diff --git "a/src/gpt_langchain.py" "b/src/gpt_langchain.py"
new file mode 100644--- /dev/null
+++ "b/src/gpt_langchain.py"
@@ -0,0 +1,5394 @@
+import ast
+import asyncio
+import copy
+import functools
+import glob
+import gzip
+import inspect
+import json
+import os
+import pathlib
+import pickle
+import shutil
+import subprocess
+import tempfile
+import time
+import traceback
+import types
+import typing
+import urllib.error
+import uuid
+import zipfile
+from collections import defaultdict
+from datetime import datetime
+from functools import reduce
+from operator import concat
+import filelock
+import tabulate
+import yaml
+
+from joblib import delayed
+from langchain.callbacks import streaming_stdout
+from langchain.embeddings import HuggingFaceInstructEmbeddings
+from langchain.llms.huggingface_pipeline import VALID_TASKS
+from langchain.llms.utils import enforce_stop_tokens
+from langchain.schema import LLMResult, Generation
+from langchain.tools import PythonREPLTool
+from langchain.tools.json.tool import JsonSpec
+from tqdm import tqdm
+
+from src.db_utils import length_db1, set_dbid, set_userid, get_dbid, get_userid_direct, get_username_direct, \
+ set_userid_direct
+from utils import wrapped_partial, EThread, import_matplotlib, sanitize_filename, makedirs, get_url, flatten_list, \
+ get_device, ProgressParallel, remove, hash_file, clear_torch_cache, NullContext, get_hf_server, FakeTokenizer, \
+ have_libreoffice, have_arxiv, have_playwright, have_selenium, have_tesseract, have_doctr, have_pymupdf, set_openai, \
+ get_list_or_str, have_pillow, only_selenium, only_playwright, only_unstructured_urls, get_sha, get_short_name, \
+ get_accordion, have_jq, get_doc, get_source, have_chromamigdb, get_token_count, reverse_ucurve_list
+from enums import DocumentSubset, no_lora_str, model_token_mapping, source_prefix, source_postfix, non_query_commands, \
+ LangChainAction, LangChainMode, DocumentChoice, LangChainTypes, font_size, head_acc, super_source_prefix, \
+ super_source_postfix, langchain_modes_intrinsic, get_langchain_prompts, LangChainAgent
+from evaluate_params import gen_hyper, gen_hyper0
+from gen import get_model, SEED, get_limited_prompt, get_docs_tokens
+from prompter import non_hf_types, PromptType, Prompter
+from src.serpapi import H2OSerpAPIWrapper
+from utils_langchain import StreamingGradioCallbackHandler, _chunk_sources, _add_meta, add_parser, fix_json_meta
+
+import_matplotlib()
+
+import numpy as np
+import pandas as pd
+import requests
+from langchain.chains.qa_with_sources import load_qa_with_sources_chain
+# , GCSDirectoryLoader, GCSFileLoader
+# , OutlookMessageLoader # GPL3
+# ImageCaptionLoader, # use our own wrapper
+# ReadTheDocsLoader, # no special file, some path, so have to give as special option
+from langchain.document_loaders import PyPDFLoader, TextLoader, CSVLoader, PythonLoader, TomlLoader, \
+ UnstructuredURLLoader, UnstructuredHTMLLoader, UnstructuredWordDocumentLoader, UnstructuredMarkdownLoader, \
+ EverNoteLoader, UnstructuredEmailLoader, UnstructuredODTLoader, UnstructuredPowerPointLoader, \
+ UnstructuredEPubLoader, UnstructuredImageLoader, UnstructuredRTFLoader, ArxivLoader, UnstructuredPDFLoader, \
+ UnstructuredExcelLoader, JSONLoader
+from langchain.text_splitter import Language
+from langchain.chains.question_answering import load_qa_chain
+from langchain.docstore.document import Document
+from langchain import PromptTemplate, HuggingFaceTextGenInference, HuggingFacePipeline
+from langchain.vectorstores import Chroma
+from chromamig import ChromaMig
+
+
+def split_list(input_list, split_size):
+ for i in range(0, len(input_list), split_size):
+ yield input_list[i:i + split_size]
+
+
+def get_db(sources, use_openai_embedding=False, db_type='faiss',
+ persist_directory=None, load_db_if_exists=True,
+ langchain_mode='notset',
+ langchain_mode_paths={},
+ langchain_mode_types={},
+ collection_name=None,
+ hf_embedding_model=None,
+ migrate_embedding_model=False,
+ auto_migrate_db=False,
+ n_jobs=-1):
+ if not sources:
+ return None
+ user_path = langchain_mode_paths.get(langchain_mode)
+ if persist_directory is None:
+ langchain_type = langchain_mode_types.get(langchain_mode, LangChainTypes.EITHER.value)
+ persist_directory, langchain_type = get_persist_directory(langchain_mode, langchain_type=langchain_type)
+ langchain_mode_types[langchain_mode] = langchain_type
+ assert hf_embedding_model is not None
+
+ # get freshly-determined embedding model
+ embedding = get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model)
+ assert collection_name is not None or langchain_mode != 'notset'
+ if collection_name is None:
+ collection_name = langchain_mode.replace(' ', '_')
+
+ # Create vector database
+ if db_type == 'faiss':
+ from langchain.vectorstores import FAISS
+ db = FAISS.from_documents(sources, embedding)
+ elif db_type == 'weaviate':
+ import weaviate
+ from weaviate.embedded import EmbeddedOptions
+ from langchain.vectorstores import Weaviate
+
+ if os.getenv('WEAVIATE_URL', None):
+ client = _create_local_weaviate_client()
+ else:
+ client = weaviate.Client(
+ embedded_options=EmbeddedOptions(persistence_data_path=persist_directory)
+ )
+ index_name = collection_name.capitalize()
+ db = Weaviate.from_documents(documents=sources, embedding=embedding, client=client, by_text=False,
+ index_name=index_name)
+ elif db_type in ['chroma', 'chroma_old']:
+ assert persist_directory is not None
+ # use_base already handled when making persist_directory, unless was passed into get_db()
+ makedirs(persist_directory, exist_ok=True)
+
+ # see if already actually have persistent db, and deal with possible changes in embedding
+ db, use_openai_embedding, hf_embedding_model = \
+ get_existing_db(None, persist_directory, load_db_if_exists, db_type,
+ use_openai_embedding,
+ langchain_mode, langchain_mode_paths, langchain_mode_types,
+ hf_embedding_model, migrate_embedding_model, auto_migrate_db,
+ verbose=False,
+ n_jobs=n_jobs)
+ if db is None:
+ import logging
+ logging.getLogger("chromadb").setLevel(logging.ERROR)
+ if db_type == 'chroma':
+ from chromadb.config import Settings
+ settings_extra_kwargs = dict(is_persistent=True)
+ else:
+ from chromamigdb.config import Settings
+ settings_extra_kwargs = dict(chroma_db_impl="duckdb+parquet")
+ client_settings = Settings(anonymized_telemetry=False,
+ persist_directory=persist_directory,
+ **settings_extra_kwargs)
+ if n_jobs in [None, -1]:
+ n_jobs = int(os.getenv('OMP_NUM_THREADS', str(os.cpu_count() // 2)))
+ num_threads = max(1, min(n_jobs, 8))
+ else:
+ num_threads = max(1, n_jobs)
+ collection_metadata = {"hnsw:num_threads": num_threads}
+ from_kwargs = dict(embedding=embedding,
+ persist_directory=persist_directory,
+ collection_name=collection_name,
+ client_settings=client_settings,
+ collection_metadata=collection_metadata)
+ if db_type == 'chroma':
+ import chromadb
+ api = chromadb.PersistentClient(path=persist_directory)
+ max_batch_size = api._producer.max_batch_size
+ sources_batches = split_list(sources, max_batch_size)
+ for sources_batch in sources_batches:
+ db = Chroma.from_documents(documents=sources_batch, **from_kwargs)
+ db.persist()
+ else:
+ db = ChromaMig.from_documents(documents=sources, **from_kwargs)
+ clear_embedding(db)
+ save_embed(db, use_openai_embedding, hf_embedding_model)
+ else:
+ # then just add
+ # doesn't check or change embedding, just saves it in case not saved yet, after persisting
+ db, num_new_sources, new_sources_metadata = add_to_db(db, sources, db_type=db_type,
+ use_openai_embedding=use_openai_embedding,
+ hf_embedding_model=hf_embedding_model)
+ else:
+ raise RuntimeError("No such db_type=%s" % db_type)
+
+ # once here, db is not changing and embedding choices in calling functions does not matter
+ return db
+
+
+def _get_unique_sources_in_weaviate(db):
+ batch_size = 100
+ id_source_list = []
+ result = db._client.data_object.get(class_name=db._index_name, limit=batch_size)
+
+ while result['objects']:
+ id_source_list += [(obj['id'], obj['properties']['source']) for obj in result['objects']]
+ last_id = id_source_list[-1][0]
+ result = db._client.data_object.get(class_name=db._index_name, limit=batch_size, after=last_id)
+
+ unique_sources = {source for _, source in id_source_list}
+ return unique_sources
+
+
+def del_from_db(db, sources, db_type=None):
+ if db_type in ['chroma', 'chroma_old'] and db is not None:
+ # sources should be list of x.metadata['source'] from document metadatas
+ if isinstance(sources, str):
+ sources = [sources]
+ else:
+ assert isinstance(sources, (list, tuple, types.GeneratorType))
+ metadatas = set(sources)
+ client_collection = db._client.get_collection(name=db._collection.name,
+ embedding_function=db._collection._embedding_function)
+ for source in metadatas:
+ meta = dict(source=source)
+ try:
+ client_collection.delete(where=meta)
+ except KeyError:
+ pass
+
+
+def add_to_db(db, sources, db_type='faiss',
+ avoid_dup_by_file=False,
+ avoid_dup_by_content=True,
+ use_openai_embedding=False,
+ hf_embedding_model=None):
+ assert hf_embedding_model is not None
+ num_new_sources = len(sources)
+ if not sources:
+ return db, num_new_sources, []
+ if db_type == 'faiss':
+ db.add_documents(sources)
+ elif db_type == 'weaviate':
+ # FIXME: only control by file name, not hash yet
+ if avoid_dup_by_file or avoid_dup_by_content:
+ unique_sources = _get_unique_sources_in_weaviate(db)
+ sources = [x for x in sources if x.metadata['source'] not in unique_sources]
+ num_new_sources = len(sources)
+ if num_new_sources == 0:
+ return db, num_new_sources, []
+ db.add_documents(documents=sources)
+ elif db_type in ['chroma', 'chroma_old']:
+ collection = get_documents(db)
+ # files we already have:
+ metadata_files = set([x['source'] for x in collection['metadatas']])
+ if avoid_dup_by_file:
+ # Too weak in case file changed content, assume parent shouldn't pass true for this for now
+ raise RuntimeError("Not desired code path")
+ if avoid_dup_by_content:
+ # look at hash, instead of page_content
+ # migration: If no hash previously, avoid updating,
+ # since don't know if need to update and may be expensive to redo all unhashed files
+ metadata_hash_ids = set(
+ [x['hashid'] for x in collection['metadatas'] if 'hashid' in x and x['hashid'] not in ["None", None]])
+ # avoid sources with same hash
+ sources = [x for x in sources if x.metadata.get('hashid') not in metadata_hash_ids]
+ num_nohash = len([x for x in sources if not x.metadata.get('hashid')])
+ print("Found %s new sources (%d have no hash in original source,"
+ " so have to reprocess for migration to sources with hash)" % (len(sources), num_nohash), flush=True)
+ # get new file names that match existing file names. delete existing files we are overridding
+ dup_metadata_files = set([x.metadata['source'] for x in sources if x.metadata['source'] in metadata_files])
+ print("Removing %s duplicate files from db because ingesting those as new documents" % len(
+ dup_metadata_files), flush=True)
+ client_collection = db._client.get_collection(name=db._collection.name,
+ embedding_function=db._collection._embedding_function)
+ for dup_file in dup_metadata_files:
+ dup_file_meta = dict(source=dup_file)
+ try:
+ client_collection.delete(where=dup_file_meta)
+ except KeyError:
+ pass
+ num_new_sources = len(sources)
+ if num_new_sources == 0:
+ return db, num_new_sources, []
+ if hasattr(db, '_persist_directory'):
+ print("Existing db, adding to %s" % db._persist_directory, flush=True)
+ # chroma only
+ lock_file = get_db_lock_file(db)
+ context = filelock.FileLock
+ else:
+ lock_file = None
+ context = NullContext
+ with context(lock_file):
+ # this is place where add to db, but others maybe accessing db, so lock access.
+ # else see RuntimeError: Index seems to be corrupted or unsupported
+ import chromadb
+ api = chromadb.PersistentClient(path=db._persist_directory)
+ max_batch_size = api._producer.max_batch_size
+ sources_batches = split_list(sources, max_batch_size)
+ for sources_batch in sources_batches:
+ db.add_documents(documents=sources_batch)
+ db.persist()
+ clear_embedding(db)
+ # save here is for migration, in case old db directory without embedding saved
+ save_embed(db, use_openai_embedding, hf_embedding_model)
+ else:
+ raise RuntimeError("No such db_type=%s" % db_type)
+
+ new_sources_metadata = [x.metadata for x in sources]
+
+ return db, num_new_sources, new_sources_metadata
+
+
+def create_or_update_db(db_type, persist_directory, collection_name,
+ user_path, langchain_type,
+ sources, use_openai_embedding, add_if_exists, verbose,
+ hf_embedding_model, migrate_embedding_model, auto_migrate_db,
+ n_jobs=-1):
+ if not os.path.isdir(persist_directory) or not add_if_exists:
+ if os.path.isdir(persist_directory):
+ if verbose:
+ print("Removing %s" % persist_directory, flush=True)
+ remove(persist_directory)
+ if verbose:
+ print("Generating db", flush=True)
+ if db_type == 'weaviate':
+ import weaviate
+ from weaviate.embedded import EmbeddedOptions
+
+ if os.getenv('WEAVIATE_URL', None):
+ client = _create_local_weaviate_client()
+ else:
+ client = weaviate.Client(
+ embedded_options=EmbeddedOptions(persistence_data_path=persist_directory)
+ )
+
+ index_name = collection_name.replace(' ', '_').capitalize()
+ if client.schema.exists(index_name) and not add_if_exists:
+ client.schema.delete_class(index_name)
+ if verbose:
+ print("Removing %s" % index_name, flush=True)
+ elif db_type in ['chroma', 'chroma_old']:
+ pass
+
+ if not add_if_exists:
+ if verbose:
+ print("Generating db", flush=True)
+ else:
+ if verbose:
+ print("Loading and updating db", flush=True)
+
+ db = get_db(sources,
+ use_openai_embedding=use_openai_embedding,
+ db_type=db_type,
+ persist_directory=persist_directory,
+ langchain_mode=collection_name,
+ langchain_mode_paths={collection_name: user_path},
+ langchain_mode_types={collection_name: langchain_type},
+ hf_embedding_model=hf_embedding_model,
+ migrate_embedding_model=migrate_embedding_model,
+ auto_migrate_db=auto_migrate_db,
+ n_jobs=n_jobs)
+
+ return db
+
+
+from langchain.embeddings import FakeEmbeddings
+
+
+class H2OFakeEmbeddings(FakeEmbeddings):
+ """Fake embedding model, but constant instead of random"""
+
+ size: int
+ """The size of the embedding vector."""
+
+ def _get_embedding(self) -> typing.List[float]:
+ return [1] * self.size
+
+ def embed_documents(self, texts: typing.List[str]) -> typing.List[typing.List[float]]:
+ return [self._get_embedding() for _ in texts]
+
+ def embed_query(self, text: str) -> typing.List[float]:
+ return self._get_embedding()
+
+
+def get_embedding(use_openai_embedding, hf_embedding_model=None, preload=False):
+ assert hf_embedding_model is not None
+ # Get embedding model
+ if use_openai_embedding:
+ assert os.getenv("OPENAI_API_KEY") is not None, "Set ENV OPENAI_API_KEY"
+ from langchain.embeddings import OpenAIEmbeddings
+ embedding = OpenAIEmbeddings(disallowed_special=())
+ elif hf_embedding_model == 'fake':
+ embedding = H2OFakeEmbeddings(size=1)
+ else:
+ if isinstance(hf_embedding_model, str):
+ pass
+ elif isinstance(hf_embedding_model, dict):
+ # embedding itself preloaded globally
+ return hf_embedding_model['model']
+ else:
+ # object
+ return hf_embedding_model
+ # to ensure can fork without deadlock
+ from langchain.embeddings import HuggingFaceEmbeddings
+
+ device, torch_dtype, context_class = get_device_dtype()
+ model_kwargs = dict(device=device)
+ if 'instructor' in hf_embedding_model:
+ encode_kwargs = {'normalize_embeddings': True}
+ embedding = HuggingFaceInstructEmbeddings(model_name=hf_embedding_model,
+ model_kwargs=model_kwargs,
+ encode_kwargs=encode_kwargs)
+ else:
+ embedding = HuggingFaceEmbeddings(model_name=hf_embedding_model, model_kwargs=model_kwargs)
+ embedding.client.preload = preload
+ return embedding
+
+
+def get_answer_from_sources(chain, sources, question):
+ return chain(
+ {
+ "input_documents": sources,
+ "question": question,
+ },
+ return_only_outputs=True,
+ )["output_text"]
+
+
+"""Wrapper around Huggingface text generation inference API."""
+from functools import partial
+from typing import Any, Dict, List, Optional, Set, Iterable
+
+from pydantic import Extra, Field, root_validator
+
+from langchain.callbacks.manager import CallbackManagerForLLMRun, AsyncCallbackManagerForLLMRun
+from langchain.llms.base import LLM
+
+
+class GradioInference(LLM):
+ """
+ Gradio generation inference API.
+ """
+ inference_server_url: str = ""
+
+ temperature: float = 0.8
+ top_p: Optional[float] = 0.95
+ top_k: Optional[int] = None
+ num_beams: Optional[int] = 1
+ max_new_tokens: int = 512
+ min_new_tokens: int = 1
+ early_stopping: bool = False
+ max_time: int = 180
+ repetition_penalty: Optional[float] = None
+ num_return_sequences: Optional[int] = 1
+ do_sample: bool = False
+ chat_client: bool = False
+
+ return_full_text: bool = False
+ stream_output: bool = False
+ sanitize_bot_response: bool = False
+
+ prompter: Any = None
+ context: Any = ''
+ iinput: Any = ''
+ client: Any = None
+ tokenizer: Any = None
+
+ system_prompt: Any = None
+ visible_models: Any = None
+ h2ogpt_key: Any = None
+
+ count_input_tokens: Any = 0
+ count_output_tokens: Any = 0
+
+ min_max_new_tokens: Any = 256
+
+ class Config:
+ """Configuration for this pydantic object."""
+
+ extra = Extra.forbid
+
+ @root_validator()
+ def validate_environment(cls, values: Dict) -> Dict:
+ """Validate that python package exists in environment."""
+
+ try:
+ if values['client'] is None:
+ import gradio_client
+ values["client"] = gradio_client.Client(
+ values["inference_server_url"]
+ )
+ except ImportError:
+ raise ImportError(
+ "Could not import gradio_client python package. "
+ "Please install it with `pip install gradio_client`."
+ )
+ return values
+
+ @property
+ def _llm_type(self) -> str:
+ """Return type of llm."""
