import ast
import glob
import inspect
import os
import pathlib
import pickle
import shutil
import subprocess
import tempfile
import time
import traceback
import types
import uuid
import zipfile
from collections import defaultdict
from datetime import datetime
from functools import reduce
from operator import concat
import filelock
from joblib import delayed
from langchain.callbacks import streaming_stdout
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.schema import LLMResult
from tqdm import tqdm
from enums import DocumentSubset, no_lora_str, model_token_mapping, source_prefix, source_postfix, non_query_commands, \
LangChainAction, LangChainMode, DocumentChoice
from evaluate_params import gen_hyper
from gen import get_model, SEED
from prompter import non_hf_types, PromptType, Prompter
from utils import wrapped_partial, EThread, import_matplotlib, sanitize_filename, makedirs, get_url, flatten_list, \
get_device, ProgressParallel, remove, hash_file, clear_torch_cache, NullContext, get_hf_server, FakeTokenizer, \
have_libreoffice, have_arxiv, have_playwright, have_selenium, have_tesseract, have_pymupdf, set_openai
from utils_langchain import StreamingGradioCallbackHandler
import_matplotlib()
import numpy as np
import pandas as pd
import requests
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
# , GCSDirectoryLoader, GCSFileLoader
# , OutlookMessageLoader # GPL3
# ImageCaptionLoader, # use our own wrapper
# ReadTheDocsLoader, # no special file, some path, so have to give as special option
from langchain.document_loaders import PyPDFLoader, TextLoader, CSVLoader, PythonLoader, TomlLoader, \
UnstructuredURLLoader, UnstructuredHTMLLoader, UnstructuredWordDocumentLoader, UnstructuredMarkdownLoader, \
EverNoteLoader, UnstructuredEmailLoader, UnstructuredODTLoader, UnstructuredPowerPointLoader, \
UnstructuredEPubLoader, UnstructuredImageLoader, UnstructuredRTFLoader, ArxivLoader, UnstructuredPDFLoader, \
UnstructuredExcelLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter, Language
from langchain.chains.question_answering import load_qa_chain
from langchain.docstore.document import Document
from langchain import PromptTemplate, HuggingFaceTextGenInference
from langchain.vectorstores import Chroma
def get_db(sources, use_openai_embedding=False, db_type='faiss',
persist_directory="db_dir", load_db_if_exists=True,
langchain_mode='notset',
collection_name=None,
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2"):
if not sources:
return None
# get embedding model
embedding = get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model)
assert collection_name is not None or langchain_mode != 'notset'
if collection_name is None:
collection_name = langchain_mode.replace(' ', '_')
# Create vector database
if db_type == 'faiss':
from langchain.vectorstores import FAISS
db = FAISS.from_documents(sources, embedding)
elif db_type == 'weaviate':
import weaviate
from weaviate.embedded import EmbeddedOptions
from langchain.vectorstores import Weaviate
if os.getenv('WEAVIATE_URL', None):
client = _create_local_weaviate_client()
else:
client = weaviate.Client(
embedded_options=EmbeddedOptions()
)
index_name = collection_name.capitalize()
db = Weaviate.from_documents(documents=sources, embedding=embedding, client=client, by_text=False,
index_name=index_name)
elif db_type == 'chroma':
assert persist_directory is not None
os.makedirs(persist_directory, exist_ok=True)
# see if already actually have persistent db, and deal with possible changes in embedding
db = get_existing_db(None, persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode,
hf_embedding_model, verbose=False)
if db is None:
from chromadb.config import Settings
client_settings = Settings(anonymized_telemetry=False,
chroma_db_impl="duckdb+parquet",
persist_directory=persist_directory)
db = Chroma.from_documents(documents=sources,
embedding=embedding,
persist_directory=persist_directory,
collection_name=collection_name,
client_settings=client_settings)
db.persist()
clear_embedding(db)
save_embed(db, use_openai_embedding, hf_embedding_model)
else:
# then just add
db, num_new_sources, new_sources_metadata = add_to_db(db, sources, db_type=db_type,
use_openai_embedding=use_openai_embedding,
hf_embedding_model=hf_embedding_model)
else:
raise RuntimeError("No such db_type=%s" % db_type)
return db
def _get_unique_sources_in_weaviate(db):
batch_size = 100
id_source_list = []
result = db._client.data_object.get(class_name=db._index_name, limit=batch_size)
while result['objects']:
id_source_list += [(obj['id'], obj['properties']['source']) for obj in result['objects']]
last_id = id_source_list[-1][0]
result = db._client.data_object.get(class_name=db._index_name, limit=batch_size, after=last_id)
unique_sources = {source for _, source in id_source_list}
return unique_sources
def add_to_db(db, sources, db_type='faiss',
avoid_dup_by_file=False,
avoid_dup_by_content=True,
use_openai_embedding=False,
hf_embedding_model=None):
assert hf_embedding_model is not None
num_new_sources = len(sources)
if not sources:
return db, num_new_sources, []
if db_type == 'faiss':
db.add_documents(sources)
elif db_type == 'weaviate':
# FIXME: only control by file name, not hash yet
if avoid_dup_by_file or avoid_dup_by_content:
unique_sources = _get_unique_sources_in_weaviate(db)
sources = [x for x in sources if x.metadata['source'] not in unique_sources]
num_new_sources = len(sources)
if num_new_sources == 0:
return db, num_new_sources, []
db.add_documents(documents=sources)
elif db_type == 'chroma':
collection = get_documents(db)
# files we already have:
metadata_files = set([x['source'] for x in collection['metadatas']])
if avoid_dup_by_file:
# Too weak in case file changed content, assume parent shouldn't pass true for this for now
raise RuntimeError("Not desired code path")
sources = [x for x in sources if x.metadata['source'] not in metadata_files]
if avoid_dup_by_content:
# look at hash, instead of page_content
# migration: If no hash previously, avoid updating,
# since don't know if need to update and may be expensive to redo all unhashed files
metadata_hash_ids = set(
[x['hashid'] for x in collection['metadatas'] if 'hashid' in x and x['hashid'] not in ["None", None]])
# avoid sources with same hash
sources = [x for x in sources if x.metadata.get('hashid') not in metadata_hash_ids]
num_nohash = len([x for x in sources if not x.metadata.get('hashid')])
print("Found %s new sources (%d have no hash in original source,"
" so have to reprocess for migration to sources with hash)" % (len(sources), num_nohash), flush=True)
# get new file names that match existing file names. delete existing files we are overridding
dup_metadata_files = set([x.metadata['source'] for x in sources if x.metadata['source'] in metadata_files])
print("Removing %s duplicate files from db because ingesting those as new documents" % len(
dup_metadata_files), flush=True)
client_collection = db._client.get_collection(name=db._collection.name,
embedding_function=db._collection._embedding_function)
for dup_file in dup_metadata_files:
dup_file_meta = dict(source=dup_file)
try:
client_collection.delete(where=dup_file_meta)
except KeyError:
pass
num_new_sources = len(sources)
if num_new_sources == 0:
return db, num_new_sources, []
db.add_documents(documents=sources)
db.persist()
clear_embedding(db)
save_embed(db, use_openai_embedding, hf_embedding_model)
else:
raise RuntimeError("No such db_type=%s" % db_type)
new_sources_metadata = [x.metadata for x in sources]
return db, num_new_sources, new_sources_metadata
def create_or_update_db(db_type, persist_directory, collection_name,
sources, use_openai_embedding, add_if_exists, verbose, hf_embedding_model):
if db_type == 'weaviate':
import weaviate
from weaviate.embedded import EmbeddedOptions
if os.getenv('WEAVIATE_URL', None):
client = _create_local_weaviate_client()
else:
client = weaviate.Client(
embedded_options=EmbeddedOptions()
)
index_name = collection_name.replace(' ', '_').capitalize()
if client.schema.exists(index_name) and not add_if_exists:
client.schema.delete_class(index_name)
if verbose:
print("Removing %s" % index_name, flush=True)
elif db_type == 'chroma':
if not os.path.isdir(persist_directory) or not add_if_exists:
if os.path.isdir(persist_directory):
if verbose:
print("Removing %s" % persist_directory, flush=True)
remove(persist_directory)
if verbose:
print("Generating db", flush=True)
if not add_if_exists:
if verbose:
print("Generating db", flush=True)
else:
if verbose:
print("Loading and updating db", flush=True)
db = get_db(sources,
use_openai_embedding=use_openai_embedding,
db_type=db_type,
persist_directory=persist_directory,
langchain_mode=collection_name,
hf_embedding_model=hf_embedding_model)
return db
def get_embedding(use_openai_embedding, hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2"):
# Get embedding model
if use_openai_embedding:
assert os.getenv("OPENAI_API_KEY") is not None, "Set ENV OPENAI_API_KEY"
from langchain.embeddings import OpenAIEmbeddings
embedding = OpenAIEmbeddings(disallowed_special=())
else:
# to ensure can fork without deadlock
from langchain.embeddings import HuggingFaceEmbeddings
device, torch_dtype, context_class = get_device_dtype()
model_kwargs = dict(device=device)
if 'instructor' in hf_embedding_model:
encode_kwargs = {'normalize_embeddings': True}
embedding = HuggingFaceInstructEmbeddings(model_name=hf_embedding_model,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs)
else:
embedding = HuggingFaceEmbeddings(model_name=hf_embedding_model, model_kwargs=model_kwargs)
return embedding
def get_answer_from_sources(chain, sources, question):
return chain(
{
"input_documents": sources,
"question": question,
},
return_only_outputs=True,
)["output_text"]
"""Wrapper around Huggingface text generation inference API."""
from functools import partial
from typing import Any, Dict, List, Optional, Set
from pydantic import Extra, Field, root_validator
from langchain.callbacks.manager import CallbackManagerForLLMRun, Callbacks
from langchain.llms.base import LLM
class GradioInference(LLM):
"""
Gradio generation inference API.
"""
inference_server_url: str = ""
temperature: float = 0.8
top_p: Optional[float] = 0.95
top_k: Optional[int] = None
num_beams: Optional[int] = 1
max_new_tokens: int = 512
min_new_tokens: int = 1
early_stopping: bool = False
max_time: int = 180
repetition_penalty: Optional[float] = None
num_return_sequences: Optional[int] = 1
do_sample: bool = False
chat_client: bool = False
return_full_text: bool = True
stream: bool = False
sanitize_bot_response: bool = False
prompter: Any = None
context: Any = ''
iinput: Any = ''
client: Any = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that python package exists in environment."""
try:
if values['client'] is None:
import gradio_client
values["client"] = gradio_client.Client(
values["inference_server_url"]
)
except ImportError:
raise ImportError(
"Could not import gradio_client python package. "
"Please install it with `pip install gradio_client`."
