Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import CLIPProcessor, CLIPModel, DetrFeatureExtractor, DetrForObjectDetection, AutoFeatureExtractor, AutoModelForObjectDetection
|
5 |
+
import torch
|
6 |
+
|
7 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("nielsr/detr-resnet-50")
|
8 |
+
dmodel = AutoModelForObjectDetection.from_pretrained("nielsr/detr-resnet-50")
|
9 |
+
|
10 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
11 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
12 |
+
|
13 |
+
i1 = gr.inputs.Image(type="pil", label="Input image")
|
14 |
+
i2 = gr.inputs.Textbox(label="Input text")
|
15 |
+
i3 = gr.inputs.Number(default=0.96, label="Threshold percentage score")
|
16 |
+
o1 = gr.outputs.Image(type="pil", label="Cropped part")
|
17 |
+
o2 = gr.outputs.Textbox(label="Similarity score")
|
18 |
+
|
19 |
+
def extract_image(image, text, prob, num=1):
|
20 |
+
|
21 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
22 |
+
outputs = dmodel(**inputs)
|
23 |
+
|
24 |
+
# model predicts bounding boxes and corresponding COCO classes
|
25 |
+
logits = outputs.logits
|
26 |
+
bboxes = outputs.pred_boxes
|
27 |
+
probas = outputs.logits.softmax(-1)[0, :, :-1] #removing no class as detr maps
|
28 |
+
|
29 |
+
keep = probas.max(-1).values > prob
|
30 |
+
outs = feature_extractor.post_process(outputs, torch.tensor(image.size[::-1]).unsqueeze(0))
|
31 |
+
bboxes_scaled = outs[0]['boxes'][keep].detach().numpy()
|
32 |
+
labels = outs[0]['labels'][keep].detach().numpy()
|
33 |
+
scores = outs[0]['scores'][keep].detach().numpy()
|
34 |
+
|
35 |
+
images_list = []
|
36 |
+
for i,j in enumerate(bboxes_scaled):
|
37 |
+
|
38 |
+
xmin = int(j[0])
|
39 |
+
ymin = int(j[1])
|
40 |
+
xmax = int(j[2])
|
41 |
+
ymax = int(j[3])
|
42 |
+
|
43 |
+
im_arr = np.array(image)
|
44 |
+
roi = im_arr[ymin:ymax, xmin:xmax]
|
45 |
+
roi_im = Image.fromarray(roi)
|
46 |
+
|
47 |
+
images_list.append(roi_im)
|
48 |
+
|
49 |
+
inpu = processor(text = [text], images=images_list , return_tensors="pt", padding=True)
|
50 |
+
output = model(**inpu)
|
51 |
+
logits_per_image = output.logits_per_text
|
52 |
+
probs = logits_per_image.softmax(-1)
|
53 |
+
l_idx = np.argsort(probs[-1].detach().numpy())[::-1][0:num]
|
54 |
+
|
55 |
+
final_ims = []
|
56 |
+
for i,j in enumerate(images_list):
|
57 |
+
json_dict = {}
|
58 |
+
if i in l_idx:
|
59 |
+
json_dict['image'] = images_list[i]
|
60 |
+
json_dict['score'] = probs[-1].detach().numpy()[i]
|
61 |
+
|
62 |
+
final_ims.append(json_dict)
|
63 |
+
|
64 |
+
fi = sorted(final_ims, key=lambda item: item.get("score"), reverse=True)
|
65 |
+
return fi[0]['image'], fi[0]['score']
|
66 |
+
|
67 |
+
title = "ClipnCrop"
|
68 |
+
description = "Extract sections of images from your image by using OpenAI's CLIP and Facebooks Detr implemented on HuggingFace Transformers"
|
69 |
+
examples=[['ex3.jpg', 'black bag', 0.96],['ex2.jpg', 'man in red dress', 0.85]]
|
70 |
+
article = "<p style='text-align: center'><a href='https://github.com/Vishnunkumar/clipcrop' target='_blank'>clipcrop</a></p>"
|
71 |
+
gr.Interface(fn=extract_image, inputs=[i1, i2, i3], outputs=[o1, o2], title=title, description=description, article=article, examples=examples, enable_queue=True).launch()
|