+ return "gradio_inference"
+
+ def _call(
+ self,
+ prompt: str,
+ stop: Optional[List[str]] = None,
+ run_manager: Optional[CallbackManagerForLLMRun] = None,
+ **kwargs: Any,
+ ) -> str:
+ # NOTE: prompt here has no prompt_type (e.g. human: bot:) prompt injection,
+ # so server should get prompt_type or '', not plain
+ # This is good, so gradio server can also handle stopping.py conditions
+ # this is different than TGI server that uses prompter to inject prompt_type prompting
+ stream_output = self.stream_output
+ gr_client = self.client
+ client_langchain_mode = 'Disabled'
+ client_add_chat_history_to_context = True
+ client_add_search_to_context = False
+ client_chat_conversation = []
+ client_langchain_action = LangChainAction.QUERY.value
+ client_langchain_agents = []
+ top_k_docs = 1
+ chunk = True
+ chunk_size = 512
+ client_kwargs = dict(instruction=prompt if self.chat_client else '', # only for chat=True
+ iinput=self.iinput if self.chat_client else '', # only for chat=True
+ context=self.context,
+ # streaming output is supported, loops over and outputs each generation in streaming mode
+ # but leave stream_output=False for simple input/output mode
+ stream_output=stream_output,
+ prompt_type=self.prompter.prompt_type,
+ prompt_dict='',
+
+ temperature=self.temperature,
+ top_p=self.top_p,
+ top_k=self.top_k,
+ num_beams=self.num_beams,
+ max_new_tokens=self.max_new_tokens,
+ min_new_tokens=self.min_new_tokens,
+ early_stopping=self.early_stopping,
+ max_time=self.max_time,
+ repetition_penalty=self.repetition_penalty,
+ num_return_sequences=self.num_return_sequences,
+ do_sample=self.do_sample,
+ chat=self.chat_client,
+
+ instruction_nochat=prompt if not self.chat_client else '',
+ iinput_nochat=self.iinput if not self.chat_client else '',
+ langchain_mode=client_langchain_mode,
+ add_chat_history_to_context=client_add_chat_history_to_context,
+ langchain_action=client_langchain_action,
+ langchain_agents=client_langchain_agents,
+ top_k_docs=top_k_docs,
+ chunk=chunk,
+ chunk_size=chunk_size,
+ document_subset=DocumentSubset.Relevant.name,
+ document_choice=[DocumentChoice.ALL.value],
+ pre_prompt_query=None,
+ prompt_query=None,
+ pre_prompt_summary=None,
+ prompt_summary=None,
+ system_prompt=self.system_prompt,
+ image_loaders=None, # don't need to further do doc specific things
+ pdf_loaders=None, # don't need to further do doc specific things
+ url_loaders=None, # don't need to further do doc specific things
+ jq_schema=None, # don't need to further do doc specific things
+ visible_models=self.visible_models,
+ h2ogpt_key=self.h2ogpt_key,
+ add_search_to_context=client_add_search_to_context,
+ chat_conversation=client_chat_conversation,
+ text_context_list=None,
+ docs_ordering_type=None,
+ min_max_new_tokens=self.min_max_new_tokens,
+ )
+ api_name = '/submit_nochat_api' # NOTE: like submit_nochat but stable API for string dict passing
+ self.count_input_tokens += self.get_num_tokens(prompt)
+
+ if not stream_output:
+ res = gr_client.predict(str(dict(client_kwargs)), api_name=api_name)
+ res_dict = ast.literal_eval(res)
+ text = res_dict['response']
+ ret = self.prompter.get_response(prompt + text, prompt=prompt,
+ sanitize_bot_response=self.sanitize_bot_response)
+ self.count_output_tokens += self.get_num_tokens(ret)
+ return ret
+ else:
+ text_callback = None
+ if run_manager:
+ text_callback = partial(
+ run_manager.on_llm_new_token, verbose=self.verbose
+ )
+
+ job = gr_client.submit(str(dict(client_kwargs)), api_name=api_name)
+ text0 = ''
+ while not job.done():
+ if job.communicator.job.latest_status.code.name == 'FINISHED':
+ break
+ e = job.future._exception
+ if e is not None:
+ break
+ outputs_list = job.communicator.job.outputs
+ if outputs_list:
+ res = job.communicator.job.outputs[-1]
+ res_dict = ast.literal_eval(res)
+ text = res_dict['response']
+ text = self.prompter.get_response(prompt + text, prompt=prompt,
+ sanitize_bot_response=self.sanitize_bot_response)
+ # FIXME: derive chunk from full for now
+ text_chunk = text[len(text0):]
+ if not text_chunk:
+ continue
+ # save old
+ text0 = text
+
+ if text_callback:
+ text_callback(text_chunk)
+
+ time.sleep(0.01)
+
+ # ensure get last output to avoid race
+ res_all = job.outputs()
+ if len(res_all) > 0:
+ res = res_all[-1]
+ res_dict = ast.literal_eval(res)
+ text = res_dict['response']
+ # FIXME: derive chunk from full for now
+ else:
+ # go with old if failure
+ text = text0
+ text_chunk = text[len(text0):]
+ if text_callback:
+ text_callback(text_chunk)
+ ret = self.prompter.get_response(prompt + text, prompt=prompt,
+ sanitize_bot_response=self.sanitize_bot_response)
+ self.count_output_tokens += self.get_num_tokens(ret)
+ return ret
+
+ def get_token_ids(self, text: str) -> List[int]:
+ return self.tokenizer.encode(text)
+ # avoid base method that is not aware of how to properly tokenize (uses GPT2)
+ # return _get_token_ids_default_method(text)
+
+
+class H2OHuggingFaceTextGenInference(HuggingFaceTextGenInference):
+ max_new_tokens: int = 512
+ do_sample: bool = False
+ top_k: Optional[int] = None
+ top_p: Optional[float] = 0.95
+ typical_p: Optional[float] = 0.95
+ temperature: float = 0.8
+ repetition_penalty: Optional[float] = None
+ return_full_text: bool = False
+ stop_sequences: List[str] = Field(default_factory=list)
+ seed: Optional[int] = None
+ inference_server_url: str = ""
+ timeout: int = 300
+ headers: dict = None
+ stream_output: bool = False
+ sanitize_bot_response: bool = False
+ prompter: Any = None
+ context: Any = ''
+ iinput: Any = ''
+ tokenizer: Any = None
+ async_sem: Any = None
+ count_input_tokens: Any = 0
+ count_output_tokens: Any = 0
+
+ def _call(
+ self,
+ prompt: str,
+ stop: Optional[List[str]] = None,
+ run_manager: Optional[CallbackManagerForLLMRun] = None,
+ **kwargs: Any,
+ ) -> str:
+ if stop is None:
+ stop = self.stop_sequences.copy()
+ else:
+ stop += self.stop_sequences.copy()
+ stop_tmp = stop.copy()
+ stop = []
+ [stop.append(x) for x in stop_tmp if x not in stop]
+
+ # HF inference server needs control over input tokens
+ assert self.tokenizer is not None
+ from h2oai_pipeline import H2OTextGenerationPipeline
+ prompt, num_prompt_tokens = H2OTextGenerationPipeline.limit_prompt(prompt, self.tokenizer)
+
+ # NOTE: TGI server does not add prompting, so must do here
+ data_point = dict(context=self.context, instruction=prompt, input=self.iinput)
+ prompt = self.prompter.generate_prompt(data_point)
+ self.count_input_tokens += self.get_num_tokens(prompt)
+
+ gen_server_kwargs = dict(do_sample=self.do_sample,
+ stop_sequences=stop,
+ max_new_tokens=self.max_new_tokens,
+ top_k=self.top_k,
+ top_p=self.top_p,
+ typical_p=self.typical_p,
+ temperature=self.temperature,
+ repetition_penalty=self.repetition_penalty,
+ return_full_text=self.return_full_text,
+ seed=self.seed,
+ )
+ gen_server_kwargs.update(kwargs)
+
+ # lower bound because client is re-used if multi-threading
+ self.client.timeout = max(300, self.timeout)
+
+ if not self.stream_output:
+ res = self.client.generate(
+ prompt,
+ **gen_server_kwargs,
+ )
+ if self.return_full_text:
+ gen_text = res.generated_text[len(prompt):]
+ else:
+ gen_text = res.generated_text
+ # remove stop sequences from the end of the generated text
+ for stop_seq in stop:
+ if stop_seq in gen_text:
+ gen_text = gen_text[:gen_text.index(stop_seq)]
+ text = prompt + gen_text
+ text = self.prompter.get_response(text, prompt=prompt,
+ sanitize_bot_response=self.sanitize_bot_response)
+ else:
+ text_callback = None
+ if run_manager:
+ text_callback = partial(
+ run_manager.on_llm_new_token, verbose=self.verbose
+ )
+ # parent handler of streamer expects to see prompt first else output="" and lose if prompt=None in prompter
+ if text_callback:
+ text_callback(prompt)
+ text = ""
+ # Note: Streaming ignores return_full_text=True
+ for response in self.client.generate_stream(prompt, **gen_server_kwargs):
+ text_chunk = response.token.text
+ text += text_chunk
+ text = self.prompter.get_response(prompt + text, prompt=prompt,
+ sanitize_bot_response=self.sanitize_bot_response)
+ # stream part
+ is_stop = False
+ for stop_seq in stop:
+ if stop_seq in text_chunk:
+ is_stop = True
+ break
+ if is_stop:
+ break
+ if not response.token.special:
+ if text_callback:
+ text_callback(text_chunk)
+ self.count_output_tokens += self.get_num_tokens(text)
+ return text
+
+ async def _acall(
+ self,
+ prompt: str,
+ stop: Optional[List[str]] = None,
+ run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
+ **kwargs: Any,
+ ) -> str:
+ # print("acall", flush=True)
+ if stop is None:
+ stop = self.stop_sequences.copy()
+ else:
+ stop += self.stop_sequences.copy()
+ stop_tmp = stop.copy()
+ stop = []
+ [stop.append(x) for x in stop_tmp if x not in stop]
+
+ # HF inference server needs control over input tokens
+ assert self.tokenizer is not None
+ from h2oai_pipeline import H2OTextGenerationPipeline
+ prompt, num_prompt_tokens = H2OTextGenerationPipeline.limit_prompt(prompt, self.tokenizer)
+
+ # NOTE: TGI server does not add prompting, so must do here
+ data_point = dict(context=self.context, instruction=prompt, input=self.iinput)
+ prompt = self.prompter.generate_prompt(data_point)
+
+ gen_text = await super()._acall(prompt, stop=stop, run_manager=run_manager, **kwargs)
+
+ # remove stop sequences from the end of the generated text
+ for stop_seq in stop:
+ if stop_seq in gen_text:
+ gen_text = gen_text[:gen_text.index(stop_seq)]
+ text = prompt + gen_text
+ text = self.prompter.get_response(text, prompt=prompt,
+ sanitize_bot_response=self.sanitize_bot_response)
+ # print("acall done", flush=True)
+ return text
+
+ async def _agenerate(
+ self,
+ prompts: List[str],
+ stop: Optional[List[str]] = None,
+ run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
+ **kwargs: Any,
+ ) -> LLMResult:
+ """Run the LLM on the given prompt and input."""
+ generations = []
+ new_arg_supported = inspect.signature(self._acall).parameters.get("run_manager")
+ self.count_input_tokens += sum([self.get_num_tokens(prompt) for prompt in prompts])
+ tasks = [
+ asyncio.ensure_future(self._agenerate_one(prompt, stop=stop, run_manager=run_manager,
+ new_arg_supported=new_arg_supported, **kwargs))
+ for prompt in prompts
+ ]
+ texts = await asyncio.gather(*tasks)
+ self.count_output_tokens += sum([self.get_num_tokens(text) for text in texts])
+ [generations.append([Generation(text=text)]) for text in texts]
+ return LLMResult(generations=generations)
+
+ async def _agenerate_one(
+ self,
+ prompt: str,
+ stop: Optional[List[str]] = None,
+ run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
+ new_arg_supported=None,
+ **kwargs: Any,
+ ) -> str:
+ async with self.async_sem: # semaphore limits num of simultaneous downloads
+ return await self._acall(prompt, stop=stop, run_manager=run_manager, **kwargs) \
+ if new_arg_supported else \
+ await self._acall(prompt, stop=stop, **kwargs)
+
+ def get_token_ids(self, text: str) -> List[int]:
+ return self.tokenizer.encode(text)
+ # avoid base method that is not aware of how to properly tokenize (uses GPT2)
+ # return _get_token_ids_default_method(text)
+
+
+from langchain.chat_models import ChatOpenAI, AzureChatOpenAI
+from langchain.llms import OpenAI, AzureOpenAI, Replicate
+from langchain.llms.openai import _streaming_response_template, completion_with_retry, _update_response, \
+ update_token_usage
+
+
+class H2OOpenAI(OpenAI):
+ """
+ New class to handle vLLM's use of OpenAI, no vllm_chat supported, so only need here
+ Handles prompting that OpenAI doesn't need, stopping as well
+ """
+ stop_sequences: Any = None
+ sanitize_bot_response: bool = False
+ prompter: Any = None
+ context: Any = ''
+ iinput: Any = ''
+ tokenizer: Any = None
+
+ @classmethod
+ def _all_required_field_names(cls) -> Set:
+ _all_required_field_names = super(OpenAI, cls)._all_required_field_names()
+ _all_required_field_names.update(
+ {'top_p', 'frequency_penalty', 'presence_penalty', 'stop_sequences', 'sanitize_bot_response', 'prompter',
+ 'tokenizer', 'logit_bias'})
+ return _all_required_field_names
+
+ def _generate(
+ self,
+ prompts: List[str],
+ stop: Optional[List[str]] = None,
+ run_manager: Optional[CallbackManagerForLLMRun] = None,
+ **kwargs: Any,
+ ) -> LLMResult:
+ stop_tmp = self.stop_sequences if not stop else self.stop_sequences + stop
+ stop = []
+ [stop.append(x) for x in stop_tmp if x not in stop]
+
+ # HF inference server needs control over input tokens
+ assert self.tokenizer is not None
+ from h2oai_pipeline import H2OTextGenerationPipeline
+ for prompti, prompt in enumerate(prompts):
+ prompt, num_prompt_tokens = H2OTextGenerationPipeline.limit_prompt(prompt, self.tokenizer)
+ # NOTE: OpenAI/vLLM server does not add prompting, so must do here
+ data_point = dict(context=self.context, instruction=prompt, input=self.iinput)
+ prompt = self.prompter.generate_prompt(data_point)
+ prompts[prompti] = prompt
+
+ params = self._invocation_params
+ params = {**params, **kwargs}
+ sub_prompts = self.get_sub_prompts(params, prompts, stop)
+ choices = []
+ token_usage: Dict[str, int] = {}
+ # Get the token usage from the response.
+ # Includes prompt, completion, and total tokens used.
+ _keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
+ text = ''
+ for _prompts in sub_prompts:
+ if self.streaming:
+ text_with_prompt = ""
+ prompt = _prompts[0]
+ if len(_prompts) > 1:
+ raise ValueError("Cannot stream results with multiple prompts.")
+ params["stream"] = True
+ response = _streaming_response_template()
+ first = True
+ for stream_resp in completion_with_retry(
+ self, prompt=_prompts, **params
+ ):
+ if first:
+ stream_resp["choices"][0]["text"] = prompt + stream_resp["choices"][0]["text"]
+ first = False
+ text_chunk = stream_resp["choices"][0]["text"]
+ text_with_prompt += text_chunk
+ text = self.prompter.get_response(text_with_prompt, prompt=prompt,
+ sanitize_bot_response=self.sanitize_bot_response)
+ if run_manager:
+ run_manager.on_llm_new_token(
+ text_chunk,
+ verbose=self.verbose,
+ logprobs=stream_resp["choices"][0]["logprobs"],
+ )
+ _update_response(response, stream_resp)
+ choices.extend(response["choices"])
+ else:
+ response = completion_with_retry(self, prompt=_prompts, **params)
+ choices.extend(response["choices"])
+ if not self.streaming:
+ # Can't update token usage if streaming
+ update_token_usage(_keys, response, token_usage)
+ if self.streaming:
+ choices[0]['text'] = text
+ return self.create_llm_result(choices, prompts, token_usage)
+
+ def get_token_ids(self, text: str) -> List[int]:
+ if self.tokenizer is not None:
+ return self.tokenizer.encode(text)
+ else:
+ # OpenAI uses tiktoken
+ return super().get_token_ids(text)
+
+
+class H2OReplicate(Replicate):
+ stop_sequences: Any = None
+ sanitize_bot_response: bool = False
+ prompter: Any = None
+ context: Any = ''
+ iinput: Any = ''
+ tokenizer: Any = None
+
+ def _call(
+ self,
+ prompt: str,
+ stop: Optional[List[str]] = None,
+ run_manager: Optional[CallbackManagerForLLMRun] = None,
+ **kwargs: Any,
+ ) -> str:
+ """Call to replicate endpoint."""
+ stop_tmp = self.stop_sequences if not stop else self.stop_sequences + stop
+ stop = []
+ [stop.append(x) for x in stop_tmp if x not in stop]
+
+ # HF inference server needs control over input tokens
+ assert self.tokenizer is not None
+ from h2oai_pipeline import H2OTextGenerationPipeline
+ prompt, num_prompt_tokens = H2OTextGenerationPipeline.limit_prompt(prompt, self.tokenizer)
+ # Note Replicate handles the prompting of the specific model
+ return super()._call(prompt, stop=stop, run_manager=run_manager, **kwargs)
+
+ def get_token_ids(self, text: str) -> List[int]:
+ return self.tokenizer.encode(text)
+ # avoid base method that is not aware of how to properly tokenize (uses GPT2)
+ # return _get_token_ids_default_method(text)
+
+
+class H2OChatOpenAI(ChatOpenAI):
+ @classmethod
+ def _all_required_field_names(cls) -> Set:
+ _all_required_field_names = super(ChatOpenAI, cls)._all_required_field_names()
+ _all_required_field_names.update({'top_p', 'frequency_penalty', 'presence_penalty', 'logit_bias'})
+ return _all_required_field_names
+
+
+class H2OAzureChatOpenAI(AzureChatOpenAI):
+ @classmethod
+ def _all_required_field_names(cls) -> Set:
+ _all_required_field_names = super(AzureChatOpenAI, cls)._all_required_field_names()
+ _all_required_field_names.update({'top_p', 'frequency_penalty', 'presence_penalty', 'logit_bias'})
+ return _all_required_field_names
+
+
+class H2OAzureOpenAI(AzureOpenAI):
+ @classmethod
+ def _all_required_field_names(cls) -> Set:
+ _all_required_field_names = super(AzureOpenAI, cls)._all_required_field_names()
+ _all_required_field_names.update({'top_p', 'frequency_penalty', 'presence_penalty', 'logit_bias'})
+ return _all_required_field_names
+
+
+class H2OHuggingFacePipeline(HuggingFacePipeline):
+ def _call(
+ self,
+ prompt: str,
+ stop: Optional[List[str]] = None,
+ run_manager: Optional[CallbackManagerForLLMRun] = None,
+ **kwargs: Any,
+ ) -> str:
+ response = self.pipeline(prompt, stop=stop)
+ if self.pipeline.task == "text-generation":
+ # Text generation return includes the starter text.
+ text = response[0]["generated_text"][len(prompt):]
+ elif self.pipeline.task == "text2text-generation":
+ text = response[0]["generated_text"]
+ elif self.pipeline.task == "summarization":
+ text = response[0]["summary_text"]
+ else:
+ raise ValueError(
+ f"Got invalid task {self.pipeline.task}, "
+ f"currently only {VALID_TASKS} are supported"
+ )
+ if stop:
+ # This is a bit hacky, but I can't figure out a better way to enforce
+ # stop tokens when making calls to huggingface_hub.
+ text = enforce_stop_tokens(text, stop)
+ return text
+
+
+def get_llm(use_openai_model=False,
+ model_name=None,
+ model=None,
+ tokenizer=None,
+ inference_server=None,
+ langchain_only_model=None,
+ stream_output=False,
+ async_output=True,
+ num_async=3,
+ do_sample=False,
+ temperature=0.1,
+ top_k=40,
+ top_p=0.7,
+ num_beams=1,
+ max_new_tokens=512,
+ min_new_tokens=1,
+ early_stopping=False,
+ max_time=180,
+ repetition_penalty=1.0,
+ num_return_sequences=1,
+ prompt_type=None,
+ prompt_dict=None,
+ prompter=None,
+ context=None,
+ iinput=None,
+ sanitize_bot_response=False,
+ system_prompt='',
+ visible_models=0,
+ h2ogpt_key=None,
+ min_max_new_tokens=None,
+ n_jobs=None,
+ cli=False,
+ llamacpp_dict=None,
+ verbose=False,
+ ):
+ # currently all but h2oai_pipeline case return prompt + new text, but could change
+ only_new_text = False
+
+ if n_jobs in [None, -1]:
+ n_jobs = int(os.getenv('OMP_NUM_THREADS', str(os.cpu_count() // 2)))
+ if inference_server is None:
+ inference_server = ''
+ if inference_server.startswith('replicate'):
+ model_string = ':'.join(inference_server.split(':')[1:])
+ if 'meta/llama' in model_string:
+ temperature = max(0.01, temperature if do_sample else 0)
+ else:
+ temperature =temperature if do_sample else 0
+ gen_kwargs = dict(temperature=temperature,
+ seed=1234,
+ max_length=max_new_tokens, # langchain
+ max_new_tokens=max_new_tokens, # replicate docs
+ top_p=top_p if do_sample else 1,
+ top_k=top_k, # not always supported
+ repetition_penalty=repetition_penalty)
+ if system_prompt in [None, 'None', 'auto']:
+ if prompter.system_prompt:
+ system_prompt = prompter.system_prompt
+ else:
+ system_prompt = ''
+ if system_prompt:
+ gen_kwargs.update(dict(system_prompt=system_prompt))
+
+ # replicate handles prompting, so avoid get_response() filter
+ prompter.prompt_type = 'plain'
+ if stream_output:
+ callbacks = [StreamingGradioCallbackHandler()]
+ streamer = callbacks[0] if stream_output else None
+ llm = H2OReplicate(
+ streaming=True,
+ callbacks=callbacks,
+ model=model_string,
+ input=gen_kwargs,
+ stop=prompter.stop_sequences,
+ stop_sequences=prompter.stop_sequences,
+ sanitize_bot_response=sanitize_bot_response,
+ prompter=prompter,
+ context=context,
+ iinput=iinput,
+ tokenizer=tokenizer,
+ )
+ else:
+ streamer = None
+ llm = H2OReplicate(
+ model=model_string,
+ input=gen_kwargs,
+ stop=prompter.stop_sequences,
+ stop_sequences=prompter.stop_sequences,
+ sanitize_bot_response=sanitize_bot_response,
+ prompter=prompter,
+ context=context,
+ iinput=iinput,
+ tokenizer=tokenizer,
+ )
+ elif use_openai_model or inference_server.startswith('openai') or inference_server.startswith('vllm'):
+ if use_openai_model and model_name is None:
+ model_name = "gpt-3.5-turbo"
+ # FIXME: Will later import be ignored? I think so, so should be fine
+ openai, inf_type, deployment_name, base_url, api_version = set_openai(inference_server)
+ kwargs_extra = {}
+ if inf_type == 'openai_chat' or inf_type == 'vllm_chat':
+ cls = H2OChatOpenAI
+ # FIXME: Support context, iinput
+ # if inf_type == 'vllm_chat':
+ # kwargs_extra.update(dict(tokenizer=tokenizer))
+ openai_api_key = openai.api_key
+ elif inf_type == 'openai_azure_chat':
+ cls = H2OAzureChatOpenAI
+ kwargs_extra.update(dict(openai_api_type='azure'))
+ # FIXME: Support context, iinput
+ if os.getenv('OPENAI_AZURE_KEY') is not None:
+ openai_api_key = os.getenv('OPENAI_AZURE_KEY')
+ else:
+ openai_api_key = openai.api_key
+ elif inf_type == 'openai_azure':
+ cls = H2OAzureOpenAI
+ kwargs_extra.update(dict(openai_api_type='azure'))
+ # FIXME: Support context, iinput
+ if os.getenv('OPENAI_AZURE_KEY') is not None:
+ openai_api_key = os.getenv('OPENAI_AZURE_KEY')
+ else:
+ openai_api_key = openai.api_key
+ else:
+ cls = H2OOpenAI
+ if inf_type == 'vllm':
+ kwargs_extra.update(dict(stop_sequences=prompter.stop_sequences,
+ sanitize_bot_response=sanitize_bot_response,
+ prompter=prompter,
+ context=context,
+ iinput=iinput,
+ tokenizer=tokenizer,
+ openai_api_base=openai.api_base,
+ client=None))
+ else:
+ assert inf_type == 'openai' or use_openai_model
+ openai_api_key = openai.api_key
+
+ if deployment_name:
+ kwargs_extra.update(dict(deployment_name=deployment_name))
+ if api_version:
+ kwargs_extra.update(dict(openai_api_version=api_version))
+ elif openai.api_version:
+ kwargs_extra.update(dict(openai_api_version=openai.api_version))
+ elif inf_type in ['openai_azure', 'openai_azure_chat']:
+ kwargs_extra.update(dict(openai_api_version="2023-05-15"))
+ if base_url:
+ kwargs_extra.update(dict(openai_api_base=base_url))
+ else:
+ kwargs_extra.update(dict(openai_api_base=openai.api_base))
+
+ callbacks = [StreamingGradioCallbackHandler()]
+ llm = cls(model_name=model_name,
+ temperature=temperature if do_sample else 0,
+ # FIXME: Need to count tokens and reduce max_new_tokens to fit like in generate.py
+ max_tokens=max_new_tokens,
+ top_p=top_p if do_sample else 1,
+ frequency_penalty=0,
+ presence_penalty=1.07 - repetition_penalty + 0.6, # so good default
+ callbacks=callbacks if stream_output else None,
+ openai_api_key=openai_api_key,
+ logit_bias=None if inf_type == 'vllm' else {},