)
return values
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "gradio_inference"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
# NOTE: prompt here has no prompt_type (e.g. human: bot:) prompt injection,
# so server should get prompt_type or '', not plain
# This is good, so gradio server can also handle stopping.py conditions
# this is different than TGI server that uses prompter to inject prompt_type prompting
stream_output = self.stream
gr_client = self.client
client_langchain_mode = 'Disabled'
client_add_chat_history_to_context = True
client_langchain_action = LangChainAction.QUERY.value
client_langchain_agents = []
top_k_docs = 1
chunk = True
chunk_size = 512
client_kwargs = dict(instruction=prompt if self.chat_client else '', # only for chat=True
iinput=self.iinput if self.chat_client else '', # only for chat=True
context=self.context,
# streaming output is supported, loops over and outputs each generation in streaming mode
# but leave stream_output=False for simple input/output mode
stream_output=stream_output,
prompt_type=self.prompter.prompt_type,
prompt_dict='',
temperature=self.temperature,
top_p=self.top_p,
top_k=self.top_k,
num_beams=self.num_beams,
max_new_tokens=self.max_new_tokens,
min_new_tokens=self.min_new_tokens,
early_stopping=self.early_stopping,
max_time=self.max_time,
repetition_penalty=self.repetition_penalty,
num_return_sequences=self.num_return_sequences,
do_sample=self.do_sample,
chat=self.chat_client,
instruction_nochat=prompt if not self.chat_client else '',
iinput_nochat=self.iinput if not self.chat_client else '',
langchain_mode=client_langchain_mode,
add_chat_history_to_context=client_add_chat_history_to_context,
langchain_action=client_langchain_action,
langchain_agents=client_langchain_agents,
top_k_docs=top_k_docs,
chunk=chunk,
chunk_size=chunk_size,
document_subset=DocumentSubset.Relevant.name,
document_choice=[DocumentChoice.ALL.value],
)
api_name = '/submit_nochat_api' # NOTE: like submit_nochat but stable API for string dict passing
if not stream_output:
res = gr_client.predict(str(dict(client_kwargs)), api_name=api_name)
res_dict = ast.literal_eval(res)
text = res_dict['response']
return self.prompter.get_response(prompt + text, prompt=prompt,
sanitize_bot_response=self.sanitize_bot_response)
else:
text_callback = None
if run_manager:
text_callback = partial(
run_manager.on_llm_new_token, verbose=self.verbose
)
job = gr_client.submit(str(dict(client_kwargs)), api_name=api_name)
text0 = ''
while not job.done():
outputs_list = job.communicator.job.outputs
if outputs_list:
res = job.communicator.job.outputs[-1]
res_dict = ast.literal_eval(res)
text = res_dict['response']
text = self.prompter.get_response(prompt + text, prompt=prompt,
sanitize_bot_response=self.sanitize_bot_response)
# FIXME: derive chunk from full for now
text_chunk = text[len(text0):]
# save old
text0 = text
if text_callback:
text_callback(text_chunk)
time.sleep(0.01)
# ensure get last output to avoid race
res_all = job.outputs()
if len(res_all) > 0:
res = res_all[-1]
res_dict = ast.literal_eval(res)
text = res_dict['response']
# FIXME: derive chunk from full for now
else:
# go with old if failure
text = text0
text_chunk = text[len(text0):]
if text_callback:
text_callback(text_chunk)
return self.prompter.get_response(prompt + text, prompt=prompt,
sanitize_bot_response=self.sanitize_bot_response)
class H2OHuggingFaceTextGenInference(HuggingFaceTextGenInference):
max_new_tokens: int = 512
do_sample: bool = False
top_k: Optional[int] = None
top_p: Optional[float] = 0.95
typical_p: Optional[float] = 0.95
temperature: float = 0.8
repetition_penalty: Optional[float] = None
return_full_text: bool = False
stop_sequences: List[str] = Field(default_factory=list)
seed: Optional[int] = None
inference_server_url: str = ""
timeout: int = 300
headers: dict = None
stream: bool = False
sanitize_bot_response: bool = False
prompter: Any = None
context: Any = ''
iinput: Any = ''
tokenizer: Any = None
client: Any = None
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that python package exists in environment."""
try:
if values['client'] is None:
import text_generation
values["client"] = text_generation.Client(
values["inference_server_url"],
timeout=values["timeout"],
headers=values["headers"],
)
except ImportError:
raise ImportError(
"Could not import text_generation python package. "
"Please install it with `pip install text_generation`."
)
return values
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
if stop is None:
stop = self.stop_sequences
else:
stop += self.stop_sequences
# HF inference server needs control over input tokens
assert self.tokenizer is not None
from h2oai_pipeline import H2OTextGenerationPipeline
prompt, num_prompt_tokens = H2OTextGenerationPipeline.limit_prompt(prompt, self.tokenizer)
# NOTE: TGI server does not add prompting, so must do here
data_point = dict(context=self.context, instruction=prompt, input=self.iinput)
prompt = self.prompter.generate_prompt(data_point)
gen_server_kwargs = dict(do_sample=self.do_sample,
stop_sequences=stop,
max_new_tokens=self.max_new_tokens,
top_k=self.top_k,
top_p=self.top_p,
typical_p=self.typical_p,
temperature=self.temperature,
repetition_penalty=self.repetition_penalty,
return_full_text=self.return_full_text,
seed=self.seed,
)
gen_server_kwargs.update(kwargs)
# lower bound because client is re-used if multi-threading
self.client.timeout = max(300, self.timeout)
if not self.stream:
res = self.client.generate(
prompt,
**gen_server_kwargs,
)
if self.return_full_text:
gen_text = res.generated_text[len(prompt):]
else:
gen_text = res.generated_text
# remove stop sequences from the end of the generated text
for stop_seq in stop:
if stop_seq in gen_text:
gen_text = gen_text[:gen_text.index(stop_seq)]
text = prompt + gen_text
text = self.prompter.get_response(text, prompt=prompt,
sanitize_bot_response=self.sanitize_bot_response)
else:
text_callback = None
if run_manager:
text_callback = partial(
run_manager.on_llm_new_token, verbose=self.verbose
)
# parent handler of streamer expects to see prompt first else output="" and lose if prompt=None in prompter
if text_callback:
text_callback(prompt)
text = ""
# Note: Streaming ignores return_full_text=True
for response in self.client.generate_stream(prompt, **gen_server_kwargs):
text_chunk = response.token.text
text += text_chunk
text = self.prompter.get_response(prompt + text, prompt=prompt,
sanitize_bot_response=self.sanitize_bot_response)
# stream part
is_stop = False
for stop_seq in stop:
if stop_seq in response.token.text:
is_stop = True
break
if is_stop:
break
if not response.token.special:
if text_callback:
text_callback(response.token.text)
return text
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
from langchain.llms.openai import _streaming_response_template, completion_with_retry, _update_response, \
update_token_usage
class H2OOpenAI(OpenAI):
"""
New class to handle vLLM's use of OpenAI, no vllm_chat supported, so only need here
Handles prompting that OpenAI doesn't need, stopping as well
"""
stop_sequences: Any = None
sanitize_bot_response: bool = False
prompter: Any = None
context: Any = ''
iinput: Any = ''
tokenizer: Any = None
@classmethod
def all_required_field_names(cls) -> Set:
all_required_field_names = super(OpenAI, cls).all_required_field_names()
all_required_field_names.update(
{'top_p', 'frequency_penalty', 'presence_penalty', 'stop_sequences', 'sanitize_bot_response', 'prompter',
'tokenizer'})
return all_required_field_names
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
stop = self.stop_sequences if not stop else self.stop_sequences + stop
# HF inference server needs control over input tokens
assert self.tokenizer is not None
from h2oai_pipeline import H2OTextGenerationPipeline
for prompti, prompt in enumerate(prompts):
prompt, num_prompt_tokens = H2OTextGenerationPipeline.limit_prompt(prompt, self.tokenizer)
# NOTE: OpenAI/vLLM server does not add prompting, so must do here
data_point = dict(context=self.context, instruction=prompt, input=self.iinput)
prompt = self.prompter.generate_prompt(data_point)
prompts[prompti] = prompt
params = self._invocation_params
params = {**params, **kwargs}
sub_prompts = self.get_sub_prompts(params, prompts, stop)
choices = []
token_usage: Dict[str, int] = {}
# Get the token usage from the response.
# Includes prompt, completion, and total tokens used.
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
text = ''
for _prompts in sub_prompts:
if self.streaming:
text_with_prompt = ""
prompt = _prompts[0]
if len(_prompts) > 1:
raise ValueError("Cannot stream results with multiple prompts.")
