not None and not isinstance(model_state_old['tokenizer'], str): - del model_state_old['tokenizer'] - model_state_old['tokenizer'] = None - - clear_torch_cache() - if kwargs['debug']: - print("Pre-switch post-del GPU memory: %s" % get_torch_allocated(), flush=True) - - if model_name is None or model_name == no_model_str: - # no-op if no model, just free memory - # no detranscribe needed for model, never go into evaluate - lora_weights = no_lora_str - server_name = no_server_str - return [None, None, None, model_name, server_name], \ - model_name, lora_weights, server_name, prompt_type_old, \ - gr.Slider.update(maximum=256), \ - gr.Slider.update(maximum=256) - - # don't deepcopy, can contain model itself - all_kwargs1 = all_kwargs.copy() - all_kwargs1['base_model'] = model_name.strip() - all_kwargs1['load_8bit'] = load_8bit - all_kwargs1['use_gpu_id'] = use_gpu_id - all_kwargs1['gpu_id'] = int(gpu_id) # detranscribe - model_lower = model_name.strip().lower() - if model_lower in inv_prompt_type_to_model_lower: - prompt_type1 = inv_prompt_type_to_model_lower[model_lower] - else: - prompt_type1 = prompt_type_old - - # detranscribe - if lora_weights == no_lora_str: - lora_weights = '' - all_kwargs1['lora_weights'] = lora_weights.strip() - if server_name == no_server_str: - server_name = '' - all_kwargs1['inference_server'] = server_name.strip() - - model1, tokenizer1, device1 = get_model(reward_type=False, - **get_kwargs(get_model, exclude_names=['reward_type'], - **all_kwargs1)) - clear_torch_cache() - - tokenizer_base_model = model_name - prompt_dict1, error0 = get_prompt(prompt_type1, '', - chat=False, context='', reduced=False, making_context=False, - return_dict=True) - model_state_new = dict(model=model1, tokenizer=tokenizer1, device=device1, - base_model=model_name, tokenizer_base_model=tokenizer_base_model, - lora_weights=lora_weights, inference_server=server_name, - prompt_type=prompt_type1, prompt_dict=prompt_dict1, - ) - - max_max_new_tokens1 = get_max_max_new_tokens(model_state_new, **kwargs) - - if kwargs['debug']: - print("Post-switch GPU memory: %s" % get_torch_allocated(), flush=True) - return model_state_new, model_name, lora_weights, server_name, prompt_type1, \ - gr.Slider.update(maximum=max_max_new_tokens1), \ - gr.Slider.update(maximum=max_max_new_tokens1) - - def get_prompt_str(prompt_type1, prompt_dict1, which=0): - if prompt_type1 in ['', None]: - print("Got prompt_type %s: %s" % (which, prompt_type1), flush=True) - return str({}) - prompt_dict1, prompt_dict_error = get_prompt(prompt_type1, prompt_dict1, chat=False, context='', - reduced=False, making_context=False, return_dict=True) - if prompt_dict_error: - return str(prompt_dict_error) - else: - # return so user can manipulate if want and use as custom - return str(prompt_dict1) - - get_prompt_str_func1 = functools.partial(get_prompt_str, which=1) - get_prompt_str_func2 = functools.partial(get_prompt_str, which=2) - prompt_type.change(fn=get_prompt_str_func1, inputs=[prompt_type, prompt_dict], outputs=prompt_dict, queue=False) - prompt_type2.change(fn=get_prompt_str_func2, inputs=[prompt_type2, prompt_dict2], outputs=prompt_dict2, - queue=False) - - def dropdown_prompt_type_list(x): - return gr.Dropdown.update(value=x) - - def chatbot_list(x, model_used_in): - return gr.Textbox.update(label=f'h2oGPT [Model: {model_used_in}]') - - load_model_args = dict(fn=load_model, - inputs=[model_choice, lora_choice, server_choice, model_state, prompt_type, - model_load8bit_checkbox, model_use_gpu_id_checkbox, model_gpu], - outputs=[model_state, model_used, lora_used, server_used, - # if prompt_type changes, prompt_dict will change via change rule - prompt_type, max_new_tokens, min_new_tokens, - ]) - prompt_update_args = dict(fn=dropdown_prompt_type_list, inputs=prompt_type, outputs=prompt_type) - chatbot_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output) - nochat_update_args = dict(fn=chatbot_list, inputs=[text_output_nochat, model_used], outputs=text_output_nochat) - load_model_event = load_model_button.click(**load_model_args, - api_name='load_model' if allow_api and is_public else None) \ - .then(**prompt_update_args) \ - .then(**chatbot_update_args) \ - .then(**nochat_update_args) \ - .then(clear_torch_cache) - - load_model_args2 = dict(fn=load_model, - inputs=[model_choice2, lora_choice2, server_choice2, model_state2, prompt_type2, - model_load8bit_checkbox2, model_use_gpu_id_checkbox2, model_gpu2], - outputs=[model_state2, model_used2, lora_used2, server_used2, - # if prompt_type2 changes, prompt_dict2 will change via change rule - prompt_type2, max_new_tokens2, min_new_tokens2 - ]) - prompt_update_args2 = dict(fn=dropdown_prompt_type_list, inputs=prompt_type2, outputs=prompt_type2) - chatbot_update_args2 = dict(fn=chatbot_list, inputs=[text_output2, model_used2], outputs=text_output2) - load_model_event2 = load_model_button2.click(**load_model_args2, - api_name='load_model2' if allow_api and is_public else None) \ - .then(**prompt_update_args2) \ - .then(**chatbot_update_args2) \ - .then(clear_torch_cache) - - def dropdown_model_lora_server_list(model_list0, model_x, - lora_list0, lora_x, - server_list0, server_x, - model_used1, lora_used1, server_used1, - model_used2, lora_used2, server_used2, - ): - model_new_state = [model_list0[0] + [model_x]] - model_new_options = [*model_new_state[0]] - x1 = model_x if model_used1 == no_model_str else model_used1 - x2 = model_x if model_used2 == no_model_str else model_used2 - ret1 = [gr.Dropdown.update(value=x1, choices=model_new_options), - gr.Dropdown.update(value=x2, choices=model_new_options), - '', model_new_state] - - lora_new_state = [lora_list0[0] + [lora_x]] - lora_new_options = [*lora_new_state[0]] - # don't switch drop-down to added lora if already have model loaded - x1 = lora_x if model_used1 == no_model_str else lora_used1 - x2 = lora_x if model_used2 == no_model_str else lora_used2 - ret2 = [gr.Dropdown.update(value=x1, choices=lora_new_options), - gr.Dropdown.update(value=x2, choices=lora_new_options), - '', lora_new_state] - - server_new_state = [server_list0[0] + [server_x]] - server_new_options = [*server_new_state[0]] - # don't switch drop-down to added server if already have model loaded - x1 = server_x if model_used1 == no_model_str else server_used1 - x2 = server_x if model_used2 == no_model_str else server_used2 - ret3 = [gr.Dropdown.update(value=x1, choices=server_new_options), - gr.Dropdown.update(value=x2, choices=server_new_options), - '', server_new_state] - - return tuple(ret1 + ret2 + ret3) - - add_model_lora_server_event = \ - add_model_lora_server_button.click(fn=dropdown_model_lora_server_list, - inputs=[model_options_state, new_model] + - [lora_options_state, new_lora] + - [server_options_state, new_server] + - [model_used, lora_used, server_used] + - [model_used2, lora_used2, server_used2], - outputs=[model_choice, model_choice2, new_model, model_options_state] + - [lora_choice, lora_choice2, new_lora, lora_options_state] + - [server_choice, server_choice2, new_server, - server_options_state], - queue=False) - - go_event = go_btn.click(lambda: gr.update(visible=False), None, go_btn, api_name="go" if allow_api else None, - queue=False) \ - .then(lambda: gr.update(visible=True), None, normal_block, queue=False) \ - .then(**load_model_args, queue=False).then(**prompt_update_args, queue=False) - - def compare_textbox_fun(x): - return gr.Textbox.update(visible=x) - - def compare_column_fun(x): - return gr.Column.update(visible=x) - - def compare_prompt_fun(x): - return gr.Dropdown.update(visible=x) - - def slider_fun(x): - return gr.Slider.update(visible=x) - - compare_checkbox.select(compare_textbox_fun, compare_checkbox, text_output2, - api_name="compare_checkbox" if allow_api else None) \ - .then(compare_column_fun, compare_checkbox, col_model2) \ - .then(compare_prompt_fun, compare_checkbox, prompt_type2) \ - .then(compare_textbox_fun, compare_checkbox, score_text2) \ - .then(slider_fun, compare_checkbox, max_new_tokens2) \ - .then(slider_fun, compare_checkbox, min_new_tokens2) - # FIXME: add score_res2 in condition, but do better - - # callback for logging flagged input/output - callback.setup(inputs_list + [text_output, text_output2] + text_outputs, "flagged_data_points") - flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output, text_output2] + text_outputs, - None, - preprocess=False, - api_name='flag' if allow_api else None, queue=False) - flag_btn_nochat.click(lambda *args: callback.flag(args), inputs_list + [text_output_nochat], None, - preprocess=False, - api_name='flag_nochat' if allow_api else None, queue=False) - - def get_system_info(): - if is_public: - time.sleep(10) # delay to avoid spam since queue=False - return gr.Textbox.update(value=system_info_print()) - - system_event = system_btn.click(get_system_info, outputs=system_text, - api_name='system_info' if allow_api else None, queue=False) - - def get_system_info_dict(system_input1, **kwargs1): - if system_input1 != os.getenv("ADMIN_PASS", ""): - return json.dumps({}) - exclude_list = ['admin_pass', 'examples'] - sys_dict = {k: v for k, v in kwargs1.items() if - isinstance(v, (str, int, bool, float)) and k not in exclude_list} - try: - sys_dict.update(system_info()) - except Exception as e: - # protection - print("Exception: %s" % str(e), flush=True) - return json.dumps(sys_dict) - - system_kwargs = all_kwargs.copy() - system_kwargs.update(dict(command=str(' '.join(sys.argv)))) - get_system_info_dict_func = functools.partial(get_system_info_dict, **all_kwargs) - - system_dict_event = system_btn2.click(get_system_info_dict_func, - inputs=system_input, - outputs=system_text2, - api_name='system_info_dict' if allow_api else None, - queue=False, # queue to avoid spam - ) - - def get_hash(): - return kwargs['git_hash'] - - system_event = system_btn3.click(get_hash, - outputs=system_text3, - api_name='system_hash' if allow_api else None, - queue=False, - ) - - def count_chat_tokens(model_state1, chat1, prompt_type1, prompt_dict1, - memory_restriction_level1=0, - keep_sources_in_context1=False, - ): - if model_state1 and not isinstance(model_state1['tokenizer'], str): - tokenizer = model_state1['tokenizer'] - elif model_state0 and not isinstance(model_state0['tokenizer'], str): - tokenizer = model_state0['tokenizer'] - else: - tokenizer = None - if tokenizer is not None: - langchain_mode1 = 'LLM' - add_chat_history_to_context1 = True - # fake user message to mimic bot() - chat1 = copy.deepcopy(chat1) - chat1 = chat1 + [['user_message1', None]] - model_max_length1 = tokenizer.model_max_length - context1 = history_to_context(chat1, langchain_mode1, - add_chat_history_to_context1, - prompt_type1, prompt_dict1, chat1, - model_max_length1, - memory_restriction_level1, keep_sources_in_context1) - return str(tokenizer(context1, return_tensors="pt")['input_ids'].shape[1]) - else: - return "N/A" - - count_chat_tokens_func = functools.partial(count_chat_tokens, - memory_restriction_level1=memory_restriction_level, - keep_sources_in_context1=kwargs['keep_sources_in_context']) - count_tokens_event = count_chat_tokens_btn.click(fn=count_chat_tokens, - inputs=[model_state, text_output, prompt_type, prompt_dict], - outputs=chat_token_count, - api_name='count_tokens' if allow_api else None) - - # don't pass text_output, don't want to clear output, just stop it - # cancel only stops outer generation, not inner generation or non-generation - stop_btn.click(lambda: None, None, None, - cancels=submits1 + submits2 + submits3 + submits4 + - [submit_event_nochat, submit_event_nochat2] + - [eventdb1, eventdb2, eventdb3] + - [eventdb7, eventdb8, eventdb9, eventdb12] + - db_events + - [clear_event] + - [submit_event_nochat_api, submit_event_nochat] + - [load_model_event, load_model_event2] + - [count_tokens_event] - , - queue=False, api_name='stop' if allow_api else None).then(clear_torch_cache, queue=False) - - demo.load(None, None, None, _js=get_dark_js() if kwargs['dark'] else None) - - demo.queue(concurrency_count=kwargs['concurrency_count'], api_open=kwargs['api_open']) - favicon_path = "h2o-logo.svg" - if not os.path.isfile(favicon_path): - print("favicon_path=%s not found" % favicon_path, flush=True) - favicon_path = None - - scheduler = BackgroundScheduler() - scheduler.add_job(func=clear_torch_cache, trigger="interval", seconds=20) - if is_public and \ - kwargs['base_model'] not in non_hf_types: - # FIXME: disable for gptj, langchain or gpt4all modify print itself - # FIXME: and any multi-threaded/async print will enter model output! - scheduler.add_job(func=ping, trigger="interval", seconds=60) - if is_public or os.getenv('PING_GPU'): - scheduler.add_job(func=ping_gpu, trigger="interval", seconds=60 * 10) - scheduler.start() - - # import control - if kwargs['langchain_mode'] == 'Disabled' and \ - os.environ.get("TEST_LANGCHAIN_IMPORT") and \ - kwargs['base_model'] not in non_hf_types: - assert 'gpt_langchain' not in sys.modules, "Dev bug, import of langchain when should not have" - assert 'langchain' not in sys.modules, "Dev bug, import of langchain when should not have" - - demo.launch(share=kwargs['share'], server_name="0.0.0.0", show_error=True, - favicon_path=favicon_path, prevent_thread_lock=True, - auth=kwargs['auth']) - if kwargs['verbose']: - print("Started GUI", flush=True) - if kwargs['block_gradio_exit']: - demo.block_thread() - - -def get_inputs_list(inputs_dict, model_lower, model_id=1): - """ - map gradio objects in locals() to inputs for evaluate(). - :param inputs_dict: - :param model_lower: - :param model_id: Which model (1 or 2) of 2 - :return: - """ - inputs_list_names = list(inspect.signature(evaluate).parameters) - inputs_list = [] - inputs_dict_out = {} - for k in inputs_list_names: - if k == 'kwargs': - continue - if k in input_args_list + inputs_kwargs_list: - # these are added at use time for args or partial for kwargs, not taken as input - continue - if 'mbart-' not in model_lower and k in ['src_lang', 'tgt_lang']: - continue - if model_id == 2: - if k == 'prompt_type': - k = 'prompt_type2' - if k == 'prompt_used': - k = 'prompt_used2' - if k == 'max_new_tokens': - k = 'max_new_tokens2' - if k == 'min_new_tokens': - k = 'min_new_tokens2' - inputs_list.append(inputs_dict[k]) - inputs_dict_out[k] = inputs_dict[k] - return inputs_list, inputs_dict_out - - -def get_sources(db1s, langchain_mode, dbs=None, docs_state0=None): - for k in db1s: - set_userid(db1s[k]) - - if langchain_mode in ['LLM']: - source_files_added = "NA" - source_list = [] - elif langchain_mode in ['wiki_full']: - source_files_added = "Not showing wiki_full, takes about 20 seconds and makes 4MB file." \ - " Ask jon.mckinney@h2o.ai for file if required." - source_list = [] - elif langchain_mode in db1s and len(db1s[langchain_mode]) == 2 and db1s[langchain_mode][0] is not None: - db1 = db1s[langchain_mode] - from gpt_langchain import get_metadatas - metadatas = get_metadatas(db1[0]) - source_list = sorted(set([x['source'] for x in metadatas])) - source_files_added = '\n'.join(source_list) - elif langchain_mode in dbs and dbs[langchain_mode] is not None: - from gpt_langchain import get_metadatas - db1 = dbs[langchain_mode] - metadatas = get_metadatas(db1) - source_list = sorted(set([x['source'] for x in metadatas])) - source_files_added = '\n'.join(source_list) - else: - source_list = [] - source_files_added = "None" - sources_dir = "sources_dir" - makedirs(sources_dir) - sources_file = os.path.join(sources_dir, 'sources_%s_%s' % (langchain_mode, str(uuid.uuid4()))) - with open(sources_file, "wt") as f: - f.write(source_files_added) - source_list = docs_state0 + source_list - return sources_file, source_list - - -def set_userid(db1): - # can only call this after function called so for specific userr, not in gr.State() that occurs during app init - assert db1 is not None and len(db1) == 2 - if db1[1] is None: - # uuid in db is used as user ID - db1[1] = str(uuid.uuid4()) - - -def update_user_db(file, db1s, selection_docs_state1, chunk, chunk_size, langchain_mode, dbs=None, **kwargs): - kwargs.update(selection_docs_state1) - if file is None: - raise RuntimeError("Don't use change, use input") - - try: - return _update_user_db(file, db1s=db1s, chunk=chunk, chunk_size=chunk_size, - langchain_mode=langchain_mode, dbs=dbs, - **kwargs) - except BaseException as e: - print(traceback.format_exc(), flush=True) - # gradio has issues if except, so fail semi-gracefully, else would hang forever in processing textbox - ex_str = "Exception: %s" % str(e) - source_files_added = """\ - - -

- Sources:
-

-
- {0} -
- - - """.format(ex_str) - doc_exception_text = str(e) - return None, langchain_mode, source_files_added, doc_exception_text - finally: - clear_torch_cache() - - -def get_lock_file(db1, langchain_mode): - set_userid(db1) - assert len(db1) == 2 and db1[1] is not None and isinstance(db1[1], str) - user_id = db1[1] - base_path = 'locks' - makedirs(base_path) - lock_file = os.path.join(base_path, "db_%s_%s.lock" % (langchain_mode.replace(' ', '_'), user_id)) - return lock_file - - -def _update_user_db(file, - db1s=None, - chunk=None, chunk_size=None, - dbs=None, db_type=None, - langchain_mode='UserData', - langchain_modes=None, # unused but required as part of selection_docs_state1 - langchain_mode_paths=None, - visible_langchain_modes=None, - use_openai_embedding=None, - hf_embedding_model=None, - caption_loader=None, - enable_captions=None, - captions_model=None, - enable_ocr=None, - enable_pdf_ocr=None, - verbose=None, - n_jobs=-1, - is_url=None, is_txt=None, - ): - assert db1s is not None - assert chunk is not None - assert chunk_size is not None - assert use_openai_embedding is not None - assert hf_embedding_model is not None - assert caption_loader is not None - assert enable_captions is not None - assert captions_model is not None - assert enable_ocr is not None - assert enable_pdf_ocr is not None - assert verbose is not None - - if dbs is None: - dbs = {} - assert isinstance(dbs, dict), "Wrong type for dbs: %s" % str(type(dbs)) - # assert db_type in ['faiss', 'chroma'], "db_type %s not supported" % db_type - from gpt_langchain import add_to_db, get_db, path_to_docs - # handle case of list of temp buffer - if isinstance(file, list) and len(file) > 0 and hasattr(file[0], 'name'): - file = [x.name for x in file] - # handle single file of temp buffer - if hasattr(file, 'name'): - file = file.name - if not isinstance(file, (list, tuple, typing.Generator)) and isinstance(file, str): - file = [file] - - if langchain_mode == LangChainMode.DISABLED.value: - return None, langchain_mode, get_source_files(), "" - - if langchain_mode in [LangChainMode.LLM.value]: - # then switch to MyData, so langchain_mode also becomes way to select where upload goes - # but default to mydata if nothing chosen, since safest - if LangChainMode.MY_DATA.value in visible_langchain_modes: - langchain_mode = LangChainMode.MY_DATA.value - - if langchain_mode_paths is None: - langchain_mode_paths = {} - user_path = langchain_mode_paths.get(langchain_mode) - # UserData or custom, which has to be from user's disk - if user_path is not None: - # move temp files from gradio upload to stable location - for fili, fil in enumerate(file): - if isinstance(fil, str) and os.path.isfile(fil): # not url, text - new_fil = os.path.normpath(os.path.join(user_path, os.path.basename(fil))) - if os.path.normpath(os.path.abspath(fil)) != os.path.normpath(os.path.abspath(new_fil)): - if os.path.isfile(new_fil): - remove(new_fil) - try: - shutil.move(fil, new_fil) - except FileExistsError: - pass - file[fili] = new_fil - - if verbose: - print("Adding %s" % file, flush=True) - sources = path_to_docs(file if not is_url and not is_txt else None, - verbose=verbose, - n_jobs=n_jobs, - chunk=chunk, chunk_size=chunk_size, - url=file if is_url else None, - text=file if is_txt else None, - enable_captions=enable_captions, - captions_model=captions_model, - enable_ocr=enable_ocr, - enable_pdf_ocr=enable_pdf_ocr, - caption_loader=caption_loader, - ) - exceptions = [x for x in sources if x.metadata.get('exception')] - exceptions_strs = [x.metadata['exception'] for x in exceptions] - sources = [x for x in sources if 'exception' not in x.metadata] - - # below must at least come after langchain_mode is modified in case was LLM -> MyData, - # so original langchain mode changed - for k in db1s: - set_userid(db1s[k]) - db1 = get_db1(db1s, langchain_mode) - - lock_file = get_lock_file(db1s[LangChainMode.MY_DATA.value], langchain_mode) # user-level lock, not db-level lock - with filelock.FileLock(lock_file): - if langchain_mode in db1s: - if db1[0] is not None: - # then add - db, num_new_sources, new_sources_metadata = add_to_db(db1[0], sources, db_type=db_type, - use_openai_embedding=use_openai_embedding, - hf_embedding_model=hf_embedding_model) - else: - # in testing expect: - # assert len(db1) == 2 and db1[1] is None, "Bad MyData db: %s" % db1 - # for production hit, when user gets clicky: - assert len(db1) == 2, "Bad %s db: %s" % (langchain_mode, db1) - assert db1[1] is not None, "db hash was None, not allowed" - # then create - # if added has to original state and didn't change, then would be shared db for all users - persist_directory = os.path.join(scratch_base_dir, 'db_dir_%s_%s' % (langchain_mode, db1[1])) - db = get_db(sources, use_openai_embedding=use_openai_embedding, - db_type=db_type, - persist_directory=persist_directory, - langchain_mode=langchain_mode, - hf_embedding_model=hf_embedding_model) - if db is not None: - db1[0] = db - source_files_added = get_source_files(db=db1[0], exceptions=exceptions) - return None, langchain_mode, source_files_added, '\n'.join(exceptions_strs) - else: - from gpt_langchain import get_persist_directory - persist_directory = get_persist_directory(langchain_mode) - if langchain_mode in dbs and dbs[langchain_mode] is not None: - # then add - db, num_new_sources, new_sources_metadata = add_to_db(dbs[langchain_mode], sources, db_type=db_type, - use_openai_embedding=use_openai_embedding, - hf_embedding_model=hf_embedding_model) - else: - # then create. Or might just be that dbs is unfilled, then it will fill, then add - db = get_db(sources, use_openai_embedding=use_openai_embedding, - db_type=db_type, - persist_directory=persist_directory, - langchain_mode=langchain_mode, - hf_embedding_model=hf_embedding_model) - dbs[langchain_mode] = db - # NOTE we do not return db, because function call always same code path - # return dbs[langchain_mode] - # db in this code path is updated in place - source_files_added = get_source_files(db=dbs[langchain_mode], exceptions=exceptions) - return None, langchain_mode, source_files_added, '\n'.join(exceptions_strs) - - -def get_db(db1s, langchain_mode, dbs=None): - db1 = get_db1(db1s, langchain_mode) - lock_file = get_lock_file(db1s[LangChainMode.MY_DATA.value], langchain_mode) - - with filelock.FileLock(lock_file): - if langchain_mode in ['wiki_full']: - # NOTE: avoid showing full wiki. Takes about 30 seconds over about 90k entries, but not useful for now - db = None - elif langchain_mode in db1s and len(db1) == 2 and db1[0] is not None: - db = db1[0] - elif dbs is not None and langchain_mode in dbs and dbs[langchain_mode] is not None: - db = dbs[langchain_mode] - else: - db = None - return db - - -def get_source_files_given_langchain_mode(db1s, langchain_mode='UserData', dbs=None): - db = get_db(db1s, langchain_mode, dbs=dbs) - if langchain_mode in ['LLM'] or db is None: - return "Sources: N/A" - return get_source_files(db=db, exceptions=None) - - -def get_source_files(db=None, exceptions=None, metadatas=None): - if exceptions is None: - exceptions = [] - - # only should be one source, not confused - # assert db is not None or metadatas is not None - # clicky user - if db is None and metadatas is None: - return "No Sources at all" - - if metadatas is None: - source_label = "Sources:" - if db is not None: - from gpt_langchain import get_metadatas - metadatas = get_metadatas(db) - else: - metadatas = [] - adding_new = False - else: - source_label = "New Sources:" - adding_new = True - - # below automatically de-dups - from gpt_langchain import get_url - small_dict = {get_url(x['source'], from_str=True, short_name=True): get_short_name(x.get('head')) for x in - metadatas} - # if small_dict is empty dict, that's ok - df = pd.DataFrame(small_dict.items(), columns=['source', 'head']) - df.index = df.index + 1 - df.index.name = 'index' - source_files_added = tabulate.tabulate(df, headers='keys', tablefmt='unsafehtml') - - if exceptions: - exception_metadatas = [x.metadata for x in exceptions] - small_dict = {get_url(x['source'], from_str=True, short_name=True): get_short_name(x.get('exception')) for x in - exception_metadatas} - # if small_dict is empty dict, that's ok - df = pd.DataFrame(small_dict.items(), columns=['source', 'exception']) - df.index = df.index + 1 - df.index.name = 'index' - exceptions_html = tabulate.tabulate(df, headers='keys', tablefmt='unsafehtml') - else: - exceptions_html = '' - - if metadatas and exceptions: - source_files_added = """\ - - -

- {0}
-

-
- {1} - {2} -
- - - """.format(source_label, source_files_added, exceptions_html) - elif metadatas: - source_files_added = """\ - - -

- {0}
-

-
- {1} -
- - - """.format(source_label, source_files_added) - elif exceptions_html: - source_files_added = """\ - - -

- Exceptions:
-

-
- {0} -
- - - """.format(exceptions_html) - else: - if adding_new: - source_files_added = "No New Sources" - else: - source_files_added = "No Sources" - - return source_files_added - - -def update_and_get_source_files_given_langchain_mode(db1s, langchain_mode, chunk, chunk_size, - dbs=None, first_para=None, - text_limit=None, - langchain_mode_paths=None, db_type=None, load_db_if_exists=None, - n_jobs=None, verbose=None): - has_path = {k: v for k, v in langchain_mode_paths.items() if v} - if langchain_mode in [LangChainMode.LLM.value, LangChainMode.MY_DATA.value]: - # then assume user really meant UserData, to avoid extra clicks in UI, - # since others can't be on disk, except custom user modes, which they should then select to query it - if LangChainMode.USER_DATA.value in has_path: - langchain_mode = LangChainMode.USER_DATA.value - - db = get_db(db1s, langchain_mode, dbs=dbs) - - from gpt_langchain import make_db - db, num_new_sources, new_sources_metadata = make_db(use_openai_embedding=False, - hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2", - first_para=first_para, text_limit=text_limit, - chunk=chunk, - chunk_size=chunk_size, - langchain_mode=langchain_mode, - langchain_mode_paths=langchain_mode_paths, - db_type=db_type, - load_db_if_exists=load_db_if_exists, - db=db, - n_jobs=n_jobs, - verbose=verbose) - # during refreshing, might have "created" new db since not in dbs[] yet, so insert back just in case - # so even if persisted, not kept up-to-date with dbs memory - if langchain_mode in db1s: - db1s[langchain_mode][0] = db - else: - dbs[langchain_mode] = db - - # return only new sources with text saying such - return get_source_files(db=None, exceptions=None, metadatas=new_sources_metadata) - - -def get_db1(db1s, langchain_mode1): - if langchain_mode1 in db1s: - db1 = db1s[langchain_mode1] - else: - # indicates to code that not scratch database - db1 = [None, None] - return db1