+ max_retries=6,
+ streaming=stream_output,
+ **kwargs_extra
+ )
+ streamer = callbacks[0] if stream_output else None
+ if inf_type in ['openai', 'openai_chat', 'openai_azure', 'openai_azure_chat']:
+ prompt_type = inference_server
+ else:
+ # vllm goes here
+ prompt_type = prompt_type or 'plain'
+ elif inference_server and inference_server.startswith('sagemaker'):
+ callbacks = [StreamingGradioCallbackHandler()] # FIXME
+ streamer = None
+
+ endpoint_name = ':'.join(inference_server.split(':')[1:2])
+ region_name = ':'.join(inference_server.split(':')[2:])
+
+ from sagemaker import H2OSagemakerEndpoint, ChatContentHandler, BaseContentHandler
+ if inference_server.startswith('sagemaker_chat'):
+ content_handler = ChatContentHandler()
+ else:
+ content_handler = BaseContentHandler()
+ model_kwargs = dict(temperature=temperature if do_sample else 1E-10,
+ return_full_text=False, top_p=top_p, max_new_tokens=max_new_tokens)
+ llm = H2OSagemakerEndpoint(
+ endpoint_name=endpoint_name,
+ region_name=region_name,
+ aws_access_key_id=os.environ.get('AWS_ACCESS_KEY_ID'),
+ aws_secret_access_key=os.environ.get('AWS_SECRET_ACCESS_KEY'),
+ model_kwargs=model_kwargs,
+ content_handler=content_handler,
+ endpoint_kwargs={'CustomAttributes': 'accept_eula=true'},
+ )
+ elif inference_server:
+ assert inference_server.startswith(
+ 'http'), "Malformed inference_server=%s. Did you add http:// in front?" % inference_server
+
+ from gradio_utils.grclient import GradioClient
+ from text_generation import Client as HFClient
+ if isinstance(model, GradioClient):
+ gr_client = model
+ hf_client = None
+ else:
+ gr_client = None
+ hf_client = model
+ assert isinstance(hf_client, HFClient)
+
+ inference_server, headers = get_hf_server(inference_server)
+
+ # quick sanity check to avoid long timeouts, just see if can reach server
+ requests.get(inference_server, timeout=int(os.getenv('REQUEST_TIMEOUT_FAST', '10')))
+ callbacks = [StreamingGradioCallbackHandler()]
+
+ if gr_client:
+ async_output = False # FIXME: not implemented yet
+ chat_client = False
+ llm = GradioInference(
+ inference_server_url=inference_server,
+ return_full_text=False,
+
+ temperature=temperature,
+ top_p=top_p,
+ top_k=top_k,
+ num_beams=num_beams,
+ max_new_tokens=max_new_tokens,
+ min_new_tokens=min_new_tokens,
+ early_stopping=early_stopping,
+ max_time=max_time,
+ repetition_penalty=repetition_penalty,
+ num_return_sequences=num_return_sequences,
+ do_sample=do_sample,
+ chat_client=chat_client,
+
+ callbacks=callbacks if stream_output else None,
+ stream_output=stream_output,
+ prompter=prompter,
+ context=context,
+ iinput=iinput,
+ client=gr_client,
+ sanitize_bot_response=sanitize_bot_response,
+ tokenizer=tokenizer,
+ system_prompt=system_prompt,
+ visible_models=visible_models,
+ h2ogpt_key=h2ogpt_key,
+ min_max_new_tokens=min_max_new_tokens,
+ )
+ elif hf_client:
+ # no need to pass original client, no state and fast, so can use same validate_environment from base class
+ async_sem = asyncio.Semaphore(num_async) if async_output else NullContext()
+ llm = H2OHuggingFaceTextGenInference(
+ inference_server_url=inference_server,
+ do_sample=do_sample,
+ max_new_tokens=max_new_tokens,
+ repetition_penalty=repetition_penalty,
+ return_full_text=False, # this only controls internal behavior, still returns processed text
+ seed=SEED,
+
+ stop_sequences=prompter.stop_sequences,
+ temperature=temperature,
+ top_k=top_k,
+ top_p=top_p,
+ # typical_p=top_p,
+ callbacks=callbacks if stream_output else None,
+ stream_output=stream_output,
+ prompter=prompter,
+ context=context,
+ iinput=iinput,
+ tokenizer=tokenizer,
+ timeout=max_time,
+ sanitize_bot_response=sanitize_bot_response,
+ async_sem=async_sem,
+ )
+ else:
+ raise RuntimeError("No defined client")
+ streamer = callbacks[0] if stream_output else None
+ elif model_name in non_hf_types:
+ async_output = False # FIXME: not implemented yet
+ assert langchain_only_model
+ if model_name == 'llama':
+ callbacks = [StreamingGradioCallbackHandler()]
+ streamer = callbacks[0] if stream_output else None
+ else:
+ # stream_output = False
+ # doesn't stream properly as generator, but at least
+ callbacks = [streaming_stdout.StreamingStdOutCallbackHandler()]
+ streamer = None
+ if prompter:
+ prompt_type = prompter.prompt_type
+ else:
+ prompter = Prompter(prompt_type, prompt_dict, debug=False, chat=False, stream_output=stream_output)
+ pass # assume inputted prompt_type is correct
+ from gpt4all_llm import get_llm_gpt4all
+ max_max_tokens = tokenizer.model_max_length
+ llm = get_llm_gpt4all(model_name,
+ model=model,
+ max_new_tokens=max_new_tokens,
+ temperature=temperature,
+ repetition_penalty=repetition_penalty,
+ top_k=top_k,
+ top_p=top_p,
+ callbacks=callbacks,
+ n_jobs=n_jobs,
+ verbose=verbose,
+ streaming=stream_output,
+ prompter=prompter,
+ context=context,
+ iinput=iinput,
+ max_seq_len=max_max_tokens,
+ llamacpp_dict=llamacpp_dict,
+ )
+ elif hasattr(model, 'is_exlama') and model.is_exlama():
+ async_output = False # FIXME: not implemented yet
+ assert langchain_only_model
+ callbacks = [StreamingGradioCallbackHandler()]
+ streamer = callbacks[0] if stream_output else None
+ max_max_tokens = tokenizer.model_max_length
+
+ from src.llm_exllama import Exllama
+ llm = Exllama(streaming=stream_output,
+ model_path=None,
+ model=model,
+ lora_path=None,
+ temperature=temperature,
+ top_k=top_k,
+ top_p=top_p,
+ typical=.7,
+ beams=1,
+ # beam_length = 40,
+ stop_sequences=prompter.stop_sequences,
+ callbacks=callbacks,
+ verbose=verbose,
+ max_seq_len=max_max_tokens,
+ fused_attn=False,
+ # alpha_value = 1.0, #For use with any models
+ # compress_pos_emb = 4.0, #For use with superhot
+ # set_auto_map = "3, 2" #Gpu split, this will split 3gigs/2gigs
+ prompter=prompter,
+ context=context,
+ iinput=iinput,
+ )
+ else:
+ async_output = False # FIXME: not implemented yet
+ if model is None:
+ # only used if didn't pass model in
+ assert tokenizer is None
+ prompt_type = 'human_bot'
+ if model_name is None:
+ model_name = 'h2oai/h2ogpt-oasst1-512-12b'
+ # model_name = 'h2oai/h2ogpt-oig-oasst1-512-6_9b'
+ # model_name = 'h2oai/h2ogpt-oasst1-512-20b'
+ inference_server = ''
+ model, tokenizer, device = get_model(load_8bit=True, base_model=model_name,
+ inference_server=inference_server, gpu_id=0)
+
+ max_max_tokens = tokenizer.model_max_length
+ only_new_text = True
+ gen_kwargs = dict(do_sample=do_sample,
+ num_beams=num_beams,
+ max_new_tokens=max_new_tokens,
+ min_new_tokens=min_new_tokens,
+ early_stopping=early_stopping,
+ max_time=max_time,
+ repetition_penalty=repetition_penalty,
+ num_return_sequences=num_return_sequences,
+ return_full_text=not only_new_text,
+ handle_long_generation=None)
+ if do_sample:
+ gen_kwargs.update(dict(temperature=temperature,
+ top_k=top_k,
+ top_p=top_p))
+ assert len(set(gen_hyper).difference(gen_kwargs.keys())) == 0
+ else:
+ assert len(set(gen_hyper0).difference(gen_kwargs.keys())) == 0
+
+ if stream_output:
+ skip_prompt = only_new_text
+ from gen import H2OTextIteratorStreamer
+ decoder_kwargs = {}
+ streamer = H2OTextIteratorStreamer(tokenizer, skip_prompt=skip_prompt, block=False, **decoder_kwargs)
+ gen_kwargs.update(dict(streamer=streamer))
+ else:
+ streamer = None
+
+ from h2oai_pipeline import H2OTextGenerationPipeline
+ pipe = H2OTextGenerationPipeline(model=model, use_prompter=True,
+ prompter=prompter,
+ context=context,
+ iinput=iinput,
+ prompt_type=prompt_type,
+ prompt_dict=prompt_dict,
+ sanitize_bot_response=sanitize_bot_response,
+ chat=False, stream_output=stream_output,
+ tokenizer=tokenizer,
+ # leave some room for 1 paragraph, even if min_new_tokens=0
+ max_input_tokens=max_max_tokens - max(min_new_tokens, 256),
+ base_model=model_name,
+ **gen_kwargs)
+ # pipe.task = "text-generation"
+ # below makes it listen only to our prompt removal,
+ # not built in prompt removal that is less general and not specific for our model
+ pipe.task = "text2text-generation"
+
+ llm = H2OHuggingFacePipeline(pipeline=pipe)
+ return llm, model_name, streamer, prompt_type, async_output, only_new_text
+
+
+def get_device_dtype():
+ # torch.device("cuda") leads to cuda:x cuda:y mismatches for multi-GPU consistently
+ import torch
+ n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0
+ device = 'cpu' if n_gpus == 0 else 'cuda'
+ # from utils import NullContext
+ # context_class = NullContext if n_gpus > 1 or n_gpus == 0 else context_class
+ context_class = torch.device
+ torch_dtype = torch.float16 if device == 'cuda' else torch.float32
+ return device, torch_dtype, context_class
+
+
+def get_wiki_data(title, first_paragraph_only, text_limit=None, take_head=True):
+ """
+ Get wikipedia data from online
+ :param title:
+ :param first_paragraph_only:
+ :param text_limit:
+ :param take_head:
+ :return:
+ """
+ filename = 'wiki_%s_%s_%s_%s.data' % (first_paragraph_only, title, text_limit, take_head)
+ url = f"https://en.wikipedia.org/w/api.php?format=json&action=query&prop=extracts&explaintext=1&titles={title}"
+ if first_paragraph_only:
+ url += "&exintro=1"
+ import json
+ if not os.path.isfile(filename):
+ data = requests.get(url).json()
+ json.dump(data, open(filename, 'wt'))
+ else:
+ data = json.load(open(filename, "rt"))
+ page_content = list(data["query"]["pages"].values())[0]["extract"]
+ if take_head is not None and text_limit is not None:
+ page_content = page_content[:text_limit] if take_head else page_content[-text_limit:]
+ title_url = str(title).replace(' ', '_')
+ return Document(
+ page_content=str(page_content),
+ metadata={"source": f"https://en.wikipedia.org/wiki/{title_url}"},
+ )
+
+
+def get_wiki_sources(first_para=True, text_limit=None):
+ """
+ Get specific named sources from wikipedia
+ :param first_para:
+ :param text_limit:
+ :return:
+ """
+ default_wiki_sources = ['Unix', 'Microsoft_Windows', 'Linux']
+ wiki_sources = list(os.getenv('WIKI_SOURCES', default_wiki_sources))
+ return [get_wiki_data(x, first_para, text_limit=text_limit) for x in wiki_sources]
+
+
+def get_github_docs(repo_owner, repo_name):
+ """
+ Access github from specific repo
+ :param repo_owner:
+ :param repo_name:
+ :return:
+ """
+ with tempfile.TemporaryDirectory() as d:
+ subprocess.check_call(
+ f"git clone --depth 1 https://github.com/{repo_owner}/{repo_name}.git .",
+ cwd=d,
+ shell=True,
+ )
+ git_sha = (
+ subprocess.check_output("git rev-parse HEAD", shell=True, cwd=d)
+ .decode("utf-8")
+ .strip()
+ )
+ repo_path = pathlib.Path(d)
+ markdown_files = list(repo_path.glob("*/*.md")) + list(
+ repo_path.glob("*/*.mdx")
+ )
+ for markdown_file in markdown_files:
+ with open(markdown_file, "r") as f:
+ relative_path = markdown_file.relative_to(repo_path)
+ github_url = f"https://github.com/{repo_owner}/{repo_name}/blob/{git_sha}/{relative_path}"
+ yield Document(page_content=str(f.read()), metadata={"source": github_url})
+
+
+def get_dai_pickle(dest="."):
+ from huggingface_hub import hf_hub_download
+ # True for case when locally already logged in with correct token, so don't have to set key
+ token = os.getenv('HUGGING_FACE_HUB_TOKEN', True)
+ path_to_zip_file = hf_hub_download('h2oai/dai_docs', 'dai_docs.pickle', token=token, repo_type='dataset')
+ shutil.copy(path_to_zip_file, dest)
+
+
+def get_dai_docs(from_hf=False, get_pickle=True):
+ """
+ Consume DAI documentation, or consume from public pickle
+ :param from_hf: get DAI docs from HF, then generate pickle for later use by LangChain
+ :param get_pickle: Avoid raw DAI docs, just get pickle directly from HF
+ :return:
+ """
+ import pickle
+
+ if get_pickle:
+ get_dai_pickle()
+
+ dai_store = 'dai_docs.pickle'
+ dst = "working_dir_docs"
+ if not os.path.isfile(dai_store):
+ from create_data import setup_dai_docs
+ dst = setup_dai_docs(dst=dst, from_hf=from_hf)
+
+ import glob
+ files = list(glob.glob(os.path.join(dst, '*rst'), recursive=True))
+
+ basedir = os.path.abspath(os.getcwd())
+ from create_data import rst_to_outputs
+ new_outputs = rst_to_outputs(files)
+ os.chdir(basedir)
+
+ pickle.dump(new_outputs, open(dai_store, 'wb'))
+ else:
+ new_outputs = pickle.load(open(dai_store, 'rb'))
+
+ sources = []
+ for line, file in new_outputs:
+ # gradio requires any linked file to be with app.py
+ sym_src = os.path.abspath(os.path.join(dst, file))
+ sym_dst = os.path.abspath(os.path.join(os.getcwd(), file))
+ if os.path.lexists(sym_dst):
+ os.remove(sym_dst)
+ os.symlink(sym_src, sym_dst)
+ itm = Document(page_content=str(line), metadata={"source": file})
+ # NOTE: yield has issues when going into db, loses metadata
+ # yield itm
+ sources.append(itm)
+ return sources
+
+
+def get_supported_types():
+ non_image_types0 = ["pdf", "txt", "csv", "toml", "py", "rst", "xml", "rtf",
+ "md",
+ "html", "mhtml", "htm",
+ "enex", "eml", "epub", "odt", "pptx", "ppt",
+ "zip",
+ "gz",
+ "gzip",
+ "urls",
+ ]
+ # "msg", GPL3
+
+ video_types0 = ['WEBM',
+ 'MPG', 'MP2', 'MPEG', 'MPE', '.PV',
+ 'OGG',
+ 'MP4', 'M4P', 'M4V',
+ 'AVI', 'WMV',
+ 'MOV', 'QT',
+ 'FLV', 'SWF',
+ 'AVCHD']
+ video_types0 = [x.lower() for x in video_types0]
+ if have_pillow:
+ from PIL import Image
+ exts = Image.registered_extensions()
+ image_types0 = {ex for ex, f in exts.items() if f in Image.OPEN if ex not in video_types0 + non_image_types0}
+ image_types0 = sorted(image_types0)
+ image_types0 = [x[1:] if x.startswith('.') else x for x in image_types0]
+ else:
+ image_types0 = []
+ return non_image_types0, image_types0, video_types0
+
+
+non_image_types, image_types, video_types = get_supported_types()
+set_image_types = set(image_types)
+
+if have_libreoffice or True:
+ # or True so it tries to load, e.g. on MAC/Windows, even if don't have libreoffice since works without that
+ non_image_types.extend(["docx", "doc", "xls", "xlsx"])
+if have_jq:
+ non_image_types.extend(["json", "jsonl"])
+
+file_types = non_image_types + image_types
+
+
+def try_as_html(file):
+ # try treating as html as occurs when scraping websites
+ from bs4 import BeautifulSoup
+ with open(file, "rt") as f:
+ try:
+ is_html = bool(BeautifulSoup(f.read(), "html.parser").find())
+ except: # FIXME
+ is_html = False
+ if is_html:
+ file_url = 'file://' + file
+ doc1 = UnstructuredURLLoader(urls=[file_url]).load()
+ doc1 = [x for x in doc1 if x.page_content]
+ else:
+ doc1 = []
+ return doc1
+
+
+def json_metadata_func(record: dict, metadata: dict) -> dict:
+ # Define the metadata extraction function.
+
+ if isinstance(record, dict):
+ metadata["sender_name"] = record.get("sender_name")
+ metadata["timestamp_ms"] = record.get("timestamp_ms")
+
+ if "source" in metadata:
+ metadata["source_json"] = metadata['source']
+ if "seq_num" in metadata:
+ metadata["seq_num_json"] = metadata['seq_num']
+
+ return metadata
+
+
+def file_to_doc(file,
+ filei=0,
+ base_path=None, verbose=False, fail_any_exception=False,
+ chunk=True, chunk_size=512, n_jobs=-1,
+ is_url=False, is_txt=False,
+
+ # urls
+ use_unstructured=True,
+ use_playwright=False,
+ use_selenium=False,
+
+ # pdfs
+ use_pymupdf='auto',
+ use_unstructured_pdf='auto',
+ use_pypdf='auto',
+ enable_pdf_ocr='auto',
+ try_pdf_as_html='auto',
+ enable_pdf_doctr='auto',
+
+ # images
+ enable_ocr=False,
+ enable_doctr=False,
+ enable_pix2struct=False,
+ enable_captions=True,
+ captions_model=None,
+ model_loaders=None,
+
+ # json
+ jq_schema='.[]',
+
+ headsize=50, # see also H2OSerpAPIWrapper
+ db_type=None,
+ selected_file_types=None):
+ assert isinstance(model_loaders, dict)
+ if selected_file_types is not None:
+ set_image_types1 = set_image_types.intersection(set(selected_file_types))
+ else:
+ set_image_types1 = set_image_types
+
+ assert db_type is not None
+ chunk_sources = functools.partial(_chunk_sources, chunk=chunk, chunk_size=chunk_size, db_type=db_type)
+ add_meta = functools.partial(_add_meta, headsize=headsize, filei=filei)
+ # FIXME: if zip, file index order will not be correct if other files involved
+ path_to_docs_func = functools.partial(path_to_docs,
+ verbose=verbose,
+ fail_any_exception=fail_any_exception,
+ n_jobs=n_jobs,
+ chunk=chunk, chunk_size=chunk_size,
+ # url=file if is_url else None,
+ # text=file if is_txt else None,
+
+ # urls
+ use_unstructured=use_unstructured,
+ use_playwright=use_playwright,
+ use_selenium=use_selenium,
+
+ # pdfs
+ use_pymupdf=use_pymupdf,
+ use_unstructured_pdf=use_unstructured_pdf,
+ use_pypdf=use_pypdf,
+ enable_pdf_ocr=enable_pdf_ocr,
+ enable_pdf_doctr=enable_pdf_doctr,
+ try_pdf_as_html=try_pdf_as_html,
+
+ # images
+ enable_ocr=enable_ocr,
+ enable_doctr=enable_doctr,
+ enable_pix2struct=enable_pix2struct,
+ enable_captions=enable_captions,
+ captions_model=captions_model,
+
+ caption_loader=model_loaders['caption'],
+ doctr_loader=model_loaders['doctr'],
+ pix2struct_loader=model_loaders['pix2struct'],
+
+ # json
+ jq_schema=jq_schema,
+
+ db_type=db_type,
+ )
+
+ if file is None:
+ if fail_any_exception:
+ raise RuntimeError("Unexpected None file")
+ else:
+ return []
+ doc1 = [] # in case no support, or disabled support
+ if base_path is None and not is_txt and not is_url:
+ # then assume want to persist but don't care which path used
+ # can't be in base_path
+ dir_name = os.path.dirname(file)
+ base_name = os.path.basename(file)
+ # if from gradio, will have its own temp uuid too, but that's ok
+ base_name = sanitize_filename(base_name) + "_" + str(uuid.uuid4())[:10]
+ base_path = os.path.join(dir_name, base_name)
+ if is_url:
+ file = file.strip() # in case accidental spaces in front or at end
+ file_lower = file.lower()
+ case1 = file_lower.startswith('arxiv:') and len(file_lower.split('arxiv:')) == 2
+ case2 = file_lower.startswith('https://arxiv.org/abs') and len(file_lower.split('https://arxiv.org/abs')) == 2
+ case3 = file_lower.startswith('http://arxiv.org/abs') and len(file_lower.split('http://arxiv.org/abs')) == 2
+ case4 = file_lower.startswith('arxiv.org/abs/') and len(file_lower.split('arxiv.org/abs/')) == 2
+ if case1 or case2 or case3 or case4:
+ if case1:
+ query = file.lower().split('arxiv:')[1].strip()
+ elif case2:
+ query = file.lower().split('https://arxiv.org/abs/')[1].strip()
+ elif case2:
+ query = file.lower().split('http://arxiv.org/abs/')[1].strip()
+ elif case3:
+ query = file.lower().split('arxiv.org/abs/')[1].strip()
+ else:
+ raise RuntimeError("Unexpected arxiv error for %s" % file)
+ if have_arxiv:
+ trials = 3
+ docs1 = []
+ for trial in range(trials):
+ try:
+ docs1 = ArxivLoader(query=query, load_max_docs=20, load_all_available_meta=True).load()
+ break
+ except urllib.error.URLError:
+ pass
+ if not docs1:
+ print("Failed to get arxiv %s" % query, flush=True)
+ # ensure string, sometimes None
+ [[x.metadata.update({k: str(v)}) for k, v in x.metadata.items()] for x in docs1]
+ query_url = f"https://arxiv.org/abs/{query}"
+ [x.metadata.update(
+ dict(source=x.metadata.get('entry_id', query_url), query=query_url,
+ input_type='arxiv', head=x.metadata.get('Title', ''), date=str(datetime.now))) for x in
+ docs1]
+ else:
+ docs1 = []
+ else:
+ if not (file.startswith("http://") or file.startswith("file://") or file.startswith("https://")):
+ file = 'http://' + file
+ docs1 = []
+ do_unstructured = only_unstructured_urls or use_unstructured
+ if only_selenium or only_playwright:
+ do_unstructured = False
+ do_playwright = have_playwright and (use_playwright or only_playwright)
+ if only_unstructured_urls or only_selenium:
+ do_playwright = False
+ do_selenium = have_selenium and (use_selenium or only_selenium)
+ if only_unstructured_urls or only_playwright:
+ do_selenium = False
+ if do_unstructured or use_unstructured:
+ docs1a = UnstructuredURLLoader(urls=[file]).load()
+ docs1a = [x for x in docs1a if x.page_content]
+ add_parser(docs1a, 'UnstructuredURLLoader')
+ docs1.extend(docs1a)
+ if len(docs1) == 0 and have_playwright or do_playwright:
+ # then something went wrong, try another loader:
+ from langchain.document_loaders import PlaywrightURLLoader
+ docs1a = asyncio.run(PlaywrightURLLoader(urls=[file]).aload())
+ # docs1 = PlaywrightURLLoader(urls=[file]).load()
+ docs1a = [x for x in docs1a if x.page_content]
+ add_parser(docs1a, 'PlaywrightURLLoader')
+ docs1.extend(docs1a)
+ if len(docs1) == 0 and have_selenium or do_selenium:
+ # then something went wrong, try another loader:
+ # but requires Chrome binary, else get: selenium.common.exceptions.WebDriverException:
+ # Message: unknown error: cannot find Chrome binary
+ from langchain.document_loaders import SeleniumURLLoader
+ from selenium.common.exceptions import WebDriverException
+ try:
+ docs1a = SeleniumURLLoader(urls=[file]).load()
+ docs1a = [x for x in docs1a if x.page_content]
+ add_parser(docs1a, 'SeleniumURLLoader')
+ docs1.extend(docs1a)
+ except WebDriverException as e:
+ print("No web driver: %s" % str(e), flush=True)
+ [x.metadata.update(dict(input_type='url', date=str(datetime.now))) for x in docs1]
+ add_meta(docs1, file, parser="is_url")
+ docs1 = clean_doc(docs1)
+ doc1 = chunk_sources(docs1)
+ elif is_txt:
+ base_path = "user_paste"
+ base_path = makedirs(base_path, exist_ok=True, tmp_ok=True, use_base=True)
+ source_file = os.path.join(base_path, "_%s" % str(uuid.uuid4())[:10])
+ with open(source_file, "wt") as f:
+ f.write(file)
+ metadata = dict(source=source_file, date=str(datetime.now()), input_type='pasted txt')
+ doc1 = Document(page_content=str(file), metadata=metadata)
+ add_meta(doc1, file, parser="f.write")
+ # Bit odd to change if was original text
+ # doc1 = clean_doc(doc1)
+ elif file.lower().endswith('.html') or file.lower().endswith('.mhtml') or file.lower().endswith('.htm'):
+ docs1 = UnstructuredHTMLLoader(file_path=file).load()
+ add_meta(docs1, file, parser='UnstructuredHTMLLoader')
+ docs1 = clean_doc(docs1)
+ doc1 = chunk_sources(docs1, language=Language.HTML)
+ elif (file.lower().endswith('.docx') or file.lower().endswith('.doc')) and (have_libreoffice or True):
+ docs1 = UnstructuredWordDocumentLoader(file_path=file).load()
+ add_meta(docs1, file, parser='UnstructuredWordDocumentLoader')
+ doc1 = chunk_sources(docs1)
+ elif (file.lower().endswith('.xlsx') or file.lower().endswith('.xls')) and (have_libreoffice or True):
+ docs1 = UnstructuredExcelLoader(file_path=file).load()
+ add_meta(docs1, file, parser='UnstructuredExcelLoader')
+ doc1 = chunk_sources(docs1)
+ elif file.lower().endswith('.odt'):
+ docs1 = UnstructuredODTLoader(file_path=file).load()
+ add_meta(docs1, file, parser='UnstructuredODTLoader')
+ doc1 = chunk_sources(docs1)
+ elif file.lower().endswith('pptx') or file.lower().endswith('ppt'):
+ docs1 = UnstructuredPowerPointLoader(file_path=file).load()
+ add_meta(docs1, file, parser='UnstructuredPowerPointLoader')
+ docs1 = clean_doc(docs1)
+ doc1 = chunk_sources(docs1)
+ elif file.lower().endswith('.txt'):
+ # use UnstructuredFileLoader ?