params["stream"] = True
response = _streaming_response_template()
first = True
for stream_resp in completion_with_retry(
self, prompt=_prompts, **params
):
if first:
stream_resp["choices"][0]["text"] = prompt + stream_resp["choices"][0]["text"]
first = False
text_chunk = stream_resp["choices"][0]["text"]
text_with_prompt += text_chunk
text = self.prompter.get_response(text_with_prompt, prompt=prompt,
sanitize_bot_response=self.sanitize_bot_response)
if run_manager:
run_manager.on_llm_new_token(
text_chunk,
verbose=self.verbose,
logprobs=stream_resp["choices"][0]["logprobs"],
)
_update_response(response, stream_resp)
choices.extend(response["choices"])
else:
response = completion_with_retry(self, prompt=_prompts, **params)
choices.extend(response["choices"])
if not self.streaming:
# Can't update token usage if streaming
update_token_usage(_keys, response, token_usage)
choices[0]['text'] = text
return self.create_llm_result(choices, prompts, token_usage)
class H2OChatOpenAI(ChatOpenAI):
@classmethod
def all_required_field_names(cls) -> Set:
all_required_field_names = super(ChatOpenAI, cls).all_required_field_names()
all_required_field_names.update({'top_p', 'frequency_penalty', 'presence_penalty'})
return all_required_field_names
def get_llm(use_openai_model=False,
model_name=None,
model=None,
tokenizer=None,
inference_server=None,
stream_output=False,
do_sample=False,
temperature=0.1,
top_k=40,
top_p=0.7,
num_beams=1,
max_new_tokens=256,
min_new_tokens=1,
early_stopping=False,
max_time=180,
repetition_penalty=1.0,
num_return_sequences=1,
prompt_type=None,
prompt_dict=None,
prompter=None,
context=None,
iinput=None,
sanitize_bot_response=False,
verbose=False,
):
if inference_server is None:
inference_server = ''
if use_openai_model or inference_server.startswith('openai') or inference_server.startswith('vllm'):
if use_openai_model and model_name is None:
model_name = "gpt-3.5-turbo"
# FIXME: Will later import be ignored? I think so, so should be fine
openai, inf_type = set_openai(inference_server)
kwargs_extra = {}
if inference_server == 'openai_chat' or inf_type == 'vllm_chat':
cls = H2OChatOpenAI
# FIXME: Support context, iinput
else:
cls = H2OOpenAI
if inf_type == 'vllm':
terminate_response = prompter.terminate_response or []
stop_sequences = list(set(terminate_response + [prompter.PreResponse]))
stop_sequences = [x for x in stop_sequences if x]
kwargs_extra = dict(stop_sequences=stop_sequences,
sanitize_bot_response=sanitize_bot_response,
prompter=prompter,
context=context,
iinput=iinput,
tokenizer=tokenizer,
client=None)
callbacks = [StreamingGradioCallbackHandler()]
llm = cls(model_name=model_name,
temperature=temperature if do_sample else 0,
# FIXME: Need to count tokens and reduce max_new_tokens to fit like in generate.py
max_tokens=max_new_tokens,
top_p=top_p if do_sample else 1,
frequency_penalty=0,
presence_penalty=1.07 - repetition_penalty + 0.6, # so good default
callbacks=callbacks if stream_output else None,
openai_api_key=openai.api_key,
openai_api_base=openai.api_base,
logit_bias=None if inf_type == 'vllm' else {},
max_retries=2,
streaming=stream_output,
**kwargs_extra
)
streamer = callbacks[0] if stream_output else None
if inference_server in ['openai', 'openai_chat']:
prompt_type = inference_server
else:
# vllm goes here
prompt_type = prompt_type or 'plain'
elif inference_server:
assert inference_server.startswith(
'http'), "Malformed inference_server=%s. Did you add http:// in front?" % inference_server
from gradio_utils.grclient import GradioClient
from text_generation import Client as HFClient
if isinstance(model, GradioClient):
gr_client = model
hf_client = None
else:
gr_client = None
hf_client = model
assert isinstance(hf_client, HFClient)
inference_server, headers = get_hf_server(inference_server)
# quick sanity check to avoid long timeouts, just see if can reach server
requests.get(inference_server, timeout=int(os.getenv('REQUEST_TIMEOUT_FAST', '10')))
callbacks = [StreamingGradioCallbackHandler()]
assert prompter is not None
terminate_response = prompter.terminate_response or []
stop_sequences = list(set(terminate_response + [prompter.PreResponse]))
stop_sequences = [x for x in stop_sequences if x]
if gr_client:
chat_client = False
llm = GradioInference(
inference_server_url=inference_server,
return_full_text=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
max_new_tokens=max_new_tokens,
min_new_tokens=min_new_tokens,
early_stopping=early_stopping,
max_time=max_time,
repetition_penalty=repetition_penalty,
num_return_sequences=num_return_sequences,
do_sample=do_sample,
chat_client=chat_client,
callbacks=callbacks if stream_output else None,
stream=stream_output,
prompter=prompter,
context=context,
iinput=iinput,
client=gr_client,
sanitize_bot_response=sanitize_bot_response,
)
elif hf_client:
llm = H2OHuggingFaceTextGenInference(
inference_server_url=inference_server,
do_sample=do_sample,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty,
return_full_text=True,
seed=SEED,
stop_sequences=stop_sequences,
temperature=temperature,
top_k=top_k,
top_p=top_p,
# typical_p=top_p,
callbacks=callbacks if stream_output else None,
stream=stream_output,
prompter=prompter,
context=context,
iinput=iinput,
tokenizer=tokenizer,
client=hf_client,
timeout=max_time,
sanitize_bot_response=sanitize_bot_response,
)
else:
raise RuntimeError("No defined client")
streamer = callbacks[0] if stream_output else None
elif model_name in non_hf_types:
if model_name == 'llama':
callbacks = [StreamingGradioCallbackHandler()]
streamer = callbacks[0] if stream_output else None
else:
# stream_output = False
# doesn't stream properly as generator, but at least
callbacks = [streaming_stdout.StreamingStdOutCallbackHandler()]
streamer = None
if prompter:
prompt_type = prompter.prompt_type
else:
prompter = Prompter(prompt_type, prompt_dict, debug=False, chat=False, stream_output=stream_output)
pass # assume inputted prompt_type is correct
from gpt4all_llm import get_llm_gpt4all
llm = get_llm_gpt4all(model_name, model=model, max_new_tokens=max_new_tokens,
temperature=temperature,
repetition_penalty=repetition_penalty,
top_k=top_k,
top_p=top_p,
callbacks=callbacks,
verbose=verbose,
streaming=stream_output,
prompter=prompter,
context=context,
iinput=iinput,
)
else:
if model is None:
# only used if didn't pass model in
assert tokenizer is None
prompt_type = 'human_bot'
if model_name is None:
model_name = 'h2oai/h2ogpt-oasst1-512-12b'
# model_name = 'h2oai/h2ogpt-oig-oasst1-512-6_9b'
# model_name = 'h2oai/h2ogpt-oasst1-512-20b'
inference_server = ''
model, tokenizer, device = get_model(load_8bit=True, base_model=model_name,
inference_server=inference_server, gpu_id=0)
max_max_tokens = tokenizer.model_max_length
gen_kwargs = dict(do_sample=do_sample,
temperature=temperature,
top_k=top_k,
top_p=top_p,
num_beams=num_beams,
max_new_tokens=max_new_tokens,
min_new_tokens=min_new_tokens,
early_stopping=early_stopping,
max_time=max_time,
repetition_penalty=repetition_penalty,
num_return_sequences=num_return_sequences,
return_full_text=True,
handle_long_generation=None)
assert len(set(gen_hyper).difference(gen_kwargs.keys())) == 0
if stream_output:
skip_prompt = False
from gen import H2OTextIteratorStreamer
decoder_kwargs = {}
streamer = H2OTextIteratorStreamer(tokenizer, skip_prompt=skip_prompt, block=False, **decoder_kwargs)
gen_kwargs.update(dict(streamer=streamer))
else:
streamer = None
from h2oai_pipeline import H2OTextGenerationPipeline
pipe = H2OTextGenerationPipeline(model=model, use_prompter=True,
prompter=prompter,
context=context,
iinpout=iinput,
prompt_type=prompt_type,
prompt_dict=prompt_dict,
sanitize_bot_response=sanitize_bot_response,
chat=False, stream_output=stream_output,
tokenizer=tokenizer,
# leave some room for 1 paragraph, even if min_new_tokens=0
max_input_tokens=max_max_tokens - max(min_new_tokens, 256),
**gen_kwargs)
# pipe.task = "text-generation"
# below makes it listen only to our prompt removal,
# not built in prompt removal that is less general and not specific for our model
pipe.task = "text2text-generation"
from langchain.llms import HuggingFacePipeline
llm = HuggingFacePipeline(pipeline=pipe)
return llm, model_name, streamer, prompt_type
def get_device_dtype():
# torch.device("cuda") leads to cuda:x cuda:y mismatches for multi-GPU consistently
import torch
n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0
device = 'cpu' if n_gpus == 0 else 'cuda'
# from utils import NullContext
# context_class = NullContext if n_gpus > 1 or n_gpus == 0 else context_class
context_class = torch.device
torch_dtype = torch.float16 if device == 'cuda' else torch.float32
return device, torch_dtype, context_class
def get_wiki_data(title, first_paragraph_only, text_limit=None, take_head=True):
"""
Get wikipedia data from online
:param title:
:param first_paragraph_only:
:param text_limit:
:param take_head:
:return:
"""
filename = 'wiki_%s_%s_%s_%s.data' % (first_paragraph_only, title, text_limit, take_head)
url = f"https://en.wikipedia.org/w/api.php?format=json&action=query&prop=extracts&explaintext=1&titles={title}"
if first_paragraph_only:
url += "&exintro=1"
import json
if not os.path.isfile(filename):
data = requests.get(url).json()
json.dump(data, open(filename, 'wt'))
else:
data = json.load(open(filename, "rt"))
page_content = list(data["query"]["pages"].values())[0]["extract"]
if take_head is not None and text_limit is not None:
page_content = page_content[:text_limit] if take_head else page_content[-text_limit:]
title_url = str(title).replace(' ', '_')
return Document(
page_content=page_content,
metadata={"source": f"https://en.wikipedia.org/wiki/{title_url}"},
)
def get_wiki_sources(first_para=True, text_limit=None):
"""
Get specific named sources from wikipedia
:param first_para:
:param text_limit:
:return:
"""
default_wiki_sources = ['Unix', 'Microsoft_Windows', 'Linux']
wiki_sources = list(os.getenv('WIKI_SOURCES', default_wiki_sources))
return [get_wiki_data(x, first_para, text_limit=text_limit) for x in wiki_sources]
def get_github_docs(repo_owner, repo_name):
"""
Access github from specific repo
:param repo_owner:
:param repo_name:
:return:
"""
with tempfile.TemporaryDirectory() as d:
subprocess.check_call(
f"git clone --depth 1 https://github.com/{repo_owner}/{repo_name}.git .",
cwd=d,
shell=True,
)
git_sha = (
subprocess.check_output("git rev-parse HEAD", shell=True, cwd=d)
.decode("utf-8")
.strip()
)
repo_path = pathlib.Path(d)
markdown_files = list(repo_path.glob("*/*.md")) + list(
repo_path.glob("*/*.mdx")
)
for markdown_file in markdown_files:
with open(markdown_file, "r") as f:
relative_path = markdown_file.relative_to(repo_path)
github_url = f"https://github.com/{repo_owner}/{repo_name}/blob/{git_sha}/{relative_path}"
yield Document(page_content=f.read(), metadata={"source": github_url})
def get_dai_pickle(dest="."):
from huggingface_hub import hf_hub_download
# True for case when locally already logged in with correct token, so don't have to set key
token = os.getenv('HUGGINGFACE_API_TOKEN', True)
path_to_zip_file = hf_hub_download('h2oai/dai_docs', 'dai_docs.pickle', token=token, repo_type='dataset')