+ docs1 = TextLoader(file, encoding="utf8", autodetect_encoding=True).load()
+ # makes just one, but big one
+ doc1 = chunk_sources(docs1)
+ # Bit odd to change if was original text
+ # doc1 = clean_doc(doc1)
+ add_meta(doc1, file, parser='TextLoader')
+ elif file.lower().endswith('.rtf'):
+ docs1 = UnstructuredRTFLoader(file).load()
+ add_meta(docs1, file, parser='UnstructuredRTFLoader')
+ doc1 = chunk_sources(docs1)
+ elif file.lower().endswith('.md'):
+ docs1 = UnstructuredMarkdownLoader(file).load()
+ add_meta(docs1, file, parser='UnstructuredMarkdownLoader')
+ docs1 = clean_doc(docs1)
+ doc1 = chunk_sources(docs1, language=Language.MARKDOWN)
+ elif file.lower().endswith('.enex'):
+ docs1 = EverNoteLoader(file).load()
+ add_meta(doc1, file, parser='EverNoteLoader')
+ doc1 = chunk_sources(docs1)
+ elif file.lower().endswith('.epub'):
+ docs1 = UnstructuredEPubLoader(file).load()
+ add_meta(docs1, file, parser='UnstructuredEPubLoader')
+ doc1 = chunk_sources(docs1)
+ elif any(file.lower().endswith(x) for x in set_image_types1):
+ docs1 = []
+ if verbose:
+ print("BEGIN: Tesseract", flush=True)
+ if have_tesseract and enable_ocr:
+ # OCR, somewhat works, but not great
+ docs1a = UnstructuredImageLoader(file, strategy='ocr_only').load()
+ # docs1a = UnstructuredImageLoader(file, strategy='hi_res').load()
+ docs1a = [x for x in docs1a if x.page_content]
+ add_meta(docs1a, file, parser='UnstructuredImageLoader')
+ docs1.extend(docs1a)
+ if verbose:
+ print("END: Tesseract", flush=True)
+ if have_doctr and enable_doctr:
+ if verbose:
+ print("BEGIN: DocTR", flush=True)
+ if model_loaders['doctr'] is not None and not isinstance(model_loaders['doctr'], (str, bool)):
+ if verbose:
+ print("Reuse DocTR", flush=True)
+ model_loaders['doctr'].load_model()
+ else:
+ if verbose:
+ print("Fresh DocTR", flush=True)
+ from image_doctr import H2OOCRLoader
+ model_loaders['doctr'] = H2OOCRLoader()
+ model_loaders['doctr'].set_document_paths([file])
+ docs1c = model_loaders['doctr'].load()
+ docs1c = [x for x in docs1c if x.page_content]
+ add_meta(docs1c, file, parser='H2OOCRLoader: %s' % 'DocTR')
+ # caption didn't set source, so fix-up meta
+ for doci in docs1c:
+ doci.metadata['source'] = doci.metadata.get('document_path', file)
+ doci.metadata['hashid'] = hash_file(doci.metadata['source'])
+ docs1.extend(docs1c)
+ if verbose:
+ print("END: DocTR", flush=True)
+ if enable_captions:
+ # BLIP
+ if verbose:
+ print("BEGIN: BLIP", flush=True)
+ if model_loaders['caption'] is not None and not isinstance(model_loaders['caption'], (str, bool)):
+ # assumes didn't fork into this process with joblib, else can deadlock
+ if verbose:
+ print("Reuse BLIP", flush=True)
+ model_loaders['caption'].load_model()
+ else:
+ if verbose:
+ print("Fresh BLIP", flush=True)
+ from image_captions import H2OImageCaptionLoader
+ model_loaders['caption'] = H2OImageCaptionLoader(caption_gpu=model_loaders['caption'] == 'gpu',
+ blip_model=captions_model,
+ blip_processor=captions_model)
+ model_loaders['caption'].set_image_paths([file])
+ docs1c = model_loaders['caption'].load()
+ docs1c = [x for x in docs1c if x.page_content]
+ add_meta(docs1c, file, parser='H2OImageCaptionLoader: %s' % captions_model)
+ # caption didn't set source, so fix-up meta
+ for doci in docs1c:
+ doci.metadata['source'] = doci.metadata.get('image_path', file)
+ doci.metadata['hashid'] = hash_file(doci.metadata['source'])
+ docs1.extend(docs1c)
+
+ if verbose:
+ print("END: BLIP", flush=True)
+ if enable_pix2struct:
+ # BLIP
+ if verbose:
+ print("BEGIN: Pix2Struct", flush=True)
+ if model_loaders['pix2struct'] is not None and not isinstance(model_loaders['pix2struct'], (str, bool)):
+ if verbose:
+ print("Reuse pix2struct", flush=True)
+ model_loaders['pix2struct'].load_model()
+ else:
+ if verbose:
+ print("Fresh pix2struct", flush=True)
+ from image_pix2struct import H2OPix2StructLoader
+ model_loaders['pix2struct'] = H2OPix2StructLoader()
+ model_loaders['pix2struct'].set_image_paths([file])
+ docs1c = model_loaders['pix2struct'].load()
+ docs1c = [x for x in docs1c if x.page_content]
+ add_meta(docs1c, file, parser='H2OPix2StructLoader: %s' % model_loaders['pix2struct'])
+ # caption didn't set source, so fix-up meta
+ for doci in docs1c:
+ doci.metadata['source'] = doci.metadata.get('image_path', file)
+ doci.metadata['hashid'] = hash_file(doci.metadata['source'])
+ docs1.extend(docs1c)
+ if verbose:
+ print("END: Pix2Struct", flush=True)
+ doc1 = chunk_sources(docs1)
+ elif file.lower().endswith('.msg'):
+ raise RuntimeError("Not supported, GPL3 license")
+ # docs1 = OutlookMessageLoader(file).load()
+ # docs1[0].metadata['source'] = file
+ elif file.lower().endswith('.eml'):
+ try:
+ docs1 = UnstructuredEmailLoader(file).load()
+ add_meta(docs1, file, parser='UnstructuredEmailLoader')
+ doc1 = chunk_sources(docs1)
+ except ValueError as e:
+ if 'text/html content not found in email' in str(e):
+ pass
+ else:
+ raise
+ doc1 = [x for x in doc1 if x.page_content]
+ if len(doc1) == 0:
+ # e.g. plain/text dict key exists, but not
+ # doc1 = TextLoader(file, encoding="utf8").load()
+ docs1 = UnstructuredEmailLoader(file, content_source="text/plain").load()
+ docs1 = [x for x in docs1 if x.page_content]
+ add_meta(docs1, file, parser='UnstructuredEmailLoader text/plain')
+ doc1 = chunk_sources(docs1)
+ # elif file.lower().endswith('.gcsdir'):
+ # doc1 = GCSDirectoryLoader(project_name, bucket, prefix).load()
+ # elif file.lower().endswith('.gcsfile'):
+ # doc1 = GCSFileLoader(project_name, bucket, blob).load()
+ elif file.lower().endswith('.rst'):
+ with open(file, "r") as f:
+ doc1 = Document(page_content=str(f.read()), metadata={"source": file})
+ add_meta(doc1, file, parser='f.read()')
+ doc1 = chunk_sources(doc1, language=Language.RST)
+ elif file.lower().endswith('.json'):
+ # 10k rows, 100 columns-like parts 4 bytes each
+ JSON_SIZE_LIMIT = int(os.getenv('JSON_SIZE_LIMIT', str(10 * 10 * 1024 * 10 * 4)))
+ if os.path.getsize(file) > JSON_SIZE_LIMIT:
+ raise ValueError(
+ "JSON file sizes > %s not supported for naive parsing and embedding, requires Agents enabled" % JSON_SIZE_LIMIT)
+ loader = JSONLoader(
+ file_path=file,
+ # jq_schema='.messages[].content',
+ jq_schema=jq_schema,
+ text_content=False,
+ metadata_func=json_metadata_func)
+ doc1 = loader.load()
+ add_meta(doc1, file, parser='JSONLoader: %s' % jq_schema)
+ fix_json_meta(doc1)
+ elif file.lower().endswith('.jsonl'):
+ loader = JSONLoader(
+ file_path=file,
+ # jq_schema='.messages[].content',
+ jq_schema=jq_schema,
+ json_lines=True,
+ text_content=False,
+ metadata_func=json_metadata_func)
+ doc1 = loader.load()
+ add_meta(doc1, file, parser='JSONLoader: %s' % jq_schema)
+ fix_json_meta(doc1)
+ elif file.lower().endswith('.pdf'):
+ # migration
+ if isinstance(use_pymupdf, bool):
+ if use_pymupdf == False:
+ use_pymupdf = 'off'
+ if use_pymupdf == True:
+ use_pymupdf = 'on'
+ if isinstance(use_unstructured_pdf, bool):
+ if use_unstructured_pdf == False:
+ use_unstructured_pdf = 'off'
+ if use_unstructured_pdf == True:
+ use_unstructured_pdf = 'on'
+ if isinstance(use_pypdf, bool):
+ if use_pypdf == False:
+ use_pypdf = 'off'
+ if use_pypdf == True:
+ use_pypdf = 'on'
+ if isinstance(enable_pdf_ocr, bool):
+ if enable_pdf_ocr == False:
+ enable_pdf_ocr = 'off'
+ if enable_pdf_ocr == True:
+ enable_pdf_ocr = 'on'
+ if isinstance(try_pdf_as_html, bool):
+ if try_pdf_as_html == False:
+ try_pdf_as_html = 'off'
+ if try_pdf_as_html == True:
+ try_pdf_as_html = 'on'
+
+ doc1 = []
+ tried_others = False
+ handled = False
+ did_pymupdf = False
+ did_unstructured = False
+ e = None
+ if have_pymupdf and (len(doc1) == 0 and use_pymupdf == 'auto' or use_pymupdf == 'on'):
+ # GPL, only use if installed
+ from langchain.document_loaders import PyMuPDFLoader
+ # load() still chunks by pages, but every page has title at start to help
+ try:
+ doc1a = PyMuPDFLoader(file).load()
+ did_pymupdf = True
+ except BaseException as e0:
+ doc1a = []
+ print("PyMuPDFLoader: %s" % str(e0), flush=True)
+ e = e0
+ # remove empty documents
+ handled |= len(doc1a) > 0
+ doc1a = [x for x in doc1a if x.page_content]
+ doc1a = clean_doc(doc1a)
+ add_parser(doc1a, 'PyMuPDFLoader')
+ doc1.extend(doc1a)
+ if len(doc1) == 0 and use_unstructured_pdf == 'auto' or use_unstructured_pdf == 'on':
+ tried_others = True
+ try:
+ doc1a = UnstructuredPDFLoader(file).load()
+ did_unstructured = True
+ except BaseException as e0:
+ doc1a = []
+ print("UnstructuredPDFLoader: %s" % str(e0), flush=True)
+ e = e0
+ handled |= len(doc1a) > 0
+ # remove empty documents
+ doc1a = [x for x in doc1a if x.page_content]
+ add_parser(doc1a, 'UnstructuredPDFLoader')
+ # seems to not need cleaning in most cases
+ doc1.extend(doc1a)
+ if len(doc1) == 0 and use_pypdf == 'auto' or use_pypdf == 'on':
+ tried_others = True
+ # open-source fallback
+ # load() still chunks by pages, but every page has title at start to help
+ try:
+ doc1a = PyPDFLoader(file).load()
+ except BaseException as e0:
+ doc1a = []
+ print("PyPDFLoader: %s" % str(e0), flush=True)
+ e = e0
+ handled |= len(doc1a) > 0
+ # remove empty documents
+ doc1a = [x for x in doc1a if x.page_content]
+ doc1a = clean_doc(doc1a)
+ add_parser(doc1a, 'PyPDFLoader')
+ doc1.extend(doc1a)
+ if not did_pymupdf and ((have_pymupdf and len(doc1) == 0) and tried_others):
+ # try again in case only others used, but only if didn't already try (2nd part of and)
+ # GPL, only use if installed
+ from langchain.document_loaders import PyMuPDFLoader
+ # load() still chunks by pages, but every page has title at start to help
+ try:
+ doc1a = PyMuPDFLoader(file).load()
+ except BaseException as e0:
+ doc1a = []
+ print("PyMuPDFLoader: %s" % str(e0), flush=True)
+ e = e0
+ handled |= len(doc1a) > 0
+ # remove empty documents
+ doc1a = [x for x in doc1a if x.page_content]
+ doc1a = clean_doc(doc1a)
+ add_parser(doc1a, 'PyMuPDFLoader2')
+ doc1.extend(doc1a)
+ did_pdf_ocr = False
+ if len(doc1) == 0 and (enable_pdf_ocr == 'auto' and enable_pdf_doctr != 'on') or enable_pdf_ocr == 'on':
+ did_pdf_ocr = True
+ # no did_unstructured condition here because here we do OCR, and before we did not
+ # try OCR in end since slowest, but works on pure image pages well
+ doc1a = UnstructuredPDFLoader(file, strategy='ocr_only').load()
+ handled |= len(doc1a) > 0
+ # remove empty documents
+ doc1a = [x for x in doc1a if x.page_content]
+ add_parser(doc1a, 'UnstructuredPDFLoader ocr_only')
+ # seems to not need cleaning in most cases
+ doc1.extend(doc1a)
+ # Some PDFs return nothing or junk from PDFMinerLoader
+ if len(doc1) == 0 and enable_pdf_doctr == 'auto' or enable_pdf_doctr == 'on':
+ if verbose:
+ print("BEGIN: DocTR", flush=True)
+ if model_loaders['doctr'] is not None and not isinstance(model_loaders['doctr'], (str, bool)):
+ model_loaders['doctr'].load_model()
+ else:
+ from image_doctr import H2OOCRLoader
+ model_loaders['doctr'] = H2OOCRLoader()
+ model_loaders['doctr'].set_document_paths([file])
+ doc1a = model_loaders['doctr'].load()
+ doc1a = [x for x in doc1a if x.page_content]
+ add_meta(doc1a, file, parser='H2OOCRLoader: %s' % 'DocTR')
+ handled |= len(doc1a) > 0
+ # caption didn't set source, so fix-up meta
+ for doci in doc1a:
+ doci.metadata['source'] = doci.metadata.get('document_path', file)
+ doci.metadata['hashid'] = hash_file(doci.metadata['source'])
+ doc1.extend(doc1a)
+ if verbose:
+ print("END: DocTR", flush=True)
+ if try_pdf_as_html in ['auto', 'on']:
+ doc1a = try_as_html(file)
+ add_parser(doc1a, 'try_as_html')
+ doc1.extend(doc1a)
+
+ if len(doc1) == 0:
+ # if literally nothing, show failed to parse so user knows, since unlikely nothing in PDF at all.
+ if handled:
+ raise ValueError("%s had no valid text, but meta data was parsed" % file)
+ else:
+ raise ValueError("%s had no valid text and no meta data was parsed: %s" % (file, str(e)))
+ add_meta(doc1, file, parser='pdf')
+ doc1 = chunk_sources(doc1)
+ elif file.lower().endswith('.csv'):
+ CSV_SIZE_LIMIT = int(os.getenv('CSV_SIZE_LIMIT', str(10 * 1024 * 10 * 4)))
+ if os.path.getsize(file) > CSV_SIZE_LIMIT:
+ raise ValueError(
+ "CSV file sizes > %s not supported for naive parsing and embedding, requires Agents enabled" % CSV_SIZE_LIMIT)
+ doc1 = CSVLoader(file).load()
+ add_meta(doc1, file, parser='CSVLoader')
+ if isinstance(doc1, list):
+ # each row is a Document, identify
+ [x.metadata.update(dict(chunk_id=chunk_id)) for chunk_id, x in enumerate(doc1)]
+ if db_type in ['chroma', 'chroma_old']:
+ # then separate summarize list
+ sdoc1 = clone_documents(doc1)
+ [x.metadata.update(dict(chunk_id=-1)) for chunk_id, x in enumerate(sdoc1)]
+ doc1 = sdoc1 + doc1
+ elif file.lower().endswith('.py'):
+ doc1 = PythonLoader(file).load()
+ add_meta(doc1, file, parser='PythonLoader')
+ doc1 = chunk_sources(doc1, language=Language.PYTHON)
+ elif file.lower().endswith('.toml'):
+ doc1 = TomlLoader(file).load()
+ add_meta(doc1, file, parser='TomlLoader')
+ doc1 = chunk_sources(doc1)
+ elif file.lower().endswith('.xml'):
+ from langchain.document_loaders import UnstructuredXMLLoader
+ loader = UnstructuredXMLLoader(file_path=file)
+ doc1 = loader.load()
+ add_meta(doc1, file, parser='UnstructuredXMLLoader')
+ elif file.lower().endswith('.urls'):
+ with open(file, "r") as f:
+ urls = f.readlines()
+ # recurse
+ doc1 = path_to_docs_func(None, url=urls)
+ elif file.lower().endswith('.zip'):
+ with zipfile.ZipFile(file, 'r') as zip_ref:
+ # don't put into temporary path, since want to keep references to docs inside zip
+ # so just extract in path where
+ zip_ref.extractall(base_path)
+ # recurse
+ doc1 = path_to_docs_func(base_path)
+ elif file.lower().endswith('.gz') or file.lower().endswith('.gzip'):
+ if file.lower().endswith('.gz'):
+ de_file = file.lower().replace('.gz', '')
+ else:
+ de_file = file.lower().replace('.gzip', '')
+ with gzip.open(file, 'rb') as f_in:
+ with open(de_file, 'wb') as f_out:
+ shutil.copyfileobj(f_in, f_out)
+ # recurse
+ doc1 = file_to_doc(de_file,
+ filei=filei, # single file, same file index as outside caller
+ base_path=base_path, verbose=verbose, fail_any_exception=fail_any_exception,
+ chunk=chunk, chunk_size=chunk_size, n_jobs=n_jobs,
+ is_url=is_url, is_txt=is_txt,
+
+ # urls
+ use_unstructured=use_unstructured,
+ use_playwright=use_playwright,
+ use_selenium=use_selenium,
+
+ # pdfs
+ use_pymupdf=use_pymupdf,
+ use_unstructured_pdf=use_unstructured_pdf,
+ use_pypdf=use_pypdf,
+ enable_pdf_ocr=enable_pdf_ocr,
+ enable_pdf_doctr=enable_pdf_doctr,
+ try_pdf_as_html=try_pdf_as_html,
+
+ # images
+ enable_ocr=enable_ocr,
+ enable_doctr=enable_doctr,
+ enable_pix2struct=enable_pix2struct,
+ enable_captions=enable_captions,
+ captions_model=captions_model,
+ model_loaders=model_loaders,
+
+ # json
+ jq_schema=jq_schema,
+
+ headsize=headsize,
+ db_type=db_type,
+ selected_file_types=selected_file_types)
+ else:
+ raise RuntimeError("No file handler for %s" % os.path.basename(file))
+
+ # allow doc1 to be list or not.
+ if not isinstance(doc1, list):
+ # If not list, did not chunk yet, so chunk now
+ docs = chunk_sources([doc1])
+ elif isinstance(doc1, list) and len(doc1) == 1:
+ # if list of length one, don't trust and chunk it, chunk_id's will still be correct if repeat
+ docs = chunk_sources(doc1)
+ else:
+ docs = doc1
+
+ assert isinstance(docs, list)
+ return docs
+
+
+def path_to_doc1(file,
+ filei=0,
+ verbose=False, fail_any_exception=False, return_file=True,
+ chunk=True, chunk_size=512,
+ n_jobs=-1,
+ is_url=False, is_txt=False,
+
+ # urls
+ use_unstructured=True,
+ use_playwright=False,
+ use_selenium=False,
+
+ # pdfs
+ use_pymupdf='auto',
+ use_unstructured_pdf='auto',
+ use_pypdf='auto',
+ enable_pdf_ocr='auto',
+ enable_pdf_doctr='auto',
+ try_pdf_as_html='auto',
+
+ # images
+ enable_ocr=False,
+ enable_doctr=False,
+ enable_pix2struct=False,
+ enable_captions=True,
+ captions_model=None,
+ model_loaders=None,
+
+ # json
+ jq_schema='.[]',
+
+ db_type=None,
+ selected_file_types=None):
+ assert db_type is not None
+ if verbose:
+ if is_url:
+ print("Ingesting URL: %s" % file, flush=True)
+ elif is_txt:
+ print("Ingesting Text: %s" % file, flush=True)
+ else:
+ print("Ingesting file: %s" % file, flush=True)
+ res = None
+ try:
+ # don't pass base_path=path, would infinitely recurse
+ res = file_to_doc(file,
+ filei=filei,
+ base_path=None, verbose=verbose, fail_any_exception=fail_any_exception,
+ chunk=chunk, chunk_size=chunk_size,
+ n_jobs=n_jobs,
+ is_url=is_url, is_txt=is_txt,
+
+ # urls
+ use_unstructured=use_unstructured,
+ use_playwright=use_playwright,
+ use_selenium=use_selenium,
+
+ # pdfs
+ use_pymupdf=use_pymupdf,
+ use_unstructured_pdf=use_unstructured_pdf,
+ use_pypdf=use_pypdf,
+ enable_pdf_ocr=enable_pdf_ocr,
+ enable_pdf_doctr=enable_pdf_doctr,
+ try_pdf_as_html=try_pdf_as_html,
+
+ # images
+ enable_ocr=enable_ocr,
+ enable_doctr=enable_doctr,
+ enable_pix2struct=enable_pix2struct,
+ enable_captions=enable_captions,
+ captions_model=captions_model,
+ model_loaders=model_loaders,
+
+ # json
+ jq_schema=jq_schema,
+
+ db_type=db_type,
+ selected_file_types=selected_file_types)
+ except BaseException as e:
+ print("Failed to ingest %s due to %s" % (file, traceback.format_exc()))
+ if fail_any_exception:
+ raise
+ else:
+ exception_doc = Document(
+ page_content='',
+ metadata={"source": file, "exception": '%s Exception: %s' % (file, str(e)),
+ "traceback": traceback.format_exc()})
+ res = [exception_doc]
+ if verbose:
+ if is_url:
+ print("DONE Ingesting URL: %s" % file, flush=True)
+ elif is_txt:
+ print("DONE Ingesting Text: %s" % file, flush=True)
+ else:
+ print("DONE Ingesting file: %s" % file, flush=True)
+ if return_file:
+ base_tmp = "temp_path_to_doc1"
+ if not os.path.isdir(base_tmp):
+ base_tmp = makedirs(base_tmp, exist_ok=True, tmp_ok=True, use_base=True)
+ filename = os.path.join(base_tmp, str(uuid.uuid4()) + ".tmp.pickle")
+ with open(filename, 'wb') as f:
+ pickle.dump(res, f)
+ return filename
+ return res
+
+
+def path_to_docs(path_or_paths, verbose=False, fail_any_exception=False, n_jobs=-1,
+ chunk=True, chunk_size=512,
+ url=None, text=None,
+
+ # urls
+ use_unstructured=True,
+ use_playwright=False,
+ use_selenium=False,
+
+ # pdfs
+ use_pymupdf='auto',
+ use_unstructured_pdf='auto',
+ use_pypdf='auto',
+ enable_pdf_ocr='auto',
+ enable_pdf_doctr='auto',
+ try_pdf_as_html='auto',
+
+ # images
+ enable_ocr=False,
+ enable_doctr=False,
+ enable_pix2struct=False,
+ enable_captions=True,
+ captions_model=None,
+
+ caption_loader=None,
+ doctr_loader=None,
+ pix2struct_loader=None,
+
+ # json
+ jq_schema='.[]',
+
+ existing_files=[],
+ existing_hash_ids={},
+ db_type=None,
+ selected_file_types=None,
+ ):
+ if verbose:
+ print("BEGIN Consuming path_or_paths=%s url=%s text=%s" % (path_or_paths, url, text), flush=True)
+ if selected_file_types is not None:
+ non_image_types1 = [x for x in non_image_types if x in selected_file_types]
+ image_types1 = [x for x in image_types if x in selected_file_types]
+ else:
+ non_image_types1 = non_image_types.copy()
+ image_types1 = image_types.copy()
+
+ assert db_type is not None
+ # path_or_paths could be str, list, tuple, generator
+ globs_image_types = []
+ globs_non_image_types = []
+ if not path_or_paths and not url and not text:
+ return []
+ elif url:
+ url = get_list_or_str(url)
+ globs_non_image_types = url if isinstance(url, (list, tuple, types.GeneratorType)) else [url]
+ elif text:
+ globs_non_image_types = text if isinstance(text, (list, tuple, types.GeneratorType)) else [text]
+ elif isinstance(path_or_paths, str) and os.path.isdir(path_or_paths):
+ # single path, only consume allowed files
+ path = path_or_paths
+ # Below globs should match patterns in file_to_doc()
+ [globs_image_types.extend(glob.glob(os.path.join(path, "./**/*.%s" % ftype), recursive=True))
+ for ftype in image_types1]
+ globs_image_types = [os.path.normpath(x) for x in globs_image_types]
+ [globs_non_image_types.extend(glob.glob(os.path.join(path, "./**/*.%s" % ftype), recursive=True))
+ for ftype in non_image_types1]
+ globs_non_image_types = [os.path.normpath(x) for x in globs_non_image_types]
+ else:
+ if isinstance(path_or_paths, str):
+ if os.path.isfile(path_or_paths) or os.path.isdir(path_or_paths):
+ path_or_paths = [path_or_paths]
+ else:
+ # path was deleted etc.
+ return []
+ # list/tuple of files (consume what can, and exception those that selected but cannot consume so user knows)
+ assert isinstance(path_or_paths, (list, tuple, types.GeneratorType)), \
+ "Wrong type for path_or_paths: %s %s" % (path_or_paths, type(path_or_paths))
+ # reform out of allowed types
+ globs_image_types.extend(
+ flatten_list([[os.path.normpath(x) for x in path_or_paths if x.endswith(y)] for y in image_types1]))
+ # could do below:
+ # globs_non_image_types = flatten_list([[x for x in path_or_paths if x.endswith(y)] for y in non_image_types1])
+ # But instead, allow fail so can collect unsupported too
+ set_globs_image_types = set(globs_image_types)
+ globs_non_image_types.extend([os.path.normpath(x) for x in path_or_paths if x not in set_globs_image_types])
+
+ # filter out any files to skip (e.g. if already processed them)
+ # this is easy, but too aggressive in case a file changed, so parent probably passed existing_files=[]
+ assert not existing_files, "DEV: assume not using this approach"
+ if existing_files:
+ set_skip_files = set(existing_files)
+ globs_image_types = [x for x in globs_image_types if x not in set_skip_files]
+ globs_non_image_types = [x for x in globs_non_image_types if x not in set_skip_files]
+ if existing_hash_ids:
+ # assume consistent with add_meta() use of hash_file(file)
+ # also assume consistent with get_existing_hash_ids for dict creation
+ # assume hashable values
+ existing_hash_ids_set = set(existing_hash_ids.items())
+ hash_ids_all_image = set({x: hash_file(x) for x in globs_image_types}.items())
+ hash_ids_all_non_image = set({x: hash_file(x) for x in globs_non_image_types}.items())
+ # don't use symmetric diff. If file is gone, ignore and don't remove or something
+ # just consider existing files (key) having new hash or not (value)
+ new_files_image = set(dict(hash_ids_all_image - existing_hash_ids_set).keys())
+ new_files_non_image = set(dict(hash_ids_all_non_image - existing_hash_ids_set).keys())
+ globs_image_types = [x for x in globs_image_types if x in new_files_image]
+ globs_non_image_types = [x for x in globs_non_image_types if x in new_files_non_image]
+
+ # could use generator, but messes up metadata handling in recursive case
+ if caption_loader and not isinstance(caption_loader, (bool, str)) and caption_loader.device != 'cpu' or \
+ get_device() == 'cuda':
+ # to avoid deadlocks, presume was preloaded and so can't fork due to cuda context
+ # get_device() == 'cuda' because presume faster to process image from (temporarily) preloaded model
+ n_jobs_image = 1
+ else:
+ n_jobs_image = n_jobs
+ if enable_doctr or enable_pdf_doctr in [True, 'auto', 'on']:
+ if doctr_loader and not isinstance(doctr_loader, (bool, str)) and doctr_loader.device != 'cpu':
+ # can't fork cuda context
+ n_jobs = 1
+
+ return_file = True # local choice
+ is_url = url is not None
+ is_txt = text is not None
+ model_loaders = dict(caption=caption_loader,
+ doctr=doctr_loader,
+ pix2struct=pix2struct_loader)
+ model_loaders0 = model_loaders.copy()
+ kwargs = dict(verbose=verbose, fail_any_exception=fail_any_exception,
+ return_file=return_file,
+ chunk=chunk, chunk_size=chunk_size,
+ n_jobs=n_jobs,
+ is_url=is_url,
+ is_txt=is_txt,
+
+ # urls
+ use_unstructured=use_unstructured,
+ use_playwright=use_playwright,
+ use_selenium=use_selenium,
+
+ # pdfs
+ use_pymupdf=use_pymupdf,
+ use_unstructured_pdf=use_unstructured_pdf,
+ use_pypdf=use_pypdf,
+ enable_pdf_ocr=enable_pdf_ocr,
+ enable_pdf_doctr=enable_pdf_doctr,
+ try_pdf_as_html=try_pdf_as_html,
+
+ # images
+ enable_ocr=enable_ocr,
+ enable_doctr=enable_doctr,
+ enable_pix2struct=enable_pix2struct,
+ enable_captions=enable_captions,
+ captions_model=captions_model,
+ model_loaders=model_loaders,
+
+ # json
+ jq_schema=jq_schema,
+
+ db_type=db_type,
+ selected_file_types=selected_file_types,
+ )
+ if n_jobs != 1 and len(globs_non_image_types) > 1:
+ # avoid nesting, e.g. upload 1 zip and then inside many files
+ # harder to handle if upload many zips with many files, inner parallel one will be disabled by joblib
+ documents = ProgressParallel(n_jobs=n_jobs, verbose=10 if verbose else 0, backend='multiprocessing')(
+ delayed(path_to_doc1)(file, filei=filei, **kwargs) for filei, file in enumerate(globs_non_image_types)
+ )
+ else:
+ documents = [path_to_doc1(file, filei=filei, **kwargs) for filei, file in
+ enumerate(tqdm(globs_non_image_types))]
+
+ # do images separately since can't fork after cuda in parent, so can't be parallel
+ if n_jobs_image != 1 and len(globs_image_types) > 1:
+ # avoid nesting, e.g. upload 1 zip and then inside many files
+ # harder to handle if upload many zips with many files, inner parallel one will be disabled by joblib
+ image_documents = ProgressParallel(n_jobs=n_jobs, verbose=10 if verbose else 0, backend='multiprocessing')(
+ delayed(path_to_doc1)(file, filei=filei, **kwargs) for filei, file in enumerate(globs_image_types)
+ )
+ else:
+ image_documents = [path_to_doc1(file, filei=filei, **kwargs) for filei, file in
+ enumerate(tqdm(globs_image_types))]
+
+ # unload loaders (image loaders, includes enable_pdf_doctr that uses same loader)
+ for name, loader in model_loaders.items():
+ loader0 = model_loaders0[name]
+ real_model_initial = loader0 is not None and not isinstance(loader0, (str, bool))
+ real_model_final = model_loaders[name] is not None and not isinstance(model_loaders[name], (str, bool))
+ if not real_model_initial and real_model_final:
+ # clear off GPU newly added model
+ model_loaders[name].unload_model()
+
+ # add image docs in
+ documents += image_documents
+
+ if return_file:
+ # then documents really are files
+ files = documents.copy()
+ documents = []
+ for fil in files:
+ with open(fil, 'rb') as f:
+ documents.extend(pickle.load(f))
+ # remove temp pickle
+ remove(fil)
+ else:
+ documents = reduce(concat, documents)
+
+ if verbose:
+ print("END consuming path_or_paths=%s url=%s text=%s" % (path_or_paths, url, text), flush=True)
+ return documents
+
+
+def prep_langchain(persist_directory,
+ load_db_if_exists,
+ db_type, use_openai_embedding,
+ langchain_mode, langchain_mode_paths, langchain_mode_types,
+ hf_embedding_model,
+ migrate_embedding_model,
+ auto_migrate_db,
+ n_jobs=-1, kwargs_make_db={},
+ verbose=False):
+ """
+ do prep first time, involving downloads
+ # FIXME: Add github caching then add here
+ :return:
+ """
+ if os.getenv("HARD_ASSERTS"):
+ assert langchain_mode not in ['MyData'], "Should not prep scratch/personal data"
+
+ if langchain_mode in langchain_modes_intrinsic:
+ return None
+
+ db_dir_exists = os.path.isdir(persist_directory)
+ user_path = langchain_mode_paths.get(langchain_mode)
+
+ if db_dir_exists and user_path is None:
+ if verbose:
+ print("Prep: persist_directory=%s exists, using" % persist_directory, flush=True)
+ db, use_openai_embedding, hf_embedding_model = \
+ get_existing_db(None, persist_directory, load_db_if_exists,
+ db_type, use_openai_embedding,
+ langchain_mode, langchain_mode_paths, langchain_mode_types,
+ hf_embedding_model, migrate_embedding_model, auto_migrate_db,
+ n_jobs=n_jobs)
+ else:
+ if db_dir_exists and user_path is not None:
+ if verbose:
+ print("Prep: persist_directory=%s exists, user_path=%s passed, adding any changed or new documents" % (
+ persist_directory, user_path), flush=True)
+ elif not db_dir_exists:
+ if verbose:
+ print("Prep: persist_directory=%s does not exist, regenerating" % persist_directory, flush=True)
+ db = None
+ if langchain_mode in ['DriverlessAI docs']:
+ # FIXME: Could also just use dai_docs.pickle directly and upload that
+ get_dai_docs(from_hf=True)
+
+ if langchain_mode in ['wiki']:
+ get_wiki_sources(first_para=kwargs_make_db['first_para'], text_limit=kwargs_make_db['text_limit'])
+
+ langchain_kwargs = kwargs_make_db.copy()
+ langchain_kwargs.update(locals())
+ db, num_new_sources, new_sources_metadata = make_db(**langchain_kwargs)
+
+ return db
+
+
+import posthog
+
+posthog.disabled = True
+
+
+class FakeConsumer(object):
+ def __init__(self, *args, **kwargs):
+ pass
+
+ def run(self):
+ pass
+
+ def pause(self):
+ pass
+
+ def upload(self):
+ pass
+
+ def next(self):
+ pass
+
+ def request(self, batch):
+ pass
+
+
+posthog.Consumer = FakeConsumer
+
+
+def check_update_chroma_embedding(db,
+ db_type,
+ use_openai_embedding,
+ hf_embedding_model, migrate_embedding_model, auto_migrate_db,
+ langchain_mode, langchain_mode_paths, langchain_mode_types,
+ n_jobs=-1):
+ changed_db = False
+ embed_tuple = load_embed(db=db)
+ if embed_tuple not in [(True, use_openai_embedding, hf_embedding_model),
+ (False, use_openai_embedding, hf_embedding_model)]:
+ print("Detected new embedding %s vs. %s %s, updating db: %s" % (
+ use_openai_embedding, hf_embedding_model, embed_tuple, langchain_mode), flush=True)
+ # handle embedding changes
+ db_get = get_documents(db)
+ sources = [Document(page_content=result[0], metadata=result[1] or {})
+ for result in zip(db_get['documents'], db_get['metadatas'])]
+ # delete index, has to be redone
+ persist_directory = db._persist_directory
+ shutil.move(persist_directory, persist_directory + "_" + str(uuid.uuid4()) + ".bak")
+ assert db_type in ['chroma', 'chroma_old']
+ load_db_if_exists = False
+ db = get_db(sources, use_openai_embedding=use_openai_embedding, db_type=db_type,
+ persist_directory=persist_directory, load_db_if_exists=load_db_if_exists,
+ langchain_mode=langchain_mode,
+ langchain_mode_paths=langchain_mode_paths,
+ langchain_mode_types=langchain_mode_types,
+ collection_name=None,
+ hf_embedding_model=hf_embedding_model,
+ migrate_embedding_model=migrate_embedding_model,
+ auto_migrate_db=auto_migrate_db,
+ n_jobs=n_jobs,
+ )
+ changed_db = True
+ print("Done updating db for new embedding: %s" % langchain_mode, flush=True)
+
+ return db, changed_db
+
+
+def migrate_meta_func(db, langchain_mode):
+ changed_db = False
+ db_get = get_documents(db)
+ # just check one doc
+ if len(db_get['metadatas']) > 0 and 'chunk_id' not in db_get['metadatas'][0]:
+ print("Detected old metadata, adding additional information", flush=True)
+ t0 = time.time()
+ # handle meta changes
+ [x.update(dict(chunk_id=x.get('chunk_id', 0))) for x in db_get['metadatas']]
+ client_collection = db._client.get_collection(name=db._collection.name,
+ embedding_function=db._collection._embedding_function)
+ client_collection.update(ids=db_get['ids'], metadatas=db_get['metadatas'])
+ # check
+ db_get = get_documents(db)
+ assert 'chunk_id' in db_get['metadatas'][0], "Failed to add meta"
+ changed_db = True
+ print("Done updating db for new meta: %s in %s seconds" % (langchain_mode, time.time() - t0), flush=True)
+
+ return db, changed_db
+
+
+def get_existing_db(db, persist_directory,
+ load_db_if_exists, db_type, use_openai_embedding,
+ langchain_mode, langchain_mode_paths, langchain_mode_types,
+ hf_embedding_model,
+ migrate_embedding_model,
+ auto_migrate_db=False,
+ verbose=False, check_embedding=True, migrate_meta=True,
+ n_jobs=-1):
+ if load_db_if_exists and db_type in ['chroma', 'chroma_old'] and os.path.isdir(persist_directory):
+ if os.path.isfile(os.path.join(persist_directory, 'chroma.sqlite3')):
+ must_migrate = False
+ elif os.path.isdir(os.path.join(persist_directory, 'index')):
+ must_migrate = True
+ else:
+ return db, use_openai_embedding, hf_embedding_model
+ chroma_settings = dict(is_persistent=True)
+ use_chromamigdb = False
+ if must_migrate:
+ if auto_migrate_db:
+ print("Detected chromadb<0.4 database, require migration, doing now....", flush=True)
+ from chroma_migrate.import_duckdb import migrate_from_duckdb
+ import chromadb
+ api = chromadb.PersistentClient(path=persist_directory)
+ did_migration = migrate_from_duckdb(api, persist_directory)
+ assert did_migration, "Failed to migrate chroma collection at %s, see https://docs.trychroma.com/migration for CLI tool" % persist_directory
+ elif have_chromamigdb:
+ print(
+ "Detected chroma<0.4 database but --auto_migrate_db=False, but detected chromamigdb package, so using old database that still requires duckdb",
+ flush=True)
+ chroma_settings = dict(chroma_db_impl="duckdb+parquet")
+ use_chromamigdb = True
+ else:
+ raise ValueError(
+ "Detected chromadb<0.4 database, require migration, but did not detect chromamigdb package or did not choose auto_migrate_db=False (see FAQ.md)")
+
+ if db is None:
+ if verbose:
+ print("DO Loading db: %s" % langchain_mode, flush=True)
+ got_embedding, use_openai_embedding0, hf_embedding_model0 = load_embed(persist_directory=persist_directory)
+ if got_embedding:
+ use_openai_embedding, hf_embedding_model = use_openai_embedding0, hf_embedding_model0
+ embedding = get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model)
+ import logging
+ logging.getLogger("chromadb").setLevel(logging.ERROR)
+ if use_chromamigdb:
+ from chromamigdb.config import Settings
+ chroma_class = ChromaMig
+ else:
+ from chromadb.config import Settings
+ chroma_class = Chroma
+ client_settings = Settings(anonymized_telemetry=False,
+ **chroma_settings,
+ persist_directory=persist_directory)
+ db = chroma_class(persist_directory=persist_directory, embedding_function=embedding,
+ collection_name=langchain_mode.replace(' ', '_'),
+ client_settings=client_settings)
+ try:
+ db.similarity_search('')
+ except BaseException as e:
+ # migration when no embed_info
+ if 'Dimensionality of (768) does not match index dimensionality (384)' in str(e) or \
+ 'Embedding dimension 768 does not match collection dimensionality 384' in str(e):
+ hf_embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
+ embedding = get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model)
+ db = chroma_class(persist_directory=persist_directory, embedding_function=embedding,
+ collection_name=langchain_mode.replace(' ', '_'),
+ client_settings=client_settings)
+ # should work now, let fail if not
+ db.similarity_search('')
+ save_embed(db, use_openai_embedding, hf_embedding_model)
+ else:
+ raise
+
+ if verbose:
+ print("DONE Loading db: %s" % langchain_mode, flush=True)
+ else:
+ if not migrate_embedding_model:
+ # OVERRIDE embedding choices if could load embedding info when not migrating
+ got_embedding, use_openai_embedding, hf_embedding_model = load_embed(db=db)
+ if verbose:
+ print("USING already-loaded db: %s" % langchain_mode, flush=True)
+ if check_embedding:
+ db_trial, changed_db = check_update_chroma_embedding(db,
+ db_type,
+ use_openai_embedding,
+ hf_embedding_model,
+ migrate_embedding_model,
+ auto_migrate_db,
+ langchain_mode,
+ langchain_mode_paths,
+ langchain_mode_types,
+ n_jobs=n_jobs)
+ if changed_db:
+ db = db_trial
+ # only call persist if really changed db, else takes too long for large db
+ if db is not None:
+ db.persist()
+ clear_embedding(db)
+ save_embed(db, use_openai_embedding, hf_embedding_model)
+ if migrate_meta and db is not None:
+ db_trial, changed_db = migrate_meta_func(db, langchain_mode)
+ if changed_db:
+ db = db_trial
+ return db, use_openai_embedding, hf_embedding_model
+ return db, use_openai_embedding, hf_embedding_model
+
+
+def clear_embedding(db):
+ if db is None:
+ return
+ # don't keep on GPU, wastes memory, push back onto CPU and only put back on GPU once again embed
+ try:
+ if hasattr(db._embedding_function, 'client') and hasattr(db._embedding_function.client, 'cpu'):
+ # only push back to CPU if each db/user has own embedding model, else if shared share on GPU
+ if hasattr(db._embedding_function.client, 'preload') and not db._embedding_function.client.preload:
+ db._embedding_function.client.cpu()
+ clear_torch_cache()
+ except RuntimeError as e:
+ print("clear_embedding error: %s" % ''.join(traceback.format_tb(e.__traceback__)), flush=True)
+
+
+def make_db(**langchain_kwargs):
+ func_names = list(inspect.signature(_make_db).parameters)
+ missing_kwargs = [x for x in func_names if x not in langchain_kwargs]
+ defaults_db = {k: v.default for k, v in dict(inspect.signature(run_qa_db).parameters).items()}
+ for k in missing_kwargs:
+ if k in defaults_db:
+ langchain_kwargs[k] = defaults_db[k]
+ # final check for missing
+ missing_kwargs = [x for x in func_names if x not in langchain_kwargs]
+ assert not missing_kwargs, "Missing kwargs for make_db: %s" % missing_kwargs
+ # only keep actual used
+ langchain_kwargs = {k: v for k, v in langchain_kwargs.items() if k in func_names}
+ return _make_db(**langchain_kwargs)
+
+
+embed_lock_name = 'embed.lock'
+
+
+def get_embed_lock_file(db, persist_directory=None):
+ if hasattr(db, '_persist_directory') or persist_directory:
+ if persist_directory is None:
+ persist_directory = db._persist_directory
+ check_persist_directory(persist_directory)
+ base_path = os.path.join('locks', persist_directory)
+ base_path = makedirs(base_path, exist_ok=True, tmp_ok=True, use_base=True)
+ lock_file = os.path.join(base_path, embed_lock_name)
+ makedirs(os.path.dirname(lock_file))
+ return lock_file
+ return None
+
+
+def save_embed(db, use_openai_embedding, hf_embedding_model):
+ if hasattr(db, '_persist_directory'):
+ persist_directory = db._persist_directory
+ lock_file = get_embed_lock_file(db)
+ with filelock.FileLock(lock_file):
+ embed_info_file = os.path.join(persist_directory, 'embed_info')
+ with open(embed_info_file, 'wb') as f:
+ if isinstance(hf_embedding_model, str):
+ hf_embedding_model_save = hf_embedding_model
+ elif hasattr(hf_embedding_model, 'model_name'):
+ hf_embedding_model_save = hf_embedding_model.model_name
+ elif isinstance(hf_embedding_model, dict) and 'name' in hf_embedding_model:
+ hf_embedding_model_save = hf_embedding_model['name']
+ elif isinstance(hf_embedding_model, dict) and 'name' in hf_embedding_model:
+ if os.getenv('HARD_ASSERTS'):
+ # unexpected in testing or normally
+ raise RuntimeError("HERE")
+ hf_embedding_model_save = 'hkunlp/instructor-large'
+ pickle.dump((use_openai_embedding, hf_embedding_model_save), f)
+ return use_openai_embedding, hf_embedding_model
+
+
+def load_embed(db=None, persist_directory=None):
+ if hasattr(db, 'embeddings') and hasattr(db.embeddings, 'model_name'):
+ hf_embedding_model = db.embeddings.model_name if 'openai' not in db.embeddings.model_name.lower() else None
+ use_openai_embedding = hf_embedding_model is None
+ save_embed(db, use_openai_embedding, hf_embedding_model)
+ return True, use_openai_embedding, hf_embedding_model
+ if persist_directory is None:
+ persist_directory = db._persist_directory
+ embed_info_file = os.path.join(persist_directory, 'embed_info')
+ if os.path.isfile(embed_info_file):
+ lock_file = get_embed_lock_file(db, persist_directory=persist_directory)
+ with filelock.FileLock(lock_file):
+ with open(embed_info_file, 'rb') as f:
+ try:
+ use_openai_embedding, hf_embedding_model = pickle.load(f)
+ if not isinstance(hf_embedding_model, str):
+ # work-around bug introduced here: https://github.com/h2oai/h2ogpt/commit/54c4414f1ce3b5b7c938def651c0f6af081c66de
+ hf_embedding_model = 'hkunlp/instructor-large'
+ # fix file
+ save_embed(db, use_openai_embedding, hf_embedding_model)
+ got_embedding = True
+ except EOFError:
+ use_openai_embedding, hf_embedding_model = False, 'hkunlp/instructor-large'
+ got_embedding = False
+ if os.getenv('HARD_ASSERTS'):
+ # unexpected in testing or normally
+ raise
+ else:
+ # migration, assume defaults
+ use_openai_embedding, hf_embedding_model = False, "sentence-transformers/all-MiniLM-L6-v2"
+ got_embedding = False
+ assert isinstance(hf_embedding_model, str)
+ return got_embedding, use_openai_embedding, hf_embedding_model
+
+
+def get_persist_directory(langchain_mode, langchain_type=None, db1s=None, dbs=None):
+ if langchain_mode in [LangChainMode.DISABLED.value, LangChainMode.LLM.value]:
+ # not None so join works but will fail to find db
+ return '', langchain_type
+
+ userid = get_userid_direct(db1s)
+ username = get_username_direct(db1s)
+
+ # sanity for bad code
+ assert userid != 'None'
+ assert username != 'None'
+
+ dirid = username or userid
+ if langchain_type == LangChainTypes.SHARED.value and not dirid:
+ dirid = './' # just to avoid error
+ if langchain_type == LangChainTypes.PERSONAL.value and not dirid:
+ # e.g. from client when doing transient calls with MyData
+ if db1s is None:
+ # just trick to get filled locally
+ db1s = {LangChainMode.MY_DATA.value: [None, None, None]}
+ set_userid_direct(db1s, str(uuid.uuid4()), str(uuid.uuid4()))
+ userid = get_userid_direct(db1s)
+ username = get_username_direct(db1s)
+ dirid = username or userid
+ langchain_type = LangChainTypes.PERSONAL.value
+
+ # deal with existing locations
+ user_base_dir = os.getenv('USERS_BASE_DIR', 'users')
+ persist_directory = os.path.join(user_base_dir, dirid, 'db_dir_%s' % langchain_mode)
+ if userid and \
+ (os.path.isdir(persist_directory) or
+ db1s is not None and langchain_mode in db1s or
+ langchain_type == LangChainTypes.PERSONAL.value):
+ langchain_type = LangChainTypes.PERSONAL.value
+ persist_directory = makedirs(persist_directory, use_base=True)
+ check_persist_directory(persist_directory)
+ return persist_directory, langchain_type
+
+ persist_directory = 'db_dir_%s' % langchain_mode
+ if (os.path.isdir(persist_directory) or
+ dbs is not None and langchain_mode in dbs or
+ langchain_type == LangChainTypes.SHARED.value):
+ # ensure consistent
+ langchain_type = LangChainTypes.SHARED.value
+ persist_directory = makedirs(persist_directory, use_base=True)
+ check_persist_directory(persist_directory)
+ return persist_directory, langchain_type
+
+ # dummy return for prep_langchain() or full personal space
+ base_others = 'db_nonusers'
+ persist_directory = os.path.join(base_others, 'db_dir_%s' % str(uuid.uuid4()))
+ persist_directory = makedirs(persist_directory, use_base=True)
+ langchain_type = LangChainTypes.PERSONAL.value
+
+ check_persist_directory(persist_directory)
+ return persist_directory, langchain_type
+
+
+def check_persist_directory(persist_directory):
+ # deal with some cases when see intrinsic names being used as shared
+ for langchain_mode in langchain_modes_intrinsic:
+ if persist_directory == 'db_dir_%s' % langchain_mode:
+ raise RuntimeError("Illegal access to %s" % persist_directory)
+
+
+def _make_db(use_openai_embedding=False,
+ hf_embedding_model=None,
+ migrate_embedding_model=False,
+ auto_migrate_db=False,
+ first_para=False, text_limit=None,
+ chunk=True, chunk_size=512,
+
+ # urls
+ use_unstructured=True,
+ use_playwright=False,
+ use_selenium=False,
+
+ # pdfs
+ use_pymupdf='auto',
+ use_unstructured_pdf='auto',
+ use_pypdf='auto',
+ enable_pdf_ocr='auto',
+ enable_pdf_doctr='auto',
+ try_pdf_as_html='auto',
+
+ # images
+ enable_ocr=False,
+ enable_doctr=False,
+ enable_pix2struct=False,
+ enable_captions=True,
+ captions_model=None,
+ caption_loader=None,
+ doctr_loader=None,
+ pix2struct_loader=None,
+
+ # json
+ jq_schema='.[]',
+
+ langchain_mode=None,
+ langchain_mode_paths=None,
+ langchain_mode_types=None,
+ db_type='faiss',
+ load_db_if_exists=True,
+ db=None,
+ n_jobs=-1,
+ verbose=False):
+ assert hf_embedding_model is not None
+ user_path = langchain_mode_paths.get(langchain_mode)
+ langchain_type = langchain_mode_types.get(langchain_mode, LangChainTypes.EITHER.value)
+ persist_directory, langchain_type = get_persist_directory(langchain_mode, langchain_type=langchain_type)
+ langchain_mode_types[langchain_mode] = langchain_type
+ # see if can get persistent chroma db
+ db_trial, use_openai_embedding, hf_embedding_model = \
+ get_existing_db(db, persist_directory, load_db_if_exists, db_type,
+ use_openai_embedding,
+ langchain_mode, langchain_mode_paths, langchain_mode_types,
+ hf_embedding_model, migrate_embedding_model, auto_migrate_db, verbose=verbose,
+ n_jobs=n_jobs)
+ if db_trial is not None:
+ db = db_trial
+
+ sources = []
+ if not db:
+ chunk_sources = functools.partial(_chunk_sources, chunk=chunk, chunk_size=chunk_size, db_type=db_type)
+ if langchain_mode in ['wiki_full']:
+ from read_wiki_full import get_all_documents
+ small_test = None
+ print("Generating new wiki", flush=True)
+ sources1 = get_all_documents(small_test=small_test, n_jobs=os.cpu_count() // 2)
+ print("Got new wiki", flush=True)
+ sources1 = chunk_sources(sources1, chunk=chunk)
+ print("Chunked new wiki", flush=True)
+ sources.extend(sources1)
+ elif langchain_mode in ['wiki']:
+ sources1 = get_wiki_sources(first_para=first_para, text_limit=text_limit)
+ sources1 = chunk_sources(sources1, chunk=chunk)
+ sources.extend(sources1)
+ elif langchain_mode in ['github h2oGPT']:
+ # sources = get_github_docs("dagster-io", "dagster")
+ sources1 = get_github_docs("h2oai", "h2ogpt")
+ # FIXME: always chunk for now
+ sources1 = chunk_sources(sources1)
+ sources.extend(sources1)
+ elif langchain_mode in ['DriverlessAI docs']:
+ sources1 = get_dai_docs(from_hf=True)
+ # FIXME: DAI docs are already chunked well, should only chunk more if over limit
+ sources1 = chunk_sources(sources1, chunk=False)
+ sources.extend(sources1)
+ if user_path:
+ # UserData or custom, which has to be from user's disk
+ if db is not None:
+ # NOTE: Ignore file names for now, only go by hash ids
+ # existing_files = get_existing_files(db)
+ existing_files = []
+ existing_hash_ids = get_existing_hash_ids(db)
+ else:
+ # pretend no existing files so won't filter
+ existing_files = []
+ existing_hash_ids = []
+ # chunk internally for speed over multiple docs
+ # FIXME: If first had old Hash=None and switch embeddings,
+ # then re-embed, and then hit here and reload so have hash, and then re-embed.