shutil.copy(path_to_zip_file, dest)
def get_dai_docs(from_hf=False, get_pickle=True):
"""
Consume DAI documentation, or consume from public pickle
:param from_hf: get DAI docs from HF, then generate pickle for later use by LangChain
:param get_pickle: Avoid raw DAI docs, just get pickle directly from HF
:return:
"""
import pickle
if get_pickle:
get_dai_pickle()
dai_store = 'dai_docs.pickle'
dst = "working_dir_docs"
if not os.path.isfile(dai_store):
from create_data import setup_dai_docs
dst = setup_dai_docs(dst=dst, from_hf=from_hf)
import glob
files = list(glob.glob(os.path.join(dst, '*rst'), recursive=True))
basedir = os.path.abspath(os.getcwd())
from create_data import rst_to_outputs
new_outputs = rst_to_outputs(files)
os.chdir(basedir)
pickle.dump(new_outputs, open(dai_store, 'wb'))
else:
new_outputs = pickle.load(open(dai_store, 'rb'))
sources = []
for line, file in new_outputs:
# gradio requires any linked file to be with app.py
sym_src = os.path.abspath(os.path.join(dst, file))
sym_dst = os.path.abspath(os.path.join(os.getcwd(), file))
if os.path.lexists(sym_dst):
os.remove(sym_dst)
os.symlink(sym_src, sym_dst)
itm = Document(page_content=line, metadata={"source": file})
# NOTE: yield has issues when going into db, loses metadata
# yield itm
sources.append(itm)
return sources
image_types = ["png", "jpg", "jpeg"]
non_image_types = ["pdf", "txt", "csv", "toml", "py", "rst", "rtf",
"md",
"html", "mhtml",
"enex", "eml", "epub", "odt", "pptx", "ppt",
"zip", "urls",
]
# "msg", GPL3
if have_libreoffice or True:
# or True so it tries to load, e.g. on MAC/Windows, even if don't have libreoffice since works without that
non_image_types.extend(["docx", "doc", "xls", "xlsx"])
file_types = non_image_types + image_types
def add_meta(docs1, file):
file_extension = pathlib.Path(file).suffix
hashid = hash_file(file)
doc_hash = str(uuid.uuid4())[:10]
if not isinstance(docs1, (list, tuple, types.GeneratorType)):
docs1 = [docs1]
[x.metadata.update(dict(input_type=file_extension, date=str(datetime.now()), hashid=hashid, doc_hash=doc_hash)) for
x in docs1]
def file_to_doc(file, base_path=None, verbose=False, fail_any_exception=False,
chunk=True, chunk_size=512, n_jobs=-1,
is_url=False, is_txt=False,
enable_captions=True,
captions_model=None,
enable_ocr=False, enable_pdf_ocr='auto', caption_loader=None,
headsize=50):
if file is None:
if fail_any_exception:
raise RuntimeError("Unexpected None file")
else:
return []
doc1 = [] # in case no support, or disabled support
if base_path is None and not is_txt and not is_url:
# then assume want to persist but don't care which path used
# can't be in base_path
dir_name = os.path.dirname(file)
base_name = os.path.basename(file)
# if from gradio, will have its own temp uuid too, but that's ok
base_name = sanitize_filename(base_name) + "_" + str(uuid.uuid4())[:10]
base_path = os.path.join(dir_name, base_name)
if is_url:
file = file.strip() # in case accidental spaces in front or at end
if file.lower().startswith('arxiv:'):
query = file.lower().split('arxiv:')
if len(query) == 2 and have_arxiv:
query = query[1]
docs1 = ArxivLoader(query=query, load_max_docs=20, load_all_available_meta=True).load()
# ensure string, sometimes None
[[x.metadata.update({k: str(v)}) for k, v in x.metadata.items()] for x in docs1]
query_url = f"https://arxiv.org/abs/{query}"
[x.metadata.update(
dict(source=x.metadata.get('entry_id', query_url), query=query_url,
input_type='arxiv', head=x.metadata.get('Title', ''), date=str(datetime.now))) for x in
docs1]
else:
docs1 = []
else:
if not (file.startswith("http://") or file.startswith("file://") or file.startswith("https://")):
file = 'http://' + file
docs1 = UnstructuredURLLoader(urls=[file]).load()
if len(docs1) == 0 and have_playwright:
# then something went wrong, try another loader:
from langchain.document_loaders import PlaywrightURLLoader
docs1 = PlaywrightURLLoader(urls=[file]).load()
if len(docs1) == 0 and have_selenium:
# then something went wrong, try another loader:
# but requires Chrome binary, else get: selenium.common.exceptions.WebDriverException: Message: unknown error: cannot find Chrome binary
from langchain.document_loaders import SeleniumURLLoader
from selenium.common.exceptions import WebDriverException
try:
docs1 = SeleniumURLLoader(urls=[file]).load()
except WebDriverException as e:
print("No web driver: %s" % str(e), flush=True)
[x.metadata.update(dict(input_type='url', date=str(datetime.now))) for x in docs1]
docs1 = clean_doc(docs1)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
elif is_txt:
base_path = "user_paste"
source_file = os.path.join(base_path, "_%s" % str(uuid.uuid4())[:10])
makedirs(os.path.dirname(source_file), exist_ok=True)
with open(source_file, "wt") as f:
f.write(file)
metadata = dict(source=source_file, date=str(datetime.now()), input_type='pasted txt')
doc1 = Document(page_content=file, metadata=metadata)
doc1 = clean_doc(doc1)
elif file.lower().endswith('.html') or file.lower().endswith('.mhtml'):
docs1 = UnstructuredHTMLLoader(file_path=file).load()
add_meta(docs1, file)
docs1 = clean_doc(docs1)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size, language=Language.HTML)
elif (file.lower().endswith('.docx') or file.lower().endswith('.doc')) and (have_libreoffice or True):
docs1 = UnstructuredWordDocumentLoader(file_path=file).load()
add_meta(docs1, file)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
elif (file.lower().endswith('.xlsx') or file.lower().endswith('.xls')) and (have_libreoffice or True):
docs1 = UnstructuredExcelLoader(file_path=file).load()
add_meta(docs1, file)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
elif file.lower().endswith('.odt'):
docs1 = UnstructuredODTLoader(file_path=file).load()
add_meta(docs1, file)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
elif file.lower().endswith('pptx') or file.lower().endswith('ppt'):
docs1 = UnstructuredPowerPointLoader(file_path=file).load()
add_meta(docs1, file)
docs1 = clean_doc(docs1)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
elif file.lower().endswith('.txt'):
# use UnstructuredFileLoader ?
docs1 = TextLoader(file, encoding="utf8", autodetect_encoding=True).load()
# makes just one, but big one
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
doc1 = clean_doc(doc1)
add_meta(doc1, file)
elif file.lower().endswith('.rtf'):
docs1 = UnstructuredRTFLoader(file).load()
add_meta(docs1, file)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
elif file.lower().endswith('.md'):
docs1 = UnstructuredMarkdownLoader(file).load()
add_meta(docs1, file)
docs1 = clean_doc(docs1)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size, language=Language.MARKDOWN)
elif file.lower().endswith('.enex'):
docs1 = EverNoteLoader(file).load()
add_meta(doc1, file)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
elif file.lower().endswith('.epub'):
docs1 = UnstructuredEPubLoader(file).load()
add_meta(docs1, file)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
elif file.lower().endswith('.jpeg') or file.lower().endswith('.jpg') or file.lower().endswith('.png'):
docs1 = []
if have_tesseract and enable_ocr:
# OCR, somewhat works, but not great
docs1.extend(UnstructuredImageLoader(file).load())
add_meta(docs1, file)
if enable_captions:
# BLIP
if caption_loader is not None and not isinstance(caption_loader, (str, bool)):
# assumes didn't fork into this process with joblib, else can deadlock
caption_loader.set_image_paths([file])
docs1c = caption_loader.load()
add_meta(docs1c, file)
[x.metadata.update(dict(head=x.page_content[:headsize].strip())) for x in docs1c]
docs1.extend(docs1c)
else:
from image_captions import H2OImageCaptionLoader
caption_loader = H2OImageCaptionLoader(caption_gpu=caption_loader == 'gpu',
blip_model=captions_model,
blip_processor=captions_model)
caption_loader.set_image_paths([file])
docs1c = caption_loader.load()
add_meta(docs1c, file)
[x.metadata.update(dict(head=x.page_content[:headsize].strip())) for x in docs1c]
docs1.extend(docs1c)
for doci in docs1:
doci.metadata['source'] = doci.metadata['image_path']
doci.metadata['hash'] = hash_file(doci.metadata['source'])
if docs1:
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
elif file.lower().endswith('.msg'):
raise RuntimeError("Not supported, GPL3 license")
# docs1 = OutlookMessageLoader(file).load()
# docs1[0].metadata['source'] = file
elif file.lower().endswith('.eml'):
try:
docs1 = UnstructuredEmailLoader(file).load()
add_meta(docs1, file)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
except ValueError as e:
if 'text/html content not found in email' in str(e):
# e.g. plain/text dict key exists, but not
# doc1 = TextLoader(file, encoding="utf8").load()
docs1 = UnstructuredEmailLoader(file, content_source="text/plain").load()
add_meta(docs1, file)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
else:
raise
# elif file.lower().endswith('.gcsdir'):
# doc1 = GCSDirectoryLoader(project_name, bucket, prefix).load()
# elif file.lower().endswith('.gcsfile'):
# doc1 = GCSFileLoader(project_name, bucket, blob).load()
elif file.lower().endswith('.rst'):
with open(file, "r") as f:
doc1 = Document(page_content=f.read(), metadata={"source": file})
add_meta(doc1, file)
doc1 = chunk_sources(doc1, chunk=chunk, chunk_size=chunk_size, language=Language.RST)
elif file.lower().endswith('.pdf'):
env_gpt4all_file = ".env_gpt4all"
from dotenv import dotenv_values
env_kwargs = dotenv_values(env_gpt4all_file)
pdf_class_name = env_kwargs.get('PDF_CLASS_NAME', 'PyMuPDFParser')
doc1 = []
handled = False
if have_pymupdf and pdf_class_name == 'PyMuPDFParser':
# GPL, only use if installed
from langchain.document_loaders import PyMuPDFLoader
# load() still chunks by pages, but every page has title at start to help
doc1 = PyMuPDFLoader(file).load()
# remove empty documents
handled |= len(doc1) > 0
doc1 = [x for x in doc1 if x.page_content]
doc1 = clean_doc(doc1)
if len(doc1) == 0:
doc1 = UnstructuredPDFLoader(file).load()
handled |= len(doc1) > 0
# remove empty documents
doc1 = [x for x in doc1 if x.page_content]
# seems to not need cleaning in most cases
if len(doc1) == 0:
# open-source fallback
# load() still chunks by pages, but every page has title at start to help
doc1 = PyPDFLoader(file).load()
handled |= len(doc1) > 0
# remove empty documents
doc1 = [x for x in doc1 if x.page_content]
doc1 = clean_doc(doc1)
if have_pymupdf and len(doc1) == 0:
# GPL, only use if installed
from langchain.document_loaders import PyMuPDFLoader
# load() still chunks by pages, but every page has title at start to help
doc1 = PyMuPDFLoader(file).load()
handled |= len(doc1) > 0
# remove empty documents
doc1 = [x for x in doc1 if x.page_content]
doc1 = clean_doc(doc1)
if len(doc1) == 0 and enable_pdf_ocr == 'auto' or enable_pdf_ocr == 'on':
# try OCR in end since slowest, but works on pure image pages well
doc1 = UnstructuredPDFLoader(file, strategy='ocr_only').load()
handled |= len(doc1) > 0
# remove empty documents
doc1 = [x for x in doc1 if x.page_content]
# seems to not need cleaning in most cases
# Some PDFs return nothing or junk from PDFMinerLoader
if len(doc1) == 0:
# if literally nothing, show failed to parse so user knows, since unlikely nothing in PDF at all.
if handled:
raise ValueError("%s had no valid text, but meta data was parsed" % file)
else:
raise ValueError("%s had no valid text and no meta data was parsed" % file)
doc1 = chunk_sources(doc1, chunk=chunk, chunk_size=chunk_size)
add_meta(doc1, file)
elif file.lower().endswith('.csv'):
doc1 = CSVLoader(file).load()
add_meta(doc1, file)
elif file.lower().endswith('.py'):
doc1 = PythonLoader(file).load()
add_meta(doc1, file)
doc1 = chunk_sources(doc1, chunk=chunk, chunk_size=chunk_size, language=Language.PYTHON)
elif file.lower().endswith('.toml'):
doc1 = TomlLoader(file).load()
add_meta(doc1, file)
elif file.lower().endswith('.urls'):
with open(file, "r") as f:
docs1 = UnstructuredURLLoader(urls=f.readlines()).load()
add_meta(docs1, file)
doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
elif file.lower().endswith('.zip'):
with zipfile.ZipFile(file, 'r') as zip_ref:
# don't put into temporary path, since want to keep references to docs inside zip
# so just extract in path where
zip_ref.extractall(base_path)
# recurse
doc1 = path_to_docs(base_path, verbose=verbose, fail_any_exception=fail_any_exception, n_jobs=n_jobs)
else:
raise RuntimeError("No file handler for %s" % os.path.basename(file))
# allow doc1 to be list or not. If not list, did not chunk yet, so chunk now
# if list of length one, don't trust and chunk it
if not isinstance(doc1, list):
if chunk:
docs = chunk_sources([doc1], chunk=chunk, chunk_size=chunk_size)
else:
docs = [doc1]
elif isinstance(doc1, list) and len(doc1) == 1:
if chunk:
docs = chunk_sources(doc1, chunk=chunk, chunk_size=chunk_size)
else:
docs = doc1
else:
docs = doc1
assert isinstance(docs, list)
return docs
def path_to_doc1(file, verbose=False, fail_any_exception=False, return_file=True,
chunk=True, chunk_size=512,
n_jobs=-1,
is_url=False, is_txt=False,
enable_captions=True,
captions_model=None,
enable_ocr=False, enable_pdf_ocr='auto', caption_loader=None):
if verbose:
if is_url:
print("Ingesting URL: %s" % file, flush=True)
elif is_txt:
print("Ingesting Text: %s" % file, flush=True)
else:
print("Ingesting file: %s" % file, flush=True)
res = None
try:
# don't pass base_path=path, would infinitely recurse
res = file_to_doc(file, base_path=None, verbose=verbose, fail_any_exception=fail_any_exception,
chunk=chunk, chunk_size=chunk_size,
n_jobs=n_jobs,
is_url=is_url, is_txt=is_txt,
enable_captions=enable_captions,
captions_model=captions_model,
enable_ocr=enable_ocr,
enable_pdf_ocr=enable_pdf_ocr,
caption_loader=caption_loader)
except BaseException as e:
print("Failed to ingest %s due to %s" % (file, traceback.format_exc()))
if fail_any_exception:
raise
else:
exception_doc = Document(
page_content='',
metadata={"source": file, "exception": '%s Exception: %s' % (file, str(e)),
"traceback": traceback.format_exc()})
res = [exception_doc]
if return_file:
base_tmp = "temp_path_to_doc1"
if not os.path.isdir(base_tmp):
os.makedirs(base_tmp, exist_ok=True)
filename = os.path.join(base_tmp, str(uuid.uuid4()) + ".tmp.pickle")
with open(filename, 'wb') as f:
pickle.dump(res, f)
return filename
return res
def path_to_docs(path_or_paths, verbose=False, fail_any_exception=False, n_jobs=-1,
chunk=True, chunk_size=512,
url=None, text=None,
enable_captions=True,
captions_model=None,
caption_loader=None,
enable_ocr=False,
enable_pdf_ocr='auto',
existing_files=[],
existing_hash_ids={},
):
# path_or_paths could be str, list, tuple, generator
globs_image_types = []
globs_non_image_types = []
if not path_or_paths and not url and not text:
return []
elif url:
globs_non_image_types = url if isinstance(url, (list, tuple, types.GeneratorType)) else [url]
elif text:
globs_non_image_types = text if isinstance(text, (list, tuple, types.GeneratorType)) else [text]
elif isinstance(path_or_paths, str) and os.path.isdir(path_or_paths):
# single path, only consume allowed files
path = path_or_paths
# Below globs should match patterns in file_to_doc()
[globs_image_types.extend(glob.glob(os.path.join(path, "./**/*.%s" % ftype), recursive=True))
for ftype in image_types]
[globs_non_image_types.extend(glob.glob(os.path.join(path, "./**/*.%s" % ftype), recursive=True))
for ftype in non_image_types]
else:
if isinstance(path_or_paths, str):
if os.path.isfile(path_or_paths) or os.path.isdir(path_or_paths):
path_or_paths = [path_or_paths]
else:
# path was deleted etc.
return []
# list/tuple of files (consume what can, and exception those that selected but cannot consume so user knows)
assert isinstance(path_or_paths, (list, tuple, types.GeneratorType)), \
"Wrong type for path_or_paths: %s %s" % (path_or_paths, type(path_or_paths))
# reform out of allowed types
globs_image_types.extend(flatten_list([[x for x in path_or_paths if x.endswith(y)] for y in image_types]))
# could do below:
# globs_non_image_types = flatten_list([[x for x in path_or_paths if x.endswith(y)] for y in non_image_types])
# But instead, allow fail so can collect unsupported too
set_globs_image_types = set(globs_image_types)
globs_non_image_types.extend([x for x in path_or_paths if x not in set_globs_image_types])
# filter out any files to skip (e.g. if already processed them)
# this is easy, but too aggressive in case a file changed, so parent probably passed existing_files=[]
assert not existing_files, "DEV: assume not using this approach"
if existing_files:
set_skip_files = set(existing_files)
globs_image_types = [x for x in globs_image_types if x not in set_skip_files]
globs_non_image_types = [x for x in globs_non_image_types if x not in set_skip_files]
if existing_hash_ids:
# assume consistent with add_meta() use of hash_file(file)
# also assume consistent with get_existing_hash_ids for dict creation
# assume hashable values
existing_hash_ids_set = set(existing_hash_ids.items())
hash_ids_all_image = set({x: hash_file(x) for x in globs_image_types}.items())
hash_ids_all_non_image = set({x: hash_file(x) for x in globs_non_image_types}.items())
# don't use symmetric diff. If file is gone, ignore and don't remove or something
# just consider existing files (key) having new hash or not (value)
new_files_image = set(dict(hash_ids_all_image - existing_hash_ids_set).keys())
new_files_non_image = set(dict(hash_ids_all_non_image - existing_hash_ids_set).keys())
globs_image_types = [x for x in globs_image_types if x in new_files_image]
globs_non_image_types = [x for x in globs_non_image_types if x in new_files_non_image]
# could use generator, but messes up metadata handling in recursive case
if caption_loader and not isinstance(caption_loader, (bool, str)) and \
caption_loader.device != 'cpu' or \
get_device() == 'cuda':
# to avoid deadlocks, presume was preloaded and so can't fork due to cuda context
n_jobs_image = 1
else:
n_jobs_image = n_jobs
return_file = True # local choice
is_url = url is not None
is_txt = text is not None
kwargs = dict(verbose=verbose, fail_any_exception=fail_any_exception,
return_file=return_file,
chunk=chunk, chunk_size=chunk_size,
n_jobs=n_jobs,
is_url=is_url,
is_txt=is_txt,
enable_captions=enable_captions,
captions_model=captions_model,
caption_loader=caption_loader,
enable_ocr=enable_ocr,
enable_pdf_ocr=enable_pdf_ocr,
)
if n_jobs != 1 and len(globs_non_image_types) > 1:
# avoid nesting, e.g. upload 1 zip and then inside many files
# harder to handle if upload many zips with many files, inner parallel one will be disabled by joblib
documents = ProgressParallel(n_jobs=n_jobs, verbose=10 if verbose else 0, backend='multiprocessing')(
delayed(path_to_doc1)(file, **kwargs) for file in globs_non_image_types
)
else:
documents = [path_to_doc1(file, **kwargs) for file in tqdm(globs_non_image_types)]
# do images separately since can't fork after cuda in parent, so can't be parallel
if n_jobs_image != 1 and len(globs_image_types) > 1:
# avoid nesting, e.g. upload 1 zip and then inside many files
# harder to handle if upload many zips with many files, inner parallel one will be disabled by joblib
image_documents = ProgressParallel(n_jobs=n_jobs, verbose=10 if verbose else 0, backend='multiprocessing')(
delayed(path_to_doc1)(file, **kwargs) for file in globs_image_types
)
else:
image_documents = [path_to_doc1(file, **kwargs) for file in tqdm(globs_image_types)]
# add image docs in
documents += image_documents
if return_file:
# then documents really are files
files = documents.copy()
documents = []
for fil in files:
with open(fil, 'rb') as f:
documents.extend(pickle.load(f))
# remove temp pickle
remove(fil)
else:
documents = reduce(concat, documents)
return documents
def prep_langchain(persist_directory,
load_db_if_exists,
db_type, use_openai_embedding, langchain_mode, langchain_mode_paths,
hf_embedding_model, n_jobs=-1, kwargs_make_db={}):
"""
do prep first time, involving downloads
# FIXME: Add github caching then add here
:return:
"""
assert langchain_mode not in ['MyData'], "Should not prep scratch data"
db_dir_exists = os.path.isdir(persist_directory)
user_path = langchain_mode_paths.get(langchain_mode)
if db_dir_exists and user_path is None:
print("Prep: persist_directory=%s exists, using" % persist_directory, flush=True)
db = get_existing_db(None, persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode,
hf_embedding_model)
else:
if db_dir_exists and user_path is not None:
print("Prep: persist_directory=%s exists, user_path=%s passed, adding any changed or new documents" % (
persist_directory, user_path), flush=True)
elif not db_dir_exists:
print("Prep: persist_directory=%s does not exist, regenerating" % persist_directory, flush=True)
db = None
if langchain_mode in ['All', 'DriverlessAI docs']:
# FIXME: Could also just use dai_docs.pickle directly and upload that
get_dai_docs(from_hf=True)
if langchain_mode in ['All', 'wiki']:
get_wiki_sources(first_para=kwargs_make_db['first_para'], text_limit=kwargs_make_db['text_limit'])
langchain_kwargs = kwargs_make_db.copy()
langchain_kwargs.update(locals())
db, num_new_sources, new_sources_metadata = make_db(**langchain_kwargs)
return db
import posthog
posthog.disabled = True
class FakeConsumer(object):
def __init__(self, *args, **kwargs):
pass
def run(self):
pass
def pause(self):
pass
def upload(self):
pass
def next(self):
pass
def request(self, batch):
pass
posthog.Consumer = FakeConsumer
def check_update_chroma_embedding(db, use_openai_embedding, hf_embedding_model, langchain_mode):
changed_db = False
if load_embed(db) != (use_openai_embedding, hf_embedding_model):
print("Detected new embedding, updating db: %s" % langchain_mode, flush=True)
# handle embedding changes
db_get = get_documents(db)
sources = [Document(page_content=result[0], metadata=result[1] or {})
for result in zip(db_get['documents'], db_get['metadatas'])]
# delete index, has to be redone
persist_directory = db._persist_directory
shutil.move(persist_directory, persist_directory + "_" + str(uuid.uuid4()) + ".bak")
db_type = 'chroma'
load_db_if_exists = False
db = get_db(sources, use_openai_embedding=use_openai_embedding, db_type=db_type,
persist_directory=persist_directory, load_db_if_exists=load_db_if_exists,
langchain_mode=langchain_mode,
collection_name=None,
hf_embedding_model=hf_embedding_model)
if False:
# below doesn't work if db already in memory, so have to switch to new db as above
# upsert does new embedding, but if index already in memory, complains about size mismatch etc.
client_collection = db._client.get_collection(name=db._collection.name,
embedding_function=db._collection._embedding_function)
client_collection.upsert(ids=db_get['ids'], metadatas=db_get['metadatas'], documents=db_get['documents'])
changed_db = True
print("Done updating db for new embedding: %s" % langchain_mode, flush=True)
return db, changed_db
def get_existing_db(db, persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode,
hf_embedding_model, verbose=False, check_embedding=True):
if load_db_if_exists and db_type == 'chroma' and os.path.isdir(persist_directory) and os.path.isdir(
os.path.join(persist_directory, 'index')):
if db is None:
if verbose:
print("DO Loading db: %s" % langchain_mode, flush=True)
embedding = get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model)
from chromadb.config import Settings
client_settings = Settings(anonymized_telemetry=False,
chroma_db_impl="duckdb+parquet",
persist_directory=persist_directory)
db = Chroma(persist_directory=persist_directory, embedding_function=embedding,
collection_name=langchain_mode.replace(' ', '_'),
client_settings=client_settings)
if verbose:
print("DONE Loading db: %s" % langchain_mode, flush=True)
else:
if verbose:
print("USING already-loaded db: %s" % langchain_mode, flush=True)
if check_embedding:
db_trial, changed_db = check_update_chroma_embedding(db, use_openai_embedding, hf_embedding_model,
langchain_mode)
if changed_db:
db = db_trial
# only call persist if really changed db, else takes too long for large db
if db is not None:
db.persist()
clear_embedding(db)
save_embed(db, use_openai_embedding, hf_embedding_model)
return db
return None
def clear_embedding(db):
if db is None:
return
# don't keep on GPU, wastes memory, push back onto CPU and only put back on GPU once again embed
db._embedding_function.client.cpu()
clear_torch_cache()
def make_db(**langchain_kwargs):
func_names = list(inspect.signature(_make_db).parameters)
missing_kwargs = [x for x in func_names if x not in langchain_kwargs]
defaults_db = {k: v.default for k, v in dict(inspect.signature(run_qa_db).parameters).items()}
for k in missing_kwargs:
if k in defaults_db:
langchain_kwargs[k] = defaults_db[k]
# final check for missing
missing_kwargs = [x for x in func_names if x not in langchain_kwargs]
assert not missing_kwargs, "Missing kwargs for make_db: %s" % missing_kwargs
# only keep actual used
langchain_kwargs = {k: v for k, v in langchain_kwargs.items() if k in func_names}
return _make_db(**langchain_kwargs)
def save_embed(db, use_openai_embedding, hf_embedding_model):
if db is not None:
embed_info_file = os.path.join(db._persist_directory, 'embed_info')
with open(embed_info_file, 'wb') as f:
pickle.dump((use_openai_embedding, hf_embedding_model), f)
return use_openai_embedding, hf_embedding_model
def load_embed(db):
embed_info_file = os.path.join(db._persist_directory, 'embed_info')
if os.path.isfile(embed_info_file):
with open(embed_info_file, 'rb') as f:
use_openai_embedding, hf_embedding_model = pickle.load(f)
else:
# migration, assume defaults
use_openai_embedding, hf_embedding_model = False, "sentence-transformers/all-MiniLM-L6-v2"
return use_openai_embedding, hf_embedding_model
def get_persist_directory(langchain_mode):
return 'db_dir_%s' % langchain_mode # single place, no special names for each case
def _make_db(use_openai_embedding=False,
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2",
first_para=False, text_limit=None,
chunk=True, chunk_size=512,
langchain_mode=None,
langchain_mode_paths=None,
db_type='faiss',
load_db_if_exists=True,
db=None,
n_jobs=-1,
verbose=False):
persist_directory = get_persist_directory(langchain_mode)
user_path = langchain_mode_paths.get(langchain_mode)
# see if can get persistent chroma db
db_trial = get_existing_db(db, persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode,
hf_embedding_model, verbose=verbose)
if db_trial is not None:
db = db_trial
sources = []
if not db:
if langchain_mode in ['wiki_full']:
from read_wiki_full import get_all_documents
small_test = None
print("Generating new wiki", flush=True)
sources1 = get_all_documents(small_test=small_test, n_jobs=os.cpu_count() // 2)
print("Got new wiki", flush=True)
if chunk:
sources1 = chunk_sources(sources1, chunk=chunk, chunk_size=chunk_size)
print("Chunked new wiki", flush=True)
sources.extend(sources1)
elif langchain_mode in ['wiki']:
sources1 = get_wiki_sources(first_para=first_para, text_limit=text_limit)
if chunk:
sources1 = chunk_sources(sources1, chunk=chunk, chunk_size=chunk_size)
sources.extend(sources1)
elif langchain_mode in ['github h2oGPT']:
# sources = get_github_docs("dagster-io", "dagster")
sources1 = get_github_docs("h2oai", "h2ogpt")
# FIXME: always chunk for now
sources1 = chunk_sources(sources1, chunk=chunk, chunk_size=chunk_size)
sources.extend(sources1)
elif langchain_mode in ['DriverlessAI docs']:
sources1 = get_dai_docs(from_hf=True)
if chunk and False: # FIXME: DAI docs are already chunked well, should only chunk more if over limit
sources1 = chunk_sources(sources1, chunk=chunk, chunk_size=chunk_size)
sources.extend(sources1)
if user_path:
# UserData or custom, which has to be from user's disk
if db is not None:
# NOTE: Ignore file names for now, only go by hash ids
# existing_files = get_existing_files(db)
existing_files = []
existing_hash_ids = get_existing_hash_ids(db)
else:
# pretend no existing files so won't filter
existing_files = []
existing_hash_ids = []
# chunk internally for speed over multiple docs
# FIXME: If first had old Hash=None and switch embeddings,
# then re-embed, and then hit here and reload so have hash, and then re-embed.
sources1 = path_to_docs(user_path, n_jobs=n_jobs, chunk=chunk, chunk_size=chunk_size,
existing_files=existing_files, existing_hash_ids=existing_hash_ids)
new_metadata_sources = set([x.metadata['source'] for x in sources1])
if new_metadata_sources:
print("Loaded %s new files as sources to add to %s" % (len(new_metadata_sources), langchain_mode),
flush=True)
if verbose:
print("Files added: %s" % '\n'.join(new_metadata_sources), flush=True)
sources.extend(sources1)
print("Loaded %s sources for potentially adding to %s" % (len(sources), langchain_mode), flush=True)
# see if got sources
if not sources:
if verbose:
if db is not None:
print("langchain_mode %s has no new sources, nothing to add to db" % langchain_mode, flush=True)
else:
print("langchain_mode %s has no sources, not making new db" % langchain_mode, flush=True)
return db, 0, []
if verbose:
if db is not None:
print("Generating db", flush=True)
else:
print("Adding to db", flush=True)
if not db:
if sources:
db = get_db(sources, use_openai_embedding=use_openai_embedding, db_type=db_type,
persist_directory=persist_directory, langchain_mode=langchain_mode,
hf_embedding_model=hf_embedding_model)
if verbose:
print("Generated db", flush=True)
else:
print("Did not generate db since no sources", flush=True)
new_sources_metadata = [x.metadata for x in sources]
elif user_path is not None:
print("Existing db, potentially adding %s sources from user_path=%s" % (len(sources), user_path), flush=True)
db, num_new_sources, new_sources_metadata = add_to_db(db, sources, db_type=db_type,
use_openai_embedding=use_openai_embedding,
hf_embedding_model=hf_embedding_model)
print("Existing db, added %s new sources from user_path=%s" % (num_new_sources, user_path), flush=True)
else:
new_sources_metadata = [x.metadata for x in sources]
return db, len(new_sources_metadata), new_sources_metadata
def get_metadatas(db):
from langchain.vectorstores import FAISS
if isinstance(db, FAISS):
metadatas = [v.metadata for k, v in db.docstore._dict.items()]
elif isinstance(db, Chroma):
metadatas = get_documents(db)['metadatas']
else:
# FIXME: Hack due to https://github.com/weaviate/weaviate/issues/1947
# seems no way to get all metadata, so need to avoid this approach for weaviate
metadatas = [x.metadata for x in db.similarity_search("", k=10000)]
return metadatas
def get_documents(db):
if hasattr(db, '_persist_directory'):
name_path = os.path.basename(db._persist_directory)
base_path = 'locks'
makedirs(base_path)
with filelock.FileLock(os.path.join(base_path, "getdb_%s.lock" % name_path)):
# get segfaults and other errors when multiple threads access this
return _get_documents(db)
else:
return _get_documents(db)
def _get_documents(db):
from langchain.vectorstores import FAISS
if isinstance(db, FAISS):
documents = [v for k, v in db.docstore._dict.items()]
elif isinstance(db, Chroma):
documents = db.get()
else:
# FIXME: Hack due to https://github.com/weaviate/weaviate/issues/1947
# seems no way to get all metadata, so need to avoid this approach for weaviate
documents = [x for x in db.similarity_search("", k=10000)]
return documents
def get_docs_and_meta(db, top_k_docs, filter_kwargs={}):
if hasattr(db, '_persist_directory'):
name_path = os.path.basename(db._persist_directory)
base_path = 'locks'
makedirs(base_path)
with filelock.FileLock(os.path.join(base_path, "getdb_%s.lock" % name_path)):
return _get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs)
else:
return _get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs)
def _get_docs_and_meta(db, top_k_docs, filter_kwargs={}):
from langchain.vectorstores import FAISS
if isinstance(db, Chroma):
db_get = db._collection.get(where=filter_kwargs.get('filter'))
db_metadatas = db_get['metadatas']
db_documents = db_get['documents']
elif isinstance(db, FAISS):
import itertools
db_metadatas = get_metadatas(db)
# FIXME: FAISS has no filter
# slice dict first
db_documents = list(dict(itertools.islice(db.docstore._dict.items(), top_k_docs)).values())
else:
db_metadatas = get_metadatas(db)
db_documents = get_documents(db)
return db_documents, db_metadatas
def get_existing_files(db):
metadatas = get_metadatas(db)
metadata_sources = set([x['source'] for x in metadatas])
return metadata_sources
def get_existing_hash_ids(db):
metadatas = get_metadatas(db)
# assume consistency, that any prior hashed source was single hashed file at the time among all source chunks
metadata_hash_ids = {x['source']: x.get('hashid') for x in metadatas}
return metadata_hash_ids
def run_qa_db(**kwargs):
func_names = list(inspect.signature(_run_qa_db).parameters)
# hard-coded defaults
kwargs['answer_with_sources'] = True
kwargs['show_rank'] = False
missing_kwargs = [x for x in func_names if x not in kwargs]
assert not missing_kwargs, "Missing kwargs for run_qa_db: %s" % missing_kwargs
# only keep actual used
kwargs = {k: v for k, v in kwargs.items() if k in func_names}
try:
return _run_qa_db(**kwargs)
finally:
clear_torch_cache()
def _run_qa_db(query=None,
iinput=None,
context=None,