+ sources1 = path_to_docs(user_path, n_jobs=n_jobs, chunk=chunk, chunk_size=chunk_size,
+ # urls
+ use_unstructured=use_unstructured,
+ use_playwright=use_playwright,
+ use_selenium=use_selenium,
+
+ # pdfs
+ use_pymupdf=use_pymupdf,
+ use_unstructured_pdf=use_unstructured_pdf,
+ use_pypdf=use_pypdf,
+ enable_pdf_ocr=enable_pdf_ocr,
+ enable_pdf_doctr=enable_pdf_doctr,
+ try_pdf_as_html=try_pdf_as_html,
+
+ # images
+ enable_ocr=enable_ocr,
+ enable_doctr=enable_doctr,
+ enable_pix2struct=enable_pix2struct,
+ enable_captions=enable_captions,
+ captions_model=captions_model,
+ caption_loader=caption_loader,
+ doctr_loader=doctr_loader,
+ pix2struct_loader=pix2struct_loader,
+
+ # json
+ jq_schema=jq_schema,
+
+ existing_files=existing_files, existing_hash_ids=existing_hash_ids,
+ db_type=db_type)
+ new_metadata_sources = set([x.metadata['source'] for x in sources1])
+ if new_metadata_sources:
+ if os.getenv('NO_NEW_FILES') is not None:
+ raise RuntimeError("Expected no new files! %s" % new_metadata_sources)
+ print("Loaded %s new files as sources to add to %s" % (len(new_metadata_sources), langchain_mode),
+ flush=True)
+ if verbose:
+ print("Files added: %s" % '\n'.join(new_metadata_sources), flush=True)
+ sources.extend(sources1)
+ if len(sources) > 0 and os.getenv('NO_NEW_FILES') is not None:
+ raise RuntimeError("Expected no new files! %s" % langchain_mode)
+ if len(sources) == 0 and os.getenv('SHOULD_NEW_FILES') is not None:
+ raise RuntimeError("Expected new files! %s" % langchain_mode)
+ print("Loaded %s sources for potentially adding to %s" % (len(sources), langchain_mode), flush=True)
+
+ # see if got sources
+ if not sources:
+ if verbose:
+ if db is not None:
+ print("langchain_mode %s has no new sources, nothing to add to db" % langchain_mode, flush=True)
+ else:
+ print("langchain_mode %s has no sources, not making new db" % langchain_mode, flush=True)
+ return db, 0, []
+ if verbose:
+ if db is not None:
+ print("Generating db", flush=True)
+ else:
+ print("Adding to db", flush=True)
+ if not db:
+ if sources:
+ db = get_db(sources, use_openai_embedding=use_openai_embedding, db_type=db_type,
+ persist_directory=persist_directory,
+ langchain_mode=langchain_mode,
+ langchain_mode_paths=langchain_mode_paths,
+ langchain_mode_types=langchain_mode_types,
+ hf_embedding_model=hf_embedding_model,
+ migrate_embedding_model=migrate_embedding_model,
+ auto_migrate_db=auto_migrate_db,
+ n_jobs=n_jobs)
+ if verbose:
+ print("Generated db", flush=True)
+ elif langchain_mode not in langchain_modes_intrinsic:
+ print("Did not generate db for %s since no sources" % langchain_mode, flush=True)
+ new_sources_metadata = [x.metadata for x in sources]
+ elif user_path is not None:
+ print("Existing db, potentially adding %s sources from user_path=%s" % (len(sources), user_path), flush=True)
+ db, num_new_sources, new_sources_metadata = add_to_db(db, sources, db_type=db_type,
+ use_openai_embedding=use_openai_embedding,
+ hf_embedding_model=hf_embedding_model)
+ print("Existing db, added %s new sources from user_path=%s" % (num_new_sources, user_path), flush=True)
+ else:
+ new_sources_metadata = [x.metadata for x in sources]
+
+ return db, len(new_sources_metadata), new_sources_metadata
+
+
+def get_metadatas(db):
+ metadatas = []
+ from langchain.vectorstores import FAISS
+ if isinstance(db, FAISS):
+ metadatas = [v.metadata for k, v in db.docstore._dict.items()]
+ elif isinstance(db, Chroma) or isinstance(db, ChromaMig) or ChromaMig.__name__ in str(db):
+ metadatas = get_documents(db)['metadatas']
+ elif db is not None:
+ # FIXME: Hack due to https://github.com/weaviate/weaviate/issues/1947
+ # seems no way to get all metadata, so need to avoid this approach for weaviate
+ metadatas = [x.metadata for x in db.similarity_search("", k=10000)]
+ return metadatas
+
+
+def get_db_lock_file(db, lock_type='getdb'):
+ if hasattr(db, '_persist_directory'):
+ persist_directory = db._persist_directory
+ check_persist_directory(persist_directory)
+ base_path = os.path.join('locks', persist_directory)
+ base_path = makedirs(base_path, exist_ok=True, tmp_ok=True, use_base=True)
+ lock_file = os.path.join(base_path, "%s.lock" % lock_type)
+ makedirs(os.path.dirname(lock_file)) # ensure made
+ return lock_file
+ return None
+
+
+def get_documents(db):
+ if hasattr(db, '_persist_directory'):
+ lock_file = get_db_lock_file(db)
+ with filelock.FileLock(lock_file):
+ # get segfaults and other errors when multiple threads access this
+ return _get_documents(db)
+ else:
+ return _get_documents(db)
+
+
+def _get_documents(db):
+ from langchain.vectorstores import FAISS
+ if isinstance(db, FAISS):
+ documents = [v for k, v in db.docstore._dict.items()]
+ documents = dict(documents=documents)
+ elif isinstance(db, Chroma) or isinstance(db, ChromaMig) or ChromaMig.__name__ in str(db):
+ documents = db.get()
+ else:
+ # FIXME: Hack due to https://github.com/weaviate/weaviate/issues/1947
+ # seems no way to get all metadata, so need to avoid this approach for weaviate
+ documents = [x for x in db.similarity_search("", k=10000)]
+ documents = dict(documents=documents)
+ return documents
+
+
+def get_docs_and_meta(db, top_k_docs, filter_kwargs={}, text_context_list=None):
+ if hasattr(db, '_persist_directory'):
+ lock_file = get_db_lock_file(db)
+ with filelock.FileLock(lock_file):
+ return _get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs, text_context_list=text_context_list)
+ else:
+ return _get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs, text_context_list=text_context_list)
+
+
+def _get_docs_and_meta(db, top_k_docs, filter_kwargs={}, text_context_list=None):
+ db_documents = []
+ db_metadatas = []
+
+ if text_context_list:
+ db_documents += [x.page_content if hasattr(x, 'page_content') else x for x in text_context_list]
+ db_metadatas += [x.metadata if hasattr(x, 'metadata') else {} for x in text_context_list]
+
+ from langchain.vectorstores import FAISS
+ if isinstance(db, Chroma) or isinstance(db, ChromaMig) or ChromaMig.__name__ in str(db):
+ db_get = db._collection.get(where=filter_kwargs.get('filter'))
+ db_metadatas += db_get['metadatas']
+ db_documents += db_get['documents']
+ elif isinstance(db, FAISS):
+ import itertools
+ db_metadatas += get_metadatas(db)
+ # FIXME: FAISS has no filter
+ if top_k_docs == -1:
+ db_documents += list(db.docstore._dict.values())
+ else:
+ # slice dict first
+ db_documents += list(dict(itertools.islice(db.docstore._dict.items(), top_k_docs)).values())
+ elif db is not None:
+ db_metadatas += get_metadatas(db)
+ db_documents += get_documents(db)['documents']
+
+ return db_documents, db_metadatas
+
+
+def get_existing_files(db):
+ metadatas = get_metadatas(db)
+ metadata_sources = set([x['source'] for x in metadatas])
+ return metadata_sources
+
+
+def get_existing_hash_ids(db):
+ metadatas = get_metadatas(db)
+ # assume consistency, that any prior hashed source was single hashed file at the time among all source chunks
+ metadata_hash_ids = {os.path.normpath(x['source']): x.get('hashid') for x in metadatas}
+ return metadata_hash_ids
+
+
+def run_qa_db(**kwargs):
+ func_names = list(inspect.signature(_run_qa_db).parameters)
+ # hard-coded defaults
+ kwargs['answer_with_sources'] = kwargs.get('answer_with_sources', True)
+ kwargs['show_rank'] = kwargs.get('show_rank', False)
+ kwargs['show_accordions'] = kwargs.get('show_accordions', True)
+ kwargs['show_link_in_sources'] = kwargs.get('show_link_in_sources', True)
+ kwargs['top_k_docs_max_show'] = kwargs.get('top_k_docs_max_show', 10)
+ kwargs['llamacpp_dict'] = {} # shouldn't be required unless from test using _run_qa_db
+ missing_kwargs = [x for x in func_names if x not in kwargs]
+ assert not missing_kwargs, "Missing kwargs for run_qa_db: %s" % missing_kwargs
+ # only keep actual used
+ kwargs = {k: v for k, v in kwargs.items() if k in func_names}
+ try:
+ return _run_qa_db(**kwargs)
+ finally:
+ clear_torch_cache()
+
+
+def _run_qa_db(query=None,
+ iinput=None,
+ context=None,
+ use_openai_model=False, use_openai_embedding=False,
+ first_para=False, text_limit=None, top_k_docs=4, chunk=True, chunk_size=512,
+
+ # urls
+ use_unstructured=True,
+ use_playwright=False,
+ use_selenium=False,
+
+ # pdfs
+ use_pymupdf='auto',
+ use_unstructured_pdf='auto',
+ use_pypdf='auto',
+ enable_pdf_ocr='auto',
+ enable_pdf_doctr='auto',
+ try_pdf_as_html='auto',
+
+ # images
+ enable_ocr=False,
+ enable_doctr=False,
+ enable_pix2struct=False,
+ enable_captions=True,
+ captions_model=None,
+ caption_loader=None,
+ doctr_loader=None,
+ pix2struct_loader=None,
+
+ # json
+ jq_schema='.[]',
+
+ langchain_mode_paths={},
+ langchain_mode_types={},
+ detect_user_path_changes_every_query=False,
+ db_type=None,
+ model_name=None, model=None, tokenizer=None, inference_server=None,
+ langchain_only_model=False,
+ hf_embedding_model=None,
+ migrate_embedding_model=False,
+ auto_migrate_db=False,
+ stream_output=False,
+ async_output=True,
+ num_async=3,
+ prompter=None,
+ prompt_type=None,
+ prompt_dict=None,
+ answer_with_sources=True,
+ append_sources_to_answer=True,
+ cut_distance=1.64,
+ add_chat_history_to_context=True,
+ add_search_to_context=False,
+ keep_sources_in_context=False,
+ memory_restriction_level=0,
+ system_prompt='',
+ sanitize_bot_response=False,
+ show_rank=False,
+ show_accordions=True,
+ show_link_in_sources=True,
+ top_k_docs_max_show=10,
+ use_llm_if_no_docs=True,
+ load_db_if_exists=False,
+ db=None,
+ do_sample=False,
+ temperature=0.1,
+ top_k=40,
+ top_p=0.7,
+ num_beams=1,
+ max_new_tokens=512,
+ min_new_tokens=1,
+ early_stopping=False,
+ max_time=180,
+ repetition_penalty=1.0,
+ num_return_sequences=1,
+ langchain_mode=None,
+ langchain_action=None,
+ langchain_agents=None,
+ document_subset=DocumentSubset.Relevant.name,
+ document_choice=[DocumentChoice.ALL.value],
+ pre_prompt_query=None,
+ prompt_query=None,
+ pre_prompt_summary=None,
+ prompt_summary=None,
+ text_context_list=None,
+ chat_conversation=None,
+ visible_models=None,
+ h2ogpt_key=None,
+ docs_ordering_type='reverse_ucurve_sort',
+ min_max_new_tokens=256,
+
+ n_jobs=-1,
+ llamacpp_dict=None,
+ verbose=False,
+ cli=False,
+ lora_weights='',
+ auto_reduce_chunks=True,
+ max_chunks=100,
+ total_tokens_for_docs=None,
+ headsize=50,
+ ):
+ """
+
+ :param query:
+ :param use_openai_model:
+ :param use_openai_embedding:
+ :param first_para:
+ :param text_limit:
+ :param top_k_docs:
+ :param chunk:
+ :param chunk_size:
+ :param langchain_mode_paths: dict of langchain_mode -> user path to glob recursively from
+ :param db_type: 'faiss' for in-memory
+ 'chroma' (for chroma >= 0.4)
+ 'chroma_old' (for chroma < 0.4)
+ 'weaviate' for persisted on disk
+ :param model_name: model name, used to switch behaviors
+ :param model: pre-initialized model, else will make new one
+ :param tokenizer: pre-initialized tokenizer, else will make new one. Required not None if model is not None
+ :param answer_with_sources
+ :return:
+ """
+ t_run = time.time()
+ if stream_output:
+ # threads and asyncio don't mix
+ async_output = False
+ if langchain_action in [LangChainAction.QUERY.value]:
+ # only summarization supported
+ async_output = False
+
+ # in case None, e.g. lazy client, then set based upon actual model
+ pre_prompt_query, prompt_query, pre_prompt_summary, prompt_summary = \
+ get_langchain_prompts(pre_prompt_query, prompt_query,
+ pre_prompt_summary, prompt_summary,
+ model_name, inference_server,
+ llamacpp_dict.get('model_path_llama'))
+
+ assert db_type is not None
+ assert hf_embedding_model is not None
+ assert langchain_mode_paths is not None
+ assert langchain_mode_types is not None
+ if model is not None:
+ assert model_name is not None # require so can make decisions
+ assert query is not None
+ assert prompter is not None or prompt_type is not None or model is None # if model is None, then will generate
+ if prompter is not None:
+ prompt_type = prompter.prompt_type
+ prompt_dict = prompter.prompt_dict
+ if model is not None:
+ assert prompt_type is not None
+ if prompt_type == PromptType.custom.name:
+ assert prompt_dict is not None # should at least be {} or ''
+ else:
+ prompt_dict = ''
+
+ if LangChainAgent.SEARCH.value in langchain_agents and 'llama' in model_name.lower():
+ system_prompt = """You are a zero shot react agent.
+Consider to prompt of Question that was original query from the user.
+Respond to prompt of Thought with a thought that may lead to a reasonable new action choice.
+Respond to prompt of Action with an action to take out of the tools given, giving exactly single word for the tool name.
+Respond to prompt of Action Input with an input to give the tool.
+Consider to prompt of Observation that was response from the tool.
+Repeat this Thought, Action, Action Input, Observation, Thought sequence several times with new and different thoughts and actions each time, do not repeat.
+Once satisfied that the thoughts, responses are sufficient to answer the question, then respond to prompt of Thought with: I now know the final answer
+Respond to prompt of Final Answer with your final high-quality bullet list answer to the original query.
+"""
+ prompter.system_prompt = system_prompt
+
+ assert len(set(gen_hyper).difference(inspect.signature(get_llm).parameters)) == 0
+ # pass in context to LLM directly, since already has prompt_type structure
+ # can't pass through langchain in get_chain() to LLM: https://github.com/hwchase17/langchain/issues/6638
+ llm, model_name, streamer, prompt_type_out, async_output, only_new_text = \
+ get_llm(use_openai_model=use_openai_model, model_name=model_name,
+ model=model,
+ tokenizer=tokenizer,
+ inference_server=inference_server,
+ langchain_only_model=langchain_only_model,
+ stream_output=stream_output,
+ async_output=async_output,
+ num_async=num_async,
+ do_sample=do_sample,
+ temperature=temperature,
+ top_k=top_k,
+ top_p=top_p,
+ num_beams=num_beams,
+ max_new_tokens=max_new_tokens,
+ min_new_tokens=min_new_tokens,
+ early_stopping=early_stopping,
+ max_time=max_time,
+ repetition_penalty=repetition_penalty,
+ num_return_sequences=num_return_sequences,
+ prompt_type=prompt_type,
+ prompt_dict=prompt_dict,
+ prompter=prompter,
+ context=context,
+ iinput=iinput,
+ sanitize_bot_response=sanitize_bot_response,
+ system_prompt=system_prompt,
+ visible_models=visible_models,
+ h2ogpt_key=h2ogpt_key,
+ min_max_new_tokens=min_max_new_tokens,
+ n_jobs=n_jobs,
+ llamacpp_dict=llamacpp_dict,
+ cli=cli,
+ verbose=verbose,
+ )
+ # in case change, override original prompter
+ if hasattr(llm, 'prompter'):
+ prompter = llm.prompter
+ if hasattr(llm, 'pipeline') and hasattr(llm.pipeline, 'prompter'):
+ prompter = llm.pipeline.prompter
+
+ if prompter is None:
+ if prompt_type is None:
+ prompt_type = prompt_type_out
+ # get prompter
+ chat = True # FIXME?
+ prompter = Prompter(prompt_type, prompt_dict, debug=False, chat=chat, stream_output=stream_output,
+ system_prompt=system_prompt)
+
+ use_docs_planned = False
+ scores = []
+ chain = None
+
+ # basic version of prompt without docs etc.
+ data_point = dict(context=context, instruction=query, input=iinput)
+ prompt_basic = prompter.generate_prompt(data_point)
+
+ if isinstance(document_choice, str):
+ # support string as well
+ document_choice = [document_choice]
+
+ func_names = list(inspect.signature(get_chain).parameters)
+ sim_kwargs = {k: v for k, v in locals().items() if k in func_names}
+ missing_kwargs = [x for x in func_names if x not in sim_kwargs]
+ assert not missing_kwargs, "Missing: %s" % missing_kwargs
+ docs, chain, scores, \
+ use_docs_planned, num_docs_before_cut, \
+ use_llm_if_no_docs, llm_mode, top_k_docs_max_show = \
+ get_chain(**sim_kwargs)
+ if document_subset in non_query_commands:
+ formatted_doc_chunks = '\n\n'.join([get_url(x) + '\n\n' + x.page_content for x in docs])
+ if not formatted_doc_chunks and not use_llm_if_no_docs:
+ yield dict(prompt=prompt_basic, response="No sources", sources='', num_prompt_tokens=0)
+ return
+ # if no souces, outside gpt_langchain, LLM will be used with '' input
+ scores = [1] * len(docs)
+ get_answer_args = tuple([query, docs, formatted_doc_chunks, scores, show_rank,
+ answer_with_sources,
+ append_sources_to_answer])
+ get_answer_kwargs = dict(show_accordions=show_accordions,
+ show_link_in_sources=show_link_in_sources,
+ top_k_docs_max_show=top_k_docs_max_show,
+ docs_ordering_type=docs_ordering_type,
+ num_docs_before_cut=num_docs_before_cut,
+ verbose=verbose)
+ ret, extra = get_sources_answer(*get_answer_args, **get_answer_kwargs)
+ yield dict(prompt=prompt_basic, response=formatted_doc_chunks, sources=extra, num_prompt_tokens=0)
+ return
+ if not use_llm_if_no_docs:
+ if not docs and langchain_action in [LangChainAction.SUMMARIZE_MAP.value,
+ LangChainAction.SUMMARIZE_ALL.value,
+ LangChainAction.SUMMARIZE_REFINE.value]:
+ ret = 'No relevant documents to summarize.' if num_docs_before_cut else 'No documents to summarize.'
+ extra = ''
+ yield dict(prompt=prompt_basic, response=ret, sources=extra, num_prompt_tokens=0)
+ return
+ if not docs and not llm_mode:
+ ret = 'No relevant documents to query (for chatting with LLM, pick Resources->Collections->LLM).' if num_docs_before_cut else 'No documents to query (for chatting with LLM, pick Resources->Collections->LLM).'
+ extra = ''
+ yield dict(prompt=prompt_basic, response=ret, sources=extra, num_prompt_tokens=0)
+ return
+
+ if chain is None and not langchain_only_model:
+ # here if no docs at all and not HF type
+ # can only return if HF type
+ return
+
+ # context stuff similar to used in evaluate()
+ import torch
+ device, torch_dtype, context_class = get_device_dtype()
+ conditional_type = hasattr(llm, 'pipeline') and hasattr(llm.pipeline, 'model') and hasattr(llm.pipeline.model,
+ 'conditional_type') and llm.pipeline.model.conditional_type
+ with torch.no_grad():
+ have_lora_weights = lora_weights not in [no_lora_str, '', None]
+ context_class_cast = NullContext if device == 'cpu' or have_lora_weights else torch.autocast
+ if conditional_type:
+ # issues when casting to float16, can mess up t5 model, e.g. only when not streaming, or other odd behaviors
+ context_class_cast = NullContext
+ with context_class_cast(device):
+ if stream_output and streamer:
+ answer = None
+ import queue
+ bucket = queue.Queue()
+ thread = EThread(target=chain, streamer=streamer, bucket=bucket)
+ thread.start()
+ outputs = ""
+ try:
+ for new_text in streamer:
+ # print("new_text: %s" % new_text, flush=True)
+ if bucket.qsize() > 0 or thread.exc:
+ thread.join()
+ outputs += new_text
+ if prompter: # and False: # FIXME: pipeline can already use prompter
+ if conditional_type:
+ if prompter.botstr:
+ prompt = prompter.botstr
+ output_with_prompt = prompt + outputs
+ only_new_text = False
+ else:
+ prompt = None
+ output_with_prompt = outputs
+ only_new_text = True
+ else:
+ prompt = None # FIXME
+ output_with_prompt = outputs
+ # don't specify only_new_text here, use get_llm() value
+ output1 = prompter.get_response(output_with_prompt, prompt=prompt,
+ only_new_text=only_new_text,
+ sanitize_bot_response=sanitize_bot_response)
+ yield dict(prompt=prompt, response=output1, sources='', num_prompt_tokens=0)
+ else:
+ yield dict(prompt=prompt, response=outputs, sources='', num_prompt_tokens=0)
+ except BaseException:
+ # if any exception, raise that exception if was from thread, first
+ if thread.exc:
+ raise thread.exc
+ raise
+ finally:
+ # in case no exception and didn't join with thread yet, then join
+ if not thread.exc:
+ answer = thread.join()
+ if isinstance(answer, dict):
+ if 'output_text' in answer:
+ answer = answer['output_text']
+ elif 'output' in answer:
+ answer = answer['output']
+ # in case raise StopIteration or broke queue loop in streamer, but still have exception
+ if thread.exc:
+ raise thread.exc
+ else:
+ if async_output:
+ import asyncio
+ answer = asyncio.run(chain())
+ else:
+ answer = chain()
+ if isinstance(answer, dict):
+ if 'output_text' in answer:
+ answer = answer['output_text']
+ elif 'output' in answer:
+ answer = answer['output']
+
+ get_answer_args = tuple([query, docs, answer, scores, show_rank,
+ answer_with_sources,
+ append_sources_to_answer])
+ get_answer_kwargs = dict(show_accordions=show_accordions,
+ show_link_in_sources=show_link_in_sources,
+ top_k_docs_max_show=top_k_docs_max_show,
+ docs_ordering_type=docs_ordering_type,
+ num_docs_before_cut=num_docs_before_cut,
+ verbose=verbose,
+ t_run=t_run,
+ count_input_tokens=llm.count_input_tokens
+ if hasattr(llm, 'count_input_tokens') else None,
+ count_output_tokens=llm.count_output_tokens
+ if hasattr(llm, 'count_output_tokens') else None)
+
+ t_run = time.time() - t_run
+
+ # for final yield, get real prompt used
+ if hasattr(llm, 'prompter') and llm.prompter.prompt is not None:
+ prompt = llm.prompter.prompt
+ else:
+ prompt = prompt_basic
+ num_prompt_tokens = get_token_count(prompt, tokenizer)
+
+ if not use_docs_planned:
+ ret = answer
+ extra = ''
+ yield dict(prompt=prompt, response=ret, sources=extra, num_prompt_tokens=num_prompt_tokens)
+ elif answer is not None:
+ ret, extra = get_sources_answer(*get_answer_args, **get_answer_kwargs)
+ yield dict(prompt=prompt, response=ret, sources=extra, num_prompt_tokens=num_prompt_tokens)
+ return
+
+
+def get_docs_with_score(query, k_db, filter_kwargs, db, db_type, text_context_list=None, verbose=False):
+ docs_with_score = []
+ got_db_docs = False
+
+ if text_context_list:
+ docs_with_score += [(x, x.metadata.get('score', 1.0)) for x in text_context_list]
+
+ # deal with bug in chroma where if (say) 234 doc chunks and ask for 233+ then fails due to reduction misbehavior
+ if hasattr(db, '_embedding_function') and isinstance(db._embedding_function, FakeEmbeddings):
+ top_k_docs = -1
+ # don't add text_context_list twice
+ db_documents, db_metadatas = get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs,
+ text_context_list=None)
+ # sort by order given to parser (file_id) and any chunk_id if chunked
+ doc_file_ids = [x.get('file_id', 0) for x in db_metadatas]
+ doc_chunk_ids = [x.get('chunk_id', 0) for x in db_metadatas]
+ docs_with_score_fake = [(Document(page_content=result[0], metadata=result[1] or {}), 1.0)
+ for result in zip(db_documents, db_metadatas)]
+ docs_with_score_fake = [x for fx, cx, x in
+ sorted(zip(doc_file_ids, doc_chunk_ids, docs_with_score_fake),
+ key=lambda x: (x[0], x[1]))
+ ]
+ got_db_docs |= len(docs_with_score_fake) > 0
+ docs_with_score += docs_with_score_fake
+ elif db is not None and db_type in ['chroma', 'chroma_old']:
+ while True:
+ try:
+ docs_with_score_chroma = db.similarity_search_with_score(query, k=k_db, **filter_kwargs)
+ break
+ except (RuntimeError, AttributeError) as e:
+ # AttributeError is for people with wrong version of langchain
+ if verbose:
+ print("chroma bug: %s" % str(e), flush=True)
+ if k_db == 1:
+ raise
+ if k_db > 500:
+ k_db -= 200
+ elif k_db > 100:
+ k_db -= 50
+ elif k_db > 10:
+ k_db -= 5
+ else:
+ k_db -= 1
+ k_db = max(1, k_db)
+ got_db_docs |= len(docs_with_score_chroma) > 0
+ docs_with_score += docs_with_score_chroma
+ elif db is not None:
+ docs_with_score_other = db.similarity_search_with_score(query, k=k_db, **filter_kwargs)
+ got_db_docs |= len(docs_with_score_other) > 0
+ docs_with_score += docs_with_score_other
+
+ # set in metadata original order of docs
+ [x[0].metadata.update(orig_index=ii) for ii, x in enumerate(docs_with_score)]
+
+ return docs_with_score, got_db_docs
+
+
+def get_chain(query=None,
+ iinput=None,
+ context=None, # FIXME: https://github.com/hwchase17/langchain/issues/6638
+ use_openai_model=False, use_openai_embedding=False,
+ first_para=False, text_limit=None, top_k_docs=4, chunk=True, chunk_size=512,
+
+ # urls
+ use_unstructured=True,
+ use_playwright=False,
+ use_selenium=False,
+
+ # pdfs
+ use_pymupdf='auto',
+ use_unstructured_pdf='auto',
+ use_pypdf='auto',
+ enable_pdf_ocr='auto',
+ enable_pdf_doctr='auto',
+ try_pdf_as_html='auto',
+
+ # images
+ enable_ocr=False,
+ enable_doctr=False,
+ enable_pix2struct=False,
+ enable_captions=True,
+ captions_model=None,
+ caption_loader=None,
+ doctr_loader=None,
+ pix2struct_loader=None,
+
+ # json
+ jq_schema='.[]',
+
+ langchain_mode_paths=None,
+ langchain_mode_types=None,
+ detect_user_path_changes_every_query=False,
+ db_type='faiss',
+ model_name=None,
+ inference_server='',
+ max_new_tokens=None,
+ langchain_only_model=False,
+ hf_embedding_model=None,
+ migrate_embedding_model=False,
+ auto_migrate_db=False,
+ prompter=None,
+ prompt_type=None,
+ prompt_dict=None,
+ system_prompt=None,
+ cut_distance=1.1,
+ add_chat_history_to_context=True, # FIXME: https://github.com/hwchase17/langchain/issues/6638
+ add_search_to_context=False,
+ keep_sources_in_context=False,
+ memory_restriction_level=0,
+ top_k_docs_max_show=10,
+
+ load_db_if_exists=False,
+ db=None,
+ langchain_mode=None,
+ langchain_action=None,
+ langchain_agents=None,
+ document_subset=DocumentSubset.Relevant.name,
+ document_choice=[DocumentChoice.ALL.value],
+ pre_prompt_query=None,
+ prompt_query=None,
+ pre_prompt_summary=None,
+ prompt_summary=None,
+ text_context_list=None,
+ chat_conversation=None,
+
+ n_jobs=-1,
+ # beyond run_db_query:
+ llm=None,
+ tokenizer=None,
+ verbose=False,
+ docs_ordering_type='reverse_ucurve_sort',
+ min_max_new_tokens=256,
+ stream_output=True,
+ async_output=True,
+
+ # local
+ auto_reduce_chunks=True,
+ max_chunks=100,
+ total_tokens_for_docs=None,
+ use_llm_if_no_docs=None,
+ headsize=50,
+ ):
+ if inference_server is None:
+ inference_server = ''
+ assert hf_embedding_model is not None
+ assert langchain_agents is not None # should be at least []
+ if text_context_list is None:
+ text_context_list = []
+
+ # default value:
+ llm_mode = langchain_mode in ['Disabled', 'LLM'] and len(text_context_list) == 0
+ query_action = langchain_action == LangChainAction.QUERY.value
+ summarize_action = langchain_action in [LangChainAction.SUMMARIZE_MAP.value,
+ LangChainAction.SUMMARIZE_ALL.value,
+ LangChainAction.SUMMARIZE_REFINE.value]
+
+ if len(text_context_list) > 0:
+ # turn into documents to make easy to manage and add meta
+ # try to account for summarization vs. query
+ chunk_id = 0 if query_action else -1
+ text_context_list = [
+ Document(page_content=x, metadata=dict(source='text_context_list', score=1.0, chunk_id=chunk_id)) for x
+ in text_context_list]
+
+ if add_search_to_context:
+ params = {
+ "engine": "duckduckgo",
+ "gl": "us",
+ "hl": "en",
+ }
+ search = H2OSerpAPIWrapper(params=params)
+ # if doing search, allow more docs
+ docs_search, top_k_docs = search.get_search_documents(query,
+ query_action=query_action,
+ chunk=chunk, chunk_size=chunk_size,
+ db_type=db_type,
+ headsize=headsize,
+ top_k_docs=top_k_docs)
+ text_context_list = docs_search + text_context_list
+ add_search_to_context &= len(docs_search) > 0
+ top_k_docs_max_show = max(top_k_docs_max_show, len(docs_search))
+
+ if len(text_context_list) > 0:
+ llm_mode = False
+ use_llm_if_no_docs = True
+
+ from src.output_parser import H2OMRKLOutputParser
+ from langchain.agents import AgentType, load_tools, initialize_agent, create_vectorstore_agent, \
+ create_pandas_dataframe_agent, create_json_agent, create_csv_agent
+ from langchain.agents.agent_toolkits import VectorStoreInfo, VectorStoreToolkit, create_python_agent, JsonToolkit
+ if LangChainAgent.SEARCH.value in langchain_agents:
+ output_parser = H2OMRKLOutputParser()
+ tools = load_tools(["serpapi"], llm=llm, serpapi_api_key=os.environ.get('SERPAPI_API_KEY'))
+ if inference_server.startswith('openai'):
+ agent_type = AgentType.OPENAI_FUNCTIONS
+ agent_executor_kwargs = {"handle_parsing_errors": True, 'output_parser': output_parser}
+ else:
+ agent_type = AgentType.ZERO_SHOT_REACT_DESCRIPTION
+ agent_executor_kwargs = {'output_parser': output_parser}
+ chain = initialize_agent(tools, llm, agent=agent_type,
+ agent_executor_kwargs=agent_executor_kwargs,
+ agent_kwargs=dict(output_parser=output_parser,
+ format_instructions=output_parser.get_format_instructions()),
+ output_parser=output_parser,
+ max_iterations=10,
+ verbose=True)
+ chain_kwargs = dict(input=query)
+ target = wrapped_partial(chain, chain_kwargs)
+
+ docs = []
+ scores = []
+ use_docs_planned = False
+ num_docs_before_cut = 0
+ use_llm_if_no_docs = True
+ return docs, target, scores, use_docs_planned, num_docs_before_cut, use_llm_if_no_docs, llm_mode, top_k_docs_max_show
+
+ if LangChainAgent.COLLECTION.value in langchain_agents:
+ output_parser = H2OMRKLOutputParser()
+ vectorstore_info = VectorStoreInfo(
+ name=langchain_mode,
+ description="DataBase of text from PDFs, Image Captions, or web URL content",
+ vectorstore=db,
+ )
+ toolkit = VectorStoreToolkit(vectorstore_info=vectorstore_info)
+ chain = create_vectorstore_agent(llm=llm, toolkit=toolkit,
+ agent_executor_kwargs=dict(output_parser=output_parser),
+ verbose=True)
+
+ chain_kwargs = dict(input=query)
+ target = wrapped_partial(chain, chain_kwargs)
+
+ docs = []
+ scores = []
+ use_docs_planned = False
+ num_docs_before_cut = 0
+ use_llm_if_no_docs = True
+ return docs, target, scores, use_docs_planned, num_docs_before_cut, use_llm_if_no_docs, llm_mode, top_k_docs_max_show
+
+ if LangChainAgent.PYTHON.value in langchain_agents and inference_server.startswith('openai'):
+ chain = create_python_agent(
+ llm=llm,
+ tool=PythonREPLTool(),
+ verbose=True,
+ agent_type=AgentType.OPENAI_FUNCTIONS,
+ agent_executor_kwargs={"handle_parsing_errors": True},
+ )
+
+ chain_kwargs = dict(input=query)
+ target = wrapped_partial(chain, chain_kwargs)
+
+ docs = []
+ scores = []
+ use_docs_planned = False
+ num_docs_before_cut = 0
+ use_llm_if_no_docs = True
+ return docs, target, scores, use_docs_planned, num_docs_before_cut, use_llm_if_no_docs, llm_mode, top_k_docs_max_show
+
+ if LangChainAgent.PANDAS.value in langchain_agents and inference_server.startswith('openai_chat'):
+ # FIXME: DATA
+ df = pd.DataFrame(None)
+ chain = create_pandas_dataframe_agent(
+ llm,
+ df,
+ verbose=True,
+ agent_type=AgentType.OPENAI_FUNCTIONS,
+ )
+
+ chain_kwargs = dict(input=query)
+ target = wrapped_partial(chain, chain_kwargs)
+
+ docs = []
+ scores = []
+ use_docs_planned = False
+ num_docs_before_cut = 0
+ use_llm_if_no_docs = True
+ return docs, target, scores, use_docs_planned, num_docs_before_cut, use_llm_if_no_docs, llm_mode, top_k_docs_max_show
+
+ if isinstance(document_choice, str):
+ document_choice = [document_choice]
+ if document_choice and document_choice[0] == DocumentChoice.ALL.value:
+ document_choice_agent = document_choice[1:]
+ else:
+ document_choice_agent = document_choice
+ document_choice_agent = [x for x in document_choice_agent if x.endswith('.json')]
+ if LangChainAgent.JSON.value in \
+ langchain_agents and \
+ inference_server.startswith('openai_chat') and \
+ len(document_choice_agent) == 1 and \
+ document_choice_agent[0].endswith('.json'):
+ # with open('src/openai.yaml') as f:
+ # data = yaml.load(f, Loader=yaml.FullLoader)
+ with open(document_choice[0], 'rt') as f:
+ data = json.loads(f.read())
+ json_spec = JsonSpec(dict_=data, max_value_length=4000)
+ json_toolkit = JsonToolkit(spec=json_spec)
+
+ chain = create_json_agent(
+ llm=llm, toolkit=json_toolkit, verbose=True
+ )
+
+ chain_kwargs = dict(input=query)
+ target = wrapped_partial(chain, chain_kwargs)
+
+ docs = []
+ scores = []
+ use_docs_planned = False
+ num_docs_before_cut = 0
+ use_llm_if_no_docs = True
+ return docs, target, scores, use_docs_planned, num_docs_before_cut, use_llm_if_no_docs, llm_mode, top_k_docs_max_show
+
+ if isinstance(document_choice, str):
+ document_choice = [document_choice]
+ if document_choice and document_choice[0] == DocumentChoice.ALL.value:
+ document_choice_agent = document_choice[1:]
+ else:
+ document_choice_agent = document_choice
+ document_choice_agent = [x for x in document_choice_agent if x.endswith('.csv')]
+ if LangChainAgent.CSV.value in langchain_agents and len(document_choice_agent) == 1 and document_choice_agent[
+ 0].endswith(
+ '.csv'):
+ data_file = document_choice[0]
+ if inference_server.startswith('openai_chat'):
+ chain = create_csv_agent(
+ llm,
+ data_file,
+ verbose=True,
+ agent_type=AgentType.OPENAI_FUNCTIONS,
+ )
+ else:
+ chain = create_csv_agent(
+ llm,
+ data_file,
+ verbose=True,
+ agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
+ )
+ chain_kwargs = dict(input=query)
+ target = wrapped_partial(chain, chain_kwargs)
+
+ docs = []
+ scores = []
+ use_docs_planned = False
+ num_docs_before_cut = 0
+ use_llm_if_no_docs = True
+ return docs, target, scores, use_docs_planned, num_docs_before_cut, use_llm_if_no_docs, llm_mode, top_k_docs_max_show
+
+ # determine whether use of context out of docs is planned
+ if not use_openai_model and prompt_type not in ['plain'] or langchain_only_model:
+ if llm_mode:
+ use_docs_planned = False
+ else:
+ use_docs_planned = True
+ else:
+ use_docs_planned = True
+
+ # https://github.com/hwchase17/langchain/issues/1946
+ # FIXME: Seems to way to get size of chroma db to limit top_k_docs to avoid
+ # Chroma collection MyData contains fewer than 4 elements.