use_openai_model=False, use_openai_embedding=False,
first_para=False, text_limit=None, top_k_docs=4, chunk=True, chunk_size=512,
langchain_mode_paths={},
detect_user_path_changes_every_query=False,
db_type='faiss',
model_name=None, model=None, tokenizer=None, inference_server=None,
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2",
stream_output=False,
prompter=None,
prompt_type=None,
prompt_dict=None,
answer_with_sources=True,
cut_distance=1.64,
add_chat_history_to_context=True,
sanitize_bot_response=False,
show_rank=False,
use_llm_if_no_docs=False,
load_db_if_exists=False,
db=None,
do_sample=False,
temperature=0.1,
top_k=40,
top_p=0.7,
num_beams=1,
max_new_tokens=256,
min_new_tokens=1,
early_stopping=False,
max_time=180,
repetition_penalty=1.0,
num_return_sequences=1,
langchain_mode=None,
langchain_action=None,
langchain_agents=None,
document_subset=DocumentSubset.Relevant.name,
document_choice=[DocumentChoice.ALL.value],
n_jobs=-1,
verbose=False,
cli=False,
reverse_docs=True,
lora_weights='',
auto_reduce_chunks=True,
max_chunks=100,
):
"""
:param query:
:param use_openai_model:
:param use_openai_embedding:
:param first_para:
:param text_limit:
:param top_k_docs:
:param chunk:
:param chunk_size:
:param langchain_mode_paths: dict of langchain_mode -> user path to glob recursively from
:param db_type: 'faiss' for in-memory db or 'chroma' or 'weaviate' for persistent db
:param model_name: model name, used to switch behaviors
:param model: pre-initialized model, else will make new one
:param tokenizer: pre-initialized tokenizer, else will make new one. Required not None if model is not None
:param answer_with_sources
:return:
"""
assert langchain_mode_paths is not None
if model is not None:
assert model_name is not None # require so can make decisions
assert query is not None
assert prompter is not None or prompt_type is not None or model is None # if model is None, then will generate
if prompter is not None:
prompt_type = prompter.prompt_type
prompt_dict = prompter.prompt_dict
if model is not None:
assert prompt_type is not None
if prompt_type == PromptType.custom.name:
assert prompt_dict is not None # should at least be {} or ''
else:
prompt_dict = ''
assert len(set(gen_hyper).difference(inspect.signature(get_llm).parameters)) == 0
# pass in context to LLM directly, since already has prompt_type structure
# can't pass through langchain in get_chain() to LLM: https://github.com/hwchase17/langchain/issues/6638
llm, model_name, streamer, prompt_type_out = get_llm(use_openai_model=use_openai_model, model_name=model_name,
model=model,
tokenizer=tokenizer,
inference_server=inference_server,
stream_output=stream_output,
do_sample=do_sample,
temperature=temperature,
top_k=top_k,
top_p=top_p,
num_beams=num_beams,
max_new_tokens=max_new_tokens,
min_new_tokens=min_new_tokens,
early_stopping=early_stopping,
max_time=max_time,
repetition_penalty=repetition_penalty,
num_return_sequences=num_return_sequences,
prompt_type=prompt_type,
prompt_dict=prompt_dict,
prompter=prompter,
context=context if add_chat_history_to_context else '',
iinput=iinput if add_chat_history_to_context else '',
sanitize_bot_response=sanitize_bot_response,
verbose=verbose,
)
use_docs_planned = False
scores = []
chain = None
if isinstance(document_choice, str):
# support string as well
document_choice = [document_choice]
func_names = list(inspect.signature(get_chain).parameters)
sim_kwargs = {k: v for k, v in locals().items() if k in func_names}
missing_kwargs = [x for x in func_names if x not in sim_kwargs]
assert not missing_kwargs, "Missing: %s" % missing_kwargs
docs, chain, scores, use_docs_planned, have_any_docs = get_chain(**sim_kwargs)
if document_subset in non_query_commands:
formatted_doc_chunks = '\n\n'.join([get_url(x) + '\n\n' + x.page_content for x in docs])
if not formatted_doc_chunks and not use_llm_if_no_docs:
yield "No sources", ''
return
# if no souces, outside gpt_langchain, LLM will be used with '' input
yield formatted_doc_chunks, ''
return
if not use_llm_if_no_docs:
if not docs and langchain_action in [LangChainAction.SUMMARIZE_MAP.value,
LangChainAction.SUMMARIZE_ALL.value,
LangChainAction.SUMMARIZE_REFINE.value]:
ret = 'No relevant documents to summarize.' if have_any_docs else 'No documents to summarize.'
extra = ''
yield ret, extra
return
if not docs and langchain_mode not in [LangChainMode.DISABLED.value,
LangChainMode.LLM.value]:
ret = 'No relevant documents to query.' if have_any_docs else 'No documents to query.'
extra = ''
yield ret, extra
return
if chain is None and model_name not in non_hf_types:
# here if no docs at all and not HF type
# can only return if HF type
return
# context stuff similar to used in evaluate()
import torch
device, torch_dtype, context_class = get_device_dtype()
with torch.no_grad():
have_lora_weights = lora_weights not in [no_lora_str, '', None]
context_class_cast = NullContext if device == 'cpu' or have_lora_weights else torch.autocast
with context_class_cast(device):
if stream_output and streamer:
answer = None
import queue
bucket = queue.Queue()
thread = EThread(target=chain, streamer=streamer, bucket=bucket)
thread.start()
outputs = ""
prompt = None # FIXME
try:
for new_text in streamer:
# print("new_text: %s" % new_text, flush=True)
if bucket.qsize() > 0 or thread.exc:
thread.join()
outputs += new_text
if prompter: # and False: # FIXME: pipeline can already use prompter
output1 = prompter.get_response(outputs, prompt=prompt,
sanitize_bot_response=sanitize_bot_response)
yield output1, ''
else:
yield outputs, ''
except BaseException:
# if any exception, raise that exception if was from thread, first
if thread.exc:
raise thread.exc
raise
finally:
# in case no exception and didn't join with thread yet, then join
if not thread.exc:
answer = thread.join()
# in case raise StopIteration or broke queue loop in streamer, but still have exception
if thread.exc:
raise thread.exc
# FIXME: answer is not string outputs from streamer. How to get actual final output?
# answer = outputs
else:
answer = chain()
if not use_docs_planned:
ret = answer['output_text']
extra = ''
yield ret, extra
elif answer is not None:
ret, extra = get_sources_answer(query, answer, scores, show_rank, answer_with_sources, verbose=verbose)
yield ret, extra
return
def get_chain(query=None,
iinput=None,
context=None, # FIXME: https://github.com/hwchase17/langchain/issues/6638
use_openai_model=False, use_openai_embedding=False,
first_para=False, text_limit=None, top_k_docs=4, chunk=True, chunk_size=512,
langchain_mode_paths=None,
detect_user_path_changes_every_query=False,
db_type='faiss',
model_name=None,
inference_server='',
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2",
prompt_type=None,
prompt_dict=None,
cut_distance=1.1,
add_chat_history_to_context=True, # FIXME: https://github.com/hwchase17/langchain/issues/6638
load_db_if_exists=False,
db=None,
langchain_mode=None,
langchain_action=None,
langchain_agents=None,
document_subset=DocumentSubset.Relevant.name,
document_choice=[DocumentChoice.ALL.value],
n_jobs=-1,
# beyond run_db_query:
llm=None,
tokenizer=None,
verbose=False,
reverse_docs=True,
# local
auto_reduce_chunks=True,
max_chunks=100,
):
assert langchain_agents is not None # should be at least []
# determine whether use of context out of docs is planned
if not use_openai_model and prompt_type not in ['plain'] or model_name in non_hf_types:
if langchain_mode in ['Disabled', 'LLM']:
use_docs_planned = False
else:
use_docs_planned = True
else:
use_docs_planned = True
# https://github.com/hwchase17/langchain/issues/1946
# FIXME: Seems to way to get size of chroma db to limit top_k_docs to avoid
# Chroma collection MyData contains fewer than 4 elements.
# type logger error
if top_k_docs == -1:
k_db = 1000 if db_type == 'chroma' else 100
else:
# top_k_docs=100 works ok too
k_db = 1000 if db_type == 'chroma' else top_k_docs
# FIXME: For All just go over all dbs instead of a separate db for All
if not detect_user_path_changes_every_query and db is not None:
# avoid looking at user_path during similarity search db handling,
# if already have db and not updating from user_path every query
# but if db is None, no db yet loaded (e.g. from prep), so allow user_path to be whatever it was
if langchain_mode_paths is None:
langchain_mode_paths = {}
langchain_mode_paths = langchain_mode_paths.copy()
langchain_mode_paths[langchain_mode] = None
db, num_new_sources, new_sources_metadata = make_db(use_openai_embedding=use_openai_embedding,
hf_embedding_model=hf_embedding_model,
first_para=first_para, text_limit=text_limit,
chunk=chunk,
chunk_size=chunk_size,
langchain_mode=langchain_mode,
langchain_mode_paths=langchain_mode_paths,
db_type=db_type,
load_db_if_exists=load_db_if_exists,
db=db,
n_jobs=n_jobs,
verbose=verbose)
have_any_docs = db is not None
if langchain_action == LangChainAction.QUERY.value:
if iinput:
query = "%s\n%s" % (query, iinput)
if 'falcon' in model_name:
extra = "According to only the information in the document sources provided within the context above, "
prefix = "Pay attention and remember information below, which will help to answer the question or imperative after the context ends."
elif inference_server in ['openai', 'openai_chat']:
extra = "According to (primarily) the information in the document sources provided within context above, "
prefix = "Pay attention and remember information below, which will help to answer the question or imperative after the context ends. If the answer cannot be primarily obtained from information within the context, then respond that the answer does not appear in the context of the documents."
else:
extra = ""
prefix = ""
if langchain_mode in ['Disabled', 'LLM'] or not use_docs_planned:
template_if_no_docs = template = """%s{context}{question}""" % prefix
else:
template = """%s
\"\"\"
{context}
\"\"\"
%s{question}""" % (prefix, extra)
template_if_no_docs = """%s{context}%s{question}""" % (prefix, extra)
elif langchain_action in [LangChainAction.SUMMARIZE_ALL.value, LangChainAction.SUMMARIZE_MAP.value]:
none = ['', '\n', None]
if query in none and iinput in none:
prompt_summary = "Using only the text above, write a condensed and concise summary:\n"
elif query not in none:
prompt_summary = "Focusing on %s, write a condensed and concise Summary:\n" % query
elif iinput not in None:
prompt_summary = iinput
else:
prompt_summary = "Focusing on %s, %s:\n" % (query, iinput)
# don't auto reduce
auto_reduce_chunks = False
if langchain_action == LangChainAction.SUMMARIZE_MAP.value:
fstring = '{text}'
else:
fstring = '{input_documents}'
template = """In order to write a concise single-paragraph or bulleted list summary, pay attention to the following text:
\"\"\"
%s
\"\"\"\n%s""" % (fstring, prompt_summary)
template_if_no_docs = "Exactly only say: There are no documents to summarize."
elif langchain_action in [LangChainAction.SUMMARIZE_REFINE]:
template = '' # unused
template_if_no_docs = '' # unused
else:
raise RuntimeError("No such langchain_action=%s" % langchain_action)
if not use_openai_model and prompt_type not in ['plain'] or model_name in non_hf_types:
use_template = True
else:
use_template = False
if db and use_docs_planned:
base_path = 'locks'
makedirs(base_path)
if hasattr(db, '_persist_directory'):
name_path = "sim_%s.lock" % os.path.basename(db._persist_directory)
else:
name_path = "sim.lock"
lock_file = os.path.join(base_path, name_path)
if not isinstance(db, Chroma):
# only chroma supports filtering
filter_kwargs = {}
else:
assert document_choice is not None, "Document choice was None"
if len(document_choice) >= 1 and document_choice[0] == DocumentChoice.ALL.value:
filter_kwargs = {}
elif len(document_choice) >= 2:
if document_choice[0] == DocumentChoice.ALL.value:
# remove 'All'
document_choice = document_choice[1:]
or_filter = [{"source": {"$eq": x}} for x in document_choice]
filter_kwargs = dict(filter={"$or": or_filter})
elif len(document_choice) == 1:
# degenerate UX bug in chroma
one_filter = [{"source": {"$eq": x}} for x in document_choice][0]
filter_kwargs = dict(filter=one_filter)
else:
# shouldn't reach
filter_kwargs = {}
if langchain_mode in [LangChainMode.LLM.value]:
docs = []
scores = []
elif document_subset == DocumentSubset.TopKSources.name or query in [None, '', '\n']:
db_documents, db_metadatas = get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs)
# similar to langchain's chroma's _results_to_docs_and_scores
docs_with_score = [(Document(page_content=result[0], metadata=result[1] or {}), 0)
for result in zip(db_documents, db_metadatas)]
# order documents
doc_hashes = [x.get('doc_hash', 'None') for x in db_metadatas]
doc_chunk_ids = [x.get('chunk_id', 0) for x in db_metadatas]
docs_with_score = [x for _, _, x in
sorted(zip(doc_hashes, doc_chunk_ids, docs_with_score), key=lambda x: (x[0], x[1]))
]
docs_with_score = docs_with_score[:top_k_docs]
docs = [x[0] for x in docs_with_score]
scores = [x[1] for x in docs_with_score]
have_any_docs |= len(docs) > 0
else:
# FIXME: if langchain_action == LangChainAction.SUMMARIZE_MAP.value
# if map_reduce, then no need to auto reduce chunks
if top_k_docs == -1 or auto_reduce_chunks:
# docs_with_score = db.similarity_search_with_score(query, k=k_db, **filter_kwargs)[:top_k_docs]
top_k_docs_tokenize = 100
with filelock.FileLock(lock_file):
docs_with_score = db.similarity_search_with_score(query, k=k_db, **filter_kwargs)[
:top_k_docs_tokenize]
if hasattr(llm, 'pipeline') and hasattr(llm.pipeline, 'tokenizer'):
# more accurate
tokens = [len(llm.pipeline.tokenizer(x[0].page_content)['input_ids']) for x in docs_with_score]
template_tokens = len(llm.pipeline.tokenizer(template)['input_ids'])
elif inference_server in ['openai', 'openai_chat'] or use_openai_model or db_type in ['faiss',
'weaviate']:
# use ticktoken for faiss since embedding called differently
tokens = [llm.get_num_tokens(x[0].page_content) for x in docs_with_score]
template_tokens = llm.get_num_tokens(template)
elif isinstance(tokenizer, FakeTokenizer):
tokens = [tokenizer.num_tokens_from_string(x[0].page_content) for x in docs_with_score]
template_tokens = tokenizer.num_tokens_from_string(template)
else:
# in case model is not our pipeline with HF tokenizer
tokens = [db._embedding_function.client.tokenize([x[0].page_content])['input_ids'].shape[1] for x in
docs_with_score]
template_tokens = db._embedding_function.client.tokenize([template])['input_ids'].shape[1]
tokens_cumsum = np.cumsum(tokens)
if hasattr(llm, 'pipeline') and hasattr(llm.pipeline, 'max_input_tokens'):
max_input_tokens = llm.pipeline.max_input_tokens
elif inference_server in ['openai']:
max_tokens = llm.modelname_to_contextsize(model_name)
# leave some room for 1 paragraph, even if min_new_tokens=0
max_input_tokens = max_tokens - 256
elif inference_server in ['openai_chat']:
max_tokens = model_token_mapping[model_name]
# leave some room for 1 paragraph, even if min_new_tokens=0
max_input_tokens = max_tokens - 256
elif isinstance(tokenizer, FakeTokenizer):
max_input_tokens = tokenizer.model_max_length - 256
else:
# leave some room for 1 paragraph, even if min_new_tokens=0
max_input_tokens = 2048 - 256
max_input_tokens -= template_tokens
# FIXME: Doesn't account for query, == context, or new lines between contexts
where_res = np.where(tokens_cumsum < max_input_tokens)[0]
if where_res.shape[0] == 0:
# then no chunk can fit, still do first one
top_k_docs_trial = 1
else:
top_k_docs_trial = 1 + where_res[-1]
if 0 < top_k_docs_trial < max_chunks:
# avoid craziness
if top_k_docs == -1:
top_k_docs = top_k_docs_trial
else:
top_k_docs = min(top_k_docs, top_k_docs_trial)
if top_k_docs == -1:
# if here, means 0 and just do best with 1 doc
print("Unexpected large chunks and can't add to context, will add 1 anyways", flush=True)
top_k_docs = 1
docs_with_score = docs_with_score[:top_k_docs]
else:
with filelock.FileLock(lock_file):
docs_with_score = db.similarity_search_with_score(query, k=k_db, **filter_kwargs)[:top_k_docs]
# put most relevant chunks closest to question,
# esp. if truncation occurs will be "oldest" or "farthest from response" text that is truncated
# BUT: for small models, e.g. 6_9 pythia, if sees some stuff related to h2oGPT first, it can connect that and not listen to rest
if reverse_docs:
docs_with_score.reverse()
# cut off so no high distance docs/sources considered
have_any_docs |= len(docs_with_score) > 0 # before cut
docs = [x[0] for x in docs_with_score if x[1] < cut_distance]
scores = [x[1] for x in docs_with_score if x[1] < cut_distance]
if len(scores) > 0 and verbose:
print("Distance: min: %s max: %s mean: %s median: %s" %
(scores[0], scores[-1], np.mean(scores), np.median(scores)), flush=True)
else:
docs = []
scores = []
if not docs and use_docs_planned and model_name not in non_hf_types:
# if HF type and have no docs, can bail out
return docs, None, [], False, have_any_docs
if document_subset in non_query_commands:
# no LLM use
return docs, None, [], False, have_any_docs
common_words_file = "data/NGSL_1.2_stats.csv.zip"
if os.path.isfile(common_words_file) and langchain_mode == LangChainAction.QUERY.value:
df = pd.read_csv("data/NGSL_1.2_stats.csv.zip")
import string
reduced_query = query.translate(str.maketrans(string.punctuation, ' ' * len(string.punctuation))).strip()
reduced_query_words = reduced_query.split(' ')
set_common = set(df['Lemma'].values.tolist())
num_common = len([x.lower() in set_common for x in reduced_query_words])
frac_common = num_common / len(reduced_query) if reduced_query else 0
# FIXME: report to user bad query that uses too many common words
if verbose:
print("frac_common: %s" % frac_common, flush=True)
if len(docs) == 0:
# avoid context == in prompt then
use_docs_planned = False
template = template_if_no_docs
if langchain_action == LangChainAction.QUERY.value:
if use_template:
# instruct-like, rather than few-shot prompt_type='plain' as default
# but then sources confuse the model with how inserted among rest of text, so avoid
prompt = PromptTemplate(
# input_variables=["summaries", "question"],
input_variables=["context", "question"],
template=template,
)
chain = load_qa_chain(llm, prompt=prompt)
else:
# only if use_openai_model = True, unused normally except in testing
chain = load_qa_with_sources_chain(llm)
if not use_docs_planned:
chain_kwargs = dict(input_documents=[], question=query)
else:
chain_kwargs = dict(input_documents=docs, question=query)
target = wrapped_partial(chain, chain_kwargs)
elif langchain_action in [LangChainAction.SUMMARIZE_MAP.value,
LangChainAction.SUMMARIZE_REFINE,
LangChainAction.SUMMARIZE_ALL.value]:
from langchain.chains.summarize import load_summarize_chain
if langchain_action == LangChainAction.SUMMARIZE_MAP.value:
prompt = PromptTemplate(input_variables=["text"], template=template)
chain = load_summarize_chain(llm, chain_type="map_reduce",
map_prompt=prompt, combine_prompt=prompt, return_intermediate_steps=True)
target = wrapped_partial(chain, {"input_documents": docs}) # , return_only_outputs=True)
elif langchain_action == LangChainAction.SUMMARIZE_ALL.value:
assert use_template
prompt = PromptTemplate(input_variables=["text"], template=template)
chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt, return_intermediate_steps=True)
target = wrapped_partial(chain)
elif langchain_action == LangChainAction.SUMMARIZE_REFINE.value:
chain = load_summarize_chain(llm, chain_type="refine", return_intermediate_steps=True)
target = wrapped_partial(chain)
else:
raise RuntimeError("No such langchain_action=%s" % langchain_action)
else:
raise RuntimeError("No such langchain_action=%s" % langchain_action)
return docs, target, scores, use_docs_planned, have_any_docs
def get_sources_answer(query, answer, scores, show_rank, answer_with_sources, verbose=False):
if verbose:
print("query: %s" % query, flush=True)
print("answer: %s" % answer['output_text'], flush=True)
if len(answer['input_documents']) == 0:
extra = ''
ret = answer['output_text'] + extra
return ret, extra
# link
answer_sources = [(max(0.0, 1.5 - score) / 1.5, get_url(doc)) for score, doc in
zip(scores, answer['input_documents'])]
answer_sources_dict = defaultdict(list)
[answer_sources_dict[url].append(score) for score, url in answer_sources]
answers_dict = {}
for url, scores_url in answer_sources_dict.items():
answers_dict[url] = np.max(scores_url)
answer_sources = [(score, url) for url, score in answers_dict.items()]
answer_sources.sort(key=lambda x: x[0], reverse=True)
if show_rank:
# answer_sources = ['%d | %s' % (1 + rank, url) for rank, (score, url) in enumerate(answer_sources)]
# sorted_sources_urls = "Sources [Rank | Link]:
" + "
".join(answer_sources)
answer_sources = ['%s' % url for rank, (score, url) in enumerate(answer_sources)]
sorted_sources_urls = "Ranked Sources:
" + "
".join(answer_sources)
else:
answer_sources = ['
".join(answer_sources) sorted_sources_urls += f"