+ # type logger error
+ if top_k_docs == -1:
+ k_db = 1000 if db_type in ['chroma', 'chroma_old'] else 100
+ else:
+ # top_k_docs=100 works ok too
+ k_db = 1000 if db_type in ['chroma', 'chroma_old'] else top_k_docs
+
+ # FIXME: For All just go over all dbs instead of a separate db for All
+ if not detect_user_path_changes_every_query and db is not None:
+ # avoid looking at user_path during similarity search db handling,
+ # if already have db and not updating from user_path every query
+ # but if db is None, no db yet loaded (e.g. from prep), so allow user_path to be whatever it was
+ if langchain_mode_paths is None:
+ langchain_mode_paths = {}
+ langchain_mode_paths = langchain_mode_paths.copy()
+ langchain_mode_paths[langchain_mode] = None
+ # once use_openai_embedding, hf_embedding_model passed in, possibly changed,
+ # but that's ok as not used below or in calling functions
+ db, num_new_sources, new_sources_metadata = make_db(use_openai_embedding=use_openai_embedding,
+ hf_embedding_model=hf_embedding_model,
+ migrate_embedding_model=migrate_embedding_model,
+ auto_migrate_db=auto_migrate_db,
+ first_para=first_para, text_limit=text_limit,
+ chunk=chunk, chunk_size=chunk_size,
+
+ # urls
+ use_unstructured=use_unstructured,
+ use_playwright=use_playwright,
+ use_selenium=use_selenium,
+
+ # pdfs
+ use_pymupdf=use_pymupdf,
+ use_unstructured_pdf=use_unstructured_pdf,
+ use_pypdf=use_pypdf,
+ enable_pdf_ocr=enable_pdf_ocr,
+ enable_pdf_doctr=enable_pdf_doctr,
+ try_pdf_as_html=try_pdf_as_html,
+
+ # images
+ enable_ocr=enable_ocr,
+ enable_doctr=enable_doctr,
+ enable_pix2struct=enable_pix2struct,
+ enable_captions=enable_captions,
+ captions_model=captions_model,
+ caption_loader=caption_loader,
+ doctr_loader=doctr_loader,
+ pix2struct_loader=pix2struct_loader,
+
+ # json
+ jq_schema=jq_schema,
+
+ langchain_mode=langchain_mode,
+ langchain_mode_paths=langchain_mode_paths,
+ langchain_mode_types=langchain_mode_types,
+ db_type=db_type,
+ load_db_if_exists=load_db_if_exists,
+ db=db,
+ n_jobs=n_jobs,
+ verbose=verbose)
+ num_docs_before_cut = 0
+ use_template = not use_openai_model and prompt_type not in ['plain'] or langchain_only_model
+ got_db_docs = False # not yet at least
+ template, template_if_no_docs, auto_reduce_chunks, query = \
+ get_template(query, iinput,
+ pre_prompt_query, prompt_query,
+ pre_prompt_summary, prompt_summary,
+ langchain_action,
+ llm_mode,
+ use_docs_planned,
+ auto_reduce_chunks,
+ got_db_docs,
+ add_search_to_context)
+
+ max_input_tokens = get_max_input_tokens(llm=llm, tokenizer=tokenizer, inference_server=inference_server,
+ model_name=model_name, max_new_tokens=max_new_tokens)
+
+ if (db or text_context_list) and use_docs_planned:
+ if hasattr(db, '_persist_directory'):
+ lock_file = get_db_lock_file(db, lock_type='sim')
+ else:
+ base_path = 'locks'
+ base_path = makedirs(base_path, exist_ok=True, tmp_ok=True, use_base=True)
+ name_path = "sim.lock"
+ lock_file = os.path.join(base_path, name_path)
+
+ if not (isinstance(db, Chroma) or isinstance(db, ChromaMig) or ChromaMig.__name__ in str(db)):
+ # only chroma supports filtering
+ filter_kwargs = {}
+ filter_kwargs_backup = {}
+ else:
+ import logging
+ logging.getLogger("chromadb").setLevel(logging.ERROR)
+ assert document_choice is not None, "Document choice was None"
+ if isinstance(db, Chroma):
+ filter_kwargs_backup = {} # shouldn't ever need backup
+ # chroma >= 0.4
+ if len(document_choice) == 0 or len(document_choice) >= 1 and document_choice[
+ 0] == DocumentChoice.ALL.value:
+ filter_kwargs = {"filter": {"chunk_id": {"$gte": 0}}} if query_action else \
+ {"filter": {"chunk_id": {"$eq": -1}}}
+ else:
+ if document_choice[0] == DocumentChoice.ALL.value:
+ document_choice = document_choice[1:]
+ if len(document_choice) == 0:
+ filter_kwargs = {}
+ elif len(document_choice) > 1:
+ or_filter = [
+ {"$and": [dict(source={"$eq": x}), dict(chunk_id={"$gte": 0})]} if query_action else {
+ "$and": [dict(source={"$eq": x}), dict(chunk_id={"$eq": -1})]}
+ for x in document_choice]
+ filter_kwargs = dict(filter={"$or": or_filter})
+ else:
+ # still chromadb UX bug, have to do different thing for 1 vs. 2+ docs when doing filter
+ one_filter = \
+ [{"source": {"$eq": x}, "chunk_id": {"$gte": 0}} if query_action else {
+ "source": {"$eq": x},
+ "chunk_id": {
+ "$eq": -1}}
+ for x in document_choice][0]
+
+ filter_kwargs = dict(filter={"$and": [dict(source=one_filter['source']),
+ dict(chunk_id=one_filter['chunk_id'])]})
+ else:
+ # migration for chroma < 0.4
+ if len(document_choice) == 0 or len(document_choice) >= 1 and document_choice[
+ 0] == DocumentChoice.ALL.value:
+ filter_kwargs = {"filter": {"chunk_id": {"$gte": 0}}} if query_action else \
+ {"filter": {"chunk_id": {"$eq": -1}}}
+ filter_kwargs_backup = {"filter": {"chunk_id": {"$gte": 0}}}
+ elif len(document_choice) >= 2:
+ if document_choice[0] == DocumentChoice.ALL.value:
+ document_choice = document_choice[1:]
+ or_filter = [
+ {"source": {"$eq": x}, "chunk_id": {"$gte": 0}} if query_action else {"source": {"$eq": x},
+ "chunk_id": {
+ "$eq": -1}}
+ for x in document_choice]
+ filter_kwargs = dict(filter={"$or": or_filter})
+ or_filter_backup = [
+ {"source": {"$eq": x}} if query_action else {"source": {"$eq": x}}
+ for x in document_choice]
+ filter_kwargs_backup = dict(filter={"$or": or_filter_backup})
+ elif len(document_choice) == 1:
+ # degenerate UX bug in chroma
+ one_filter = \
+ [{"source": {"$eq": x}, "chunk_id": {"$gte": 0}} if query_action else {"source": {"$eq": x},
+ "chunk_id": {
+ "$eq": -1}}
+ for x in document_choice][0]
+ filter_kwargs = dict(filter=one_filter)
+ one_filter_backup = \
+ [{"source": {"$eq": x}} if query_action else {"source": {"$eq": x}}
+ for x in document_choice][0]
+ filter_kwargs_backup = dict(filter=one_filter_backup)
+ else:
+ # shouldn't reach
+ filter_kwargs = {}
+ filter_kwargs_backup = {}
+
+ if llm_mode:
+ docs = []
+ scores = []
+ elif document_subset == DocumentSubset.TopKSources.name or query in [None, '', '\n']:
+ db_documents, db_metadatas = get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs,
+ text_context_list=text_context_list)
+ if len(db_documents) == 0 and filter_kwargs_backup:
+ db_documents, db_metadatas = get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs_backup,
+ text_context_list=text_context_list)
+
+ if top_k_docs == -1:
+ top_k_docs = len(db_documents)
+ # similar to langchain's chroma's _results_to_docs_and_scores
+ docs_with_score = [(Document(page_content=result[0], metadata=result[1] or {}), 0)
+ for result in zip(db_documents, db_metadatas)]
+ # set in metadata original order of docs
+ [x[0].metadata.update(orig_index=ii) for ii, x in enumerate(docs_with_score)]
+
+ # order documents
+ doc_hashes = [x.get('doc_hash', 'None') for x in db_metadatas]
+ if query_action:
+ doc_chunk_ids = [x.get('chunk_id', 0) for x in db_metadatas]
+ docs_with_score2 = [x for hx, cx, x in
+ sorted(zip(doc_hashes, doc_chunk_ids, docs_with_score), key=lambda x: (x[0], x[1]))
+ if cx >= 0]
+ else:
+ assert summarize_action
+ doc_chunk_ids = [x.get('chunk_id', -1) for x in db_metadatas]
+ docs_with_score2 = [x for hx, cx, x in
+ sorted(zip(doc_hashes, doc_chunk_ids, docs_with_score), key=lambda x: (x[0], x[1]))
+ if cx == -1
+ ]
+ if len(docs_with_score2) == 0 and len(docs_with_score) > 0:
+ # old database without chunk_id, migration added 0 but didn't make -1 as that would be expensive
+ # just do again and relax filter, let summarize operate on actual chunks if nothing else
+ docs_with_score2 = [x for hx, cx, x in
+ sorted(zip(doc_hashes, doc_chunk_ids, docs_with_score),
+ key=lambda x: (x[0], x[1]))
+ ]
+ docs_with_score = docs_with_score2
+
+ docs_with_score = docs_with_score[:top_k_docs]
+ docs = [x[0] for x in docs_with_score]
+ scores = [x[1] for x in docs_with_score]
+ num_docs_before_cut = len(docs)
+ else:
+ with filelock.FileLock(lock_file):
+ docs_with_score, got_db_docs = get_docs_with_score(query, k_db, filter_kwargs, db, db_type,
+ text_context_list=text_context_list,
+ verbose=verbose)
+ if len(docs_with_score) == 0 and filter_kwargs_backup:
+ docs_with_score, got_db_docs = get_docs_with_score(query, k_db, filter_kwargs_backup, db,
+ db_type,
+ text_context_list=text_context_list,
+ verbose=verbose)
+
+ tokenizer = get_tokenizer(db=db, llm=llm, tokenizer=tokenizer, inference_server=inference_server,
+ use_openai_model=use_openai_model,
+ db_type=db_type)
+ # NOTE: if map_reduce, then no need to auto reduce chunks
+ if query_action and (top_k_docs == -1 or auto_reduce_chunks):
+ top_k_docs_tokenize = 100
+ docs_with_score = docs_with_score[:top_k_docs_tokenize]
+
+ prompt_no_docs = template.format(context='', question=query)
+
+ model_max_length = tokenizer.model_max_length
+ chat = True # FIXME?
+
+ # first docs_with_score are most important with highest score
+ full_prompt, \
+ instruction, iinput, context, \
+ num_prompt_tokens, max_new_tokens, \
+ num_prompt_tokens0, num_prompt_tokens_actual, \
+ chat_index, top_k_docs_trial, one_doc_size = \
+ get_limited_prompt(prompt_no_docs,
+ iinput,
+ tokenizer,
+ prompter=prompter,
+ inference_server=inference_server,
+ prompt_type=prompt_type,
+ prompt_dict=prompt_dict,
+ chat=chat,
+ max_new_tokens=max_new_tokens,
+ system_prompt=system_prompt,
+ context=context,
+ chat_conversation=chat_conversation,
+ text_context_list=[x[0].page_content for x in docs_with_score],
+ keep_sources_in_context=keep_sources_in_context,
+ model_max_length=model_max_length,
+ memory_restriction_level=memory_restriction_level,
+ langchain_mode=langchain_mode,
+ add_chat_history_to_context=add_chat_history_to_context,
+ min_max_new_tokens=min_max_new_tokens,
+ )
+ # avoid craziness
+ if 0 < top_k_docs_trial < max_chunks:
+ # avoid craziness
+ if top_k_docs == -1:
+ top_k_docs = top_k_docs_trial
+ else:
+ top_k_docs = min(top_k_docs, top_k_docs_trial)
+ elif top_k_docs_trial >= max_chunks:
+ top_k_docs = max_chunks
+ if top_k_docs > 0:
+ docs_with_score = docs_with_score[:top_k_docs]
+ elif one_doc_size is not None:
+ docs_with_score = [docs_with_score[0][:one_doc_size]]
+ else:
+ docs_with_score = []
+ else:
+ if total_tokens_for_docs is not None:
+ # used to limit tokens for summarization, e.g. public instance
+ top_k_docs, one_doc_size, num_doc_tokens = \
+ get_docs_tokens(tokenizer,
+ text_context_list=[x[0].page_content for x in docs_with_score],
+ max_input_tokens=total_tokens_for_docs)
+
+ docs_with_score = docs_with_score[:top_k_docs]
+
+ # put most relevant chunks closest to question,
+ # esp. if truncation occurs will be "oldest" or "farthest from response" text that is truncated
+ # BUT: for small models, e.g. 6_9 pythia, if sees some stuff related to h2oGPT first, it can connect that and not listen to rest
+ if docs_ordering_type in ['best_first']:
+ pass
+ elif docs_ordering_type in ['best_near_prompt', 'reverse_sort']:
+ docs_with_score.reverse()
+ elif docs_ordering_type in ['', None, 'reverse_ucurve_sort']:
+ docs_with_score = reverse_ucurve_list(docs_with_score)
+ else:
+ raise ValueError("No such docs_ordering_type=%s" % docs_ordering_type)
+
+ # cut off so no high distance docs/sources considered
+ num_docs_before_cut = len(docs_with_score)
+ docs = [x[0] for x in docs_with_score if x[1] < cut_distance]
+ scores = [x[1] for x in docs_with_score if x[1] < cut_distance]
+ if len(scores) > 0 and verbose:
+ print("Distance: min: %s max: %s mean: %s median: %s" %
+ (scores[0], scores[-1], np.mean(scores), np.median(scores)), flush=True)
+ else:
+ docs = []
+ scores = []
+
+ if not docs and use_docs_planned and not langchain_only_model:
+ # if HF type and have no docs, can bail out
+ return docs, None, [], False, num_docs_before_cut, use_llm_if_no_docs, llm_mode, top_k_docs_max_show
+
+ if document_subset in non_query_commands:
+ # no LLM use
+ return docs, None, [], False, num_docs_before_cut, use_llm_if_no_docs, llm_mode, top_k_docs_max_show
+
+ # FIXME: WIP
+ common_words_file = "data/NGSL_1.2_stats.csv.zip"
+ if False and os.path.isfile(common_words_file) and langchain_action == LangChainAction.QUERY.value:
+ df = pd.read_csv("data/NGSL_1.2_stats.csv.zip")
+ import string
+ reduced_query = query.translate(str.maketrans(string.punctuation, ' ' * len(string.punctuation))).strip()
+ reduced_query_words = reduced_query.split(' ')
+ set_common = set(df['Lemma'].values.tolist())
+ num_common = len([x.lower() in set_common for x in reduced_query_words])
+ frac_common = num_common / len(reduced_query) if reduced_query else 0
+ # FIXME: report to user bad query that uses too many common words
+ if verbose:
+ print("frac_common: %s" % frac_common, flush=True)
+
+ if len(docs) == 0:
+ # avoid context == in prompt then
+ use_docs_planned = False
+ template = template_if_no_docs
+
+ got_db_docs = got_db_docs and len(text_context_list) < len(docs)
+ # update template in case situation changed or did get docs
+ # then no new documents from database or not used, redo template
+ # got template earlier as estimate of template token size, here is final used version
+ template, template_if_no_docs, auto_reduce_chunks, query = \
+ get_template(query, iinput,
+ pre_prompt_query, prompt_query,
+ pre_prompt_summary, prompt_summary,
+ langchain_action,
+ llm_mode,
+ use_docs_planned,
+ auto_reduce_chunks,
+ got_db_docs,
+ add_search_to_context)
+
+ if langchain_action == LangChainAction.QUERY.value:
+ if use_template:
+ # instruct-like, rather than few-shot prompt_type='plain' as default
+ # but then sources confuse the model with how inserted among rest of text, so avoid
+ prompt = PromptTemplate(
+ # input_variables=["summaries", "question"],
+ input_variables=["context", "question"],
+ template=template,
+ )
+ chain = load_qa_chain(llm, prompt=prompt, verbose=verbose)
+ else:
+ # only if use_openai_model = True, unused normally except in testing
+ chain = load_qa_with_sources_chain(llm)
+ if not use_docs_planned:
+ chain_kwargs = dict(input_documents=[], question=query)
+ else:
+ chain_kwargs = dict(input_documents=docs, question=query)
+ target = wrapped_partial(chain, chain_kwargs)
+ elif langchain_action in [LangChainAction.SUMMARIZE_MAP.value,
+ LangChainAction.SUMMARIZE_REFINE,
+ LangChainAction.SUMMARIZE_ALL.value]:
+ if async_output:
+ return_intermediate_steps = False
+ else:
+ return_intermediate_steps = True
+ from langchain.chains.summarize import load_summarize_chain
+ if langchain_action == LangChainAction.SUMMARIZE_MAP.value:
+ prompt = PromptTemplate(input_variables=["text"], template=template)
+ chain = load_summarize_chain(llm, chain_type="map_reduce",
+ map_prompt=prompt, combine_prompt=prompt,
+ return_intermediate_steps=return_intermediate_steps,
+ token_max=max_input_tokens, verbose=verbose)
+ if async_output:
+ chain_func = chain.arun
+ else:
+ chain_func = chain
+ target = wrapped_partial(chain_func, {"input_documents": docs}) # , return_only_outputs=True)
+ elif langchain_action == LangChainAction.SUMMARIZE_ALL.value:
+ assert use_template
+ prompt = PromptTemplate(input_variables=["text"], template=template)
+ chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt,
+ return_intermediate_steps=return_intermediate_steps, verbose=verbose)
+ if async_output:
+ chain_func = chain.arun
+ else:
+ chain_func = chain
+ target = wrapped_partial(chain_func)
+ elif langchain_action == LangChainAction.SUMMARIZE_REFINE.value:
+ chain = load_summarize_chain(llm, chain_type="refine",
+ return_intermediate_steps=return_intermediate_steps, verbose=verbose)
+ if async_output:
+ chain_func = chain.arun
+ else:
+ chain_func = chain
+ target = wrapped_partial(chain_func)
+ else:
+ raise RuntimeError("No such langchain_action=%s" % langchain_action)
+ else:
+ raise RuntimeError("No such langchain_action=%s" % langchain_action)
+
+ return docs, target, scores, use_docs_planned, num_docs_before_cut, use_llm_if_no_docs, llm_mode, top_k_docs_max_show
+
+
+def get_max_model_length(llm=None, tokenizer=None, inference_server=None, model_name=None):
+ if hasattr(tokenizer, 'model_max_length'):
+ return tokenizer.model_max_length
+ elif inference_server in ['openai', 'openai_azure']:
+ return llm.modelname_to_contextsize(model_name)
+ elif inference_server in ['openai_chat', 'openai_azure_chat']:
+ return model_token_mapping[model_name]
+ elif isinstance(tokenizer, FakeTokenizer):
+ # GGML
+ return tokenizer.model_max_length
+ else:
+ return 2048
+
+
+def get_max_input_tokens(llm=None, tokenizer=None, inference_server=None, model_name=None, max_new_tokens=None):
+ model_max_length = get_max_model_length(llm=llm, tokenizer=tokenizer, inference_server=inference_server,
+ model_name=model_name)
+
+ if any([inference_server.startswith(x) for x in
+ ['openai', 'openai_azure', 'openai_chat', 'openai_azure_chat', 'vllm']]):
+ # openai can't handle tokens + max_new_tokens > max_tokens even if never generate those tokens
+ # and vllm uses OpenAI API with same limits
+ max_input_tokens = model_max_length - max_new_tokens
+ elif isinstance(tokenizer, FakeTokenizer):
+ # don't trust that fake tokenizer (e.g. GGML) will make lots of tokens normally, allow more input
+ max_input_tokens = model_max_length - min(256, max_new_tokens)
+ else:
+ if 'falcon' in model_name or inference_server.startswith('http'):
+ # allow for more input for falcon, assume won't make as long outputs as default max_new_tokens
+ # Also allow if TGI or Gradio, because we tell it input may be same as output, even if model can't actually handle
+ max_input_tokens = model_max_length - min(256, max_new_tokens)
+ else:
+ # trust that maybe model will make so many tokens, so limit input
+ max_input_tokens = model_max_length - max_new_tokens
+
+ return max_input_tokens
+
+
+def get_tokenizer(db=None, llm=None, tokenizer=None, inference_server=None, use_openai_model=False,
+ db_type='chroma'):
+ if hasattr(llm, 'pipeline') and hasattr(llm.pipeline, 'tokenizer'):
+ # more accurate
+ return llm.pipeline.tokenizer
+ elif hasattr(llm, 'tokenizer'):
+ # e.g. TGI client mode etc.
+ return llm.tokenizer
+ elif inference_server in ['openai', 'openai_chat', 'openai_azure',
+ 'openai_azure_chat']:
+ return tokenizer
+ elif isinstance(tokenizer, FakeTokenizer):
+ return tokenizer
+ elif use_openai_model:
+ return FakeTokenizer()
+ elif (hasattr(db, '_embedding_function') and
+ hasattr(db._embedding_function, 'client') and
+ hasattr(db._embedding_function.client, 'tokenize')):
+ # in case model is not our pipeline with HF tokenizer
+ return db._embedding_function.client.tokenize
+ else:
+ # backup method
+ if os.getenv('HARD_ASSERTS'):
+ assert db_type in ['faiss', 'weaviate']
+ # use tiktoken for faiss since embedding called differently
+ return FakeTokenizer()
+
+
+def get_template(query, iinput,
+ pre_prompt_query, prompt_query,
+ pre_prompt_summary, prompt_summary,
+ langchain_action,
+ llm_mode,
+ use_docs_planned,
+ auto_reduce_chunks,
+ got_db_docs,
+ add_search_to_context):
+ if got_db_docs and add_search_to_context:
+ # modify prompts, assumes patterns like in predefined prompts. If user customizes, then they'd need to account for that.
+ prompt_query = prompt_query.replace('information in the document sources',
+ 'information in the document and web search sources (and their source dates and website source)')
+ prompt_summary = prompt_summary.replace('information in the document sources',
+ 'information in the document and web search sources (and their source dates and website source)')
+ elif got_db_docs and not add_search_to_context:
+ pass
+ elif not got_db_docs and add_search_to_context:
+ # modify prompts, assumes patterns like in predefined prompts. If user customizes, then they'd need to account for that.
+ prompt_query = prompt_query.replace('information in the document sources',
+ 'information in the web search sources (and their source dates and website source)')
+ prompt_summary = prompt_summary.replace('information in the document sources',
+ 'information in the web search sources (and their source dates and website source)')
+
+ if langchain_action == LangChainAction.QUERY.value:
+ if iinput:
+ query = "%s\n%s" % (query, iinput)
+ if llm_mode or not use_docs_planned:
+ template_if_no_docs = template = """{context}{question}"""
+ else:
+ template = """%s
+\"\"\"
+{context}
+\"\"\"
+%s{question}""" % (pre_prompt_query, prompt_query)
+ template_if_no_docs = """{context}{question}"""
+ elif langchain_action in [LangChainAction.SUMMARIZE_ALL.value, LangChainAction.SUMMARIZE_MAP.value]:
+ none = ['', '\n', None]
+
+ # modify prompt_summary if user passes query or iinput
+ if query not in none and iinput not in none:
+ prompt_summary = "Focusing on %s, %s, %s" % (query, iinput, prompt_summary)
+ elif query not in none:
+ prompt_summary = "Focusing on %s, %s" % (query, prompt_summary)
+ # don't auto reduce
+ auto_reduce_chunks = False
+ if langchain_action == LangChainAction.SUMMARIZE_MAP.value:
+ fstring = '{text}'
+ else:
+ fstring = '{input_documents}'
+ template = """%s:
+\"\"\"
+%s
+\"\"\"\n%s""" % (pre_prompt_summary, fstring, prompt_summary)
+ template_if_no_docs = "Exactly only say: There are no documents to summarize."
+ elif langchain_action in [LangChainAction.SUMMARIZE_REFINE]:
+ template = '' # unused
+ template_if_no_docs = '' # unused
+ else:
+ raise RuntimeError("No such langchain_action=%s" % langchain_action)
+
+ return template, template_if_no_docs, auto_reduce_chunks, query
+
+
+def get_sources_answer(query, docs, answer, scores, show_rank,
+ answer_with_sources, append_sources_to_answer,
+ show_accordions=True,
+ show_link_in_sources=True,
+ top_k_docs_max_show=10,
+ docs_ordering_type='reverse_ucurve_sort',
+ num_docs_before_cut=0,
+ verbose=False,
+ t_run=None,
+ count_input_tokens=None, count_output_tokens=None):
+ if verbose:
+ print("query: %s" % query, flush=True)
+ print("answer: %s" % answer, flush=True)
+
+ if len(docs) == 0:
+ extra = ''
+ ret = answer + extra
+ return ret, extra
+
+ if answer_with_sources == -1:
+ extra = [dict(score=score, content=get_doc(x), source=get_source(x), orig_index=x.metadata.get('orig_index', 0))
+ for score, x in zip(scores, docs)][
+ :top_k_docs_max_show]
+ if append_sources_to_answer:
+ extra_str = [str(x) for x in extra]
+ ret = answer + '\n\n' + '\n'.join(extra_str)
+ else:
+ ret = answer
+ return ret, extra
+
+ # link
+ answer_sources = [(max(0.0, 1.5 - score) / 1.5,
+ get_url(doc, font_size=font_size),
+ get_accordion(doc, font_size=font_size, head_acc=head_acc)) for score, doc in
+ zip(scores, docs)]
+ if not show_accordions:
+ answer_sources_dict = defaultdict(list)
+ [answer_sources_dict[url].append(score) for score, url in answer_sources]
+ answers_dict = {}
+ for url, scores_url in answer_sources_dict.items():
+ answers_dict[url] = np.max(scores_url)
+ answer_sources = [(score, url) for url, score in answers_dict.items()]
+ answer_sources.sort(key=lambda x: x[0], reverse=True)
+ if show_rank:
+ # answer_sources = ['%d | %s' % (1 + rank, url) for rank, (score, url) in enumerate(answer_sources)]
+ # sorted_sources_urls = "Sources [Rank | Link]:
" + "
".join(answer_sources)
+ answer_sources = ['%s' % url for rank, (score, url) in enumerate(answer_sources)]
+ answer_sources = answer_sources[:top_k_docs_max_show]
+ sorted_sources_urls = "Ranked Sources:
" + "
".join(answer_sources)
+ else:
+ if show_accordions:
+ if show_link_in_sources:
+ answer_sources = ['" + "".join(answer_sources)
+ else:
+ sorted_sources_urls = f"{source_prefix}
" + "
".join( + answer_sources) + if verbose: + if int(t_run): + sorted_sources_urls += 'Total Time: %d [s]
' % t_run + if count_input_tokens and count_output_tokens: + sorted_sources_urls += 'Input Tokens: %s | Output Tokens: %d
' % ( + count_input_tokens, count_output_tokens) + sorted_sources_urls += f"
{source_postfix}" + title_overall = "Sources" + sorted_sources_urls = f"""
+ Sources:
+
+ {0}
+
+ {0}
+
+ Exceptions:
+