File size: 8,419 Bytes
5d756f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# Code adapted from: https://github.com/gpastal24/ViTPose-Pytorch
from .topdown_heatmap_simple_head import TopdownHeatmapSimpleHead
import torch
from .backbone import ViT
import torchvision.transforms.functional as F
import torch.nn as nn
import tops

model_large = dict(
    type="TopDown",
    pretrained=None,
    backbone=dict(
        type="ViT",
        img_size=(256, 192),
        patch_size=16,
        embed_dim=1024,
        depth=24,
        num_heads=16,
        ratio=1,
        use_checkpoint=False,
        mlp_ratio=4,
        qkv_bias=True,
        drop_path_rate=0.5,
    ),
    keypoint_head=dict(
        type="TopdownHeatmapSimpleHead",
        in_channels=1024,
        num_deconv_layers=2,
        num_deconv_filters=(256, 256),
        num_deconv_kernels=(4, 4),
        extra=dict(
            final_conv_kernel=1,
        ),
        out_channels=17,
        loss_keypoint=dict(type="JointsMSELoss", use_target_weight=True),
    ),
    train_cfg=dict(),
    test_cfg=dict(
        flip_test=True,
        post_process="default",
        shift_heatmap=False,
        target_type="GaussianHeatmap",
        modulate_kernel=11,
        use_udp=True,
    ),
)


model_base = dict(
    type="TopDown",
    pretrained=None,
    backbone=dict(
        type="ViT",
        img_size=(256, 192),
        patch_size=16,
        embed_dim=768,
        depth=12,
        num_heads=12,
        ratio=1,
        use_checkpoint=False,
        mlp_ratio=4,
        qkv_bias=True,
        drop_path_rate=0.3,
    ),
    keypoint_head=dict(
        type="TopdownHeatmapSimpleHead",
        in_channels=768,
        num_deconv_layers=2,
        num_deconv_filters=(256, 256),
        num_deconv_kernels=(4, 4),
        extra=dict(
            final_conv_kernel=1,
        ),
        out_channels=17,
        loss_keypoint=dict(type="JointsMSELoss", use_target_weight=True),
    ),
    train_cfg=dict(),
    test_cfg=dict(),
)
model_huge = dict(
    type='TopDown',
    pretrained=None,
    backbone=dict(
        type='ViT',
        img_size=(256, 192),
        patch_size=16,
        embed_dim=1280,
        depth=32,
        num_heads=16,
        ratio=1,
        use_checkpoint=False,
        mlp_ratio=4,
        qkv_bias=True,
        drop_path_rate=0.55,
    ),
    keypoint_head=dict(
        type='TopdownHeatmapSimpleHead',
        in_channels=1280,
        num_deconv_layers=2,
        num_deconv_filters=(256, 256),
        num_deconv_kernels=(4, 4),
        extra=dict(final_conv_kernel=1, ),
        out_channels=17,
        loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
    train_cfg=dict(),
    test_cfg=dict(
        flip_test=True,
        post_process='default',
        shift_heatmap=False,
        target_type="GaussianHeatmap",
        modulate_kernel=11,
        use_udp=True))


class VitPoseModel(nn.Module):
    def __init__(self, model_name):
        super().__init__()
        assert model_name  in ["vit_base", "vit_large", "vit_huge"]
        model = {
            "vit_base": model_base,
            "vit_large": model_large,
            "vit_huge": model_huge
        }[model_name]
        weight_url = {
            "vit_base": "https://api.loke.aws.unit.no/dlr-gui-backend-resources-content/v2/contents/links/90235a26-3b8c-427d-a264-c68155abecdcfcfcd8a9-0388-4575-b85b-607d3c0a9b149bef8f0f-a0f9-4662-a561-1b47ba5f1636",
            "vit_large": "https://api.loke.aws.unit.no/dlr-gui-backend-resources-content/v2/contents/links/a580a44c-0afd-43ac-a2cb-9956c32b1d1a78c51ecb-81bb-4345-8710-13904cb9dbbe0703db2d-8534-42e0-ac4d-518ab51fe7db",
            "vit_huge": "https://api.loke.aws.unit.no/dlr-gui-backend-resources-content/v2/contents/links/a33b6ada-4d2f-4ef7-8f83-b33f58b69f5b2a62e181-2131-467d-a900-027157a08571d761fad4-785b-4b84-8596-8932c7857e44"
        }[model_name]
        file_name = {
            "vit_base":  "vit-b-multi-coco-595b5e128b.pth",
            "vit_large": "vit-l-multi-coco-9475d27cec.pth",
            "vit_huge":  "vit-h-multi-coco-dbc06d4337.pth",
        }[model_name]
        # Set check_hash to true if you suspect a download error.
        weight_path = tops.download_file(
            weight_url, file_name=file_name, check_hash=True)

        self.keypoint_head = tops.to_cuda(TopdownHeatmapSimpleHead(
            in_channels=model["keypoint_head"]["in_channels"],
            out_channels=model["keypoint_head"]["out_channels"],
            num_deconv_filters=model["keypoint_head"]["num_deconv_filters"],
            num_deconv_kernels=model["keypoint_head"]["num_deconv_kernels"],
            num_deconv_layers=model["keypoint_head"]["num_deconv_layers"],
            extra=model["keypoint_head"]["extra"],
        ))
        # print(head)
        self.backbone = tops.to_cuda(ViT(
            img_size=model["backbone"]["img_size"],
            patch_size=model["backbone"]["patch_size"],
            embed_dim=model["backbone"]["embed_dim"],
            depth=model["backbone"]["depth"],
            num_heads=model["backbone"]["num_heads"],
            ratio=model["backbone"]["ratio"],
            mlp_ratio=model["backbone"]["mlp_ratio"],
            qkv_bias=model["backbone"]["qkv_bias"],
            drop_path_rate=model["backbone"]["drop_path_rate"],
        ))
        ckpt = torch.load(weight_path, map_location=tops.get_device())
        self.load_state_dict(ckpt["state_dict"])
        self.backbone.eval()
        self.keypoint_head.eval()

    def forward(self, img: torch.Tensor, boxes_ltrb: torch.Tensor):
        assert img.ndim == 3
        assert img.dtype == torch.uint8
        assert boxes_ltrb.ndim == 2 and boxes_ltrb.shape[1] == 4
        assert boxes_ltrb.dtype == torch.long
        boxes_ltrb = boxes_ltrb.clamp(0)
        padded_boxes = torch.zeros_like(boxes_ltrb)
        images = torch.zeros((len(boxes_ltrb), 3, 256, 192), device=img.device, dtype=torch.float32)

        for i, (x0, y0, x1, y1) in enumerate(boxes_ltrb):
            x1 = min(img.shape[-1], x1)
            y1 = min(img.shape[-2], y1)
            correction_factor = 256 / 192 * (x1 - x0) / (y1 - y0)
            if correction_factor > 1:
                # increase y side
                center = y0 + (y1 - y0) // 2
                length = (y1-y0).mul(correction_factor).round().long()
                y0_new = center - length.div(2).long()
                y1_new = center + length.div(2).long()
                image_crop = img[:, y0:y1, x0:x1]
                # print(y1,y2,x1,x2)
                pad = ((y0_new-y0).abs(), (y1_new-y1).abs())
#                pad = (int(abs(y0_new-y0))), int(abs(y1_new-y1))
                image_crop = torch.nn.functional.pad(image_crop, [*(0, 0), *pad])
                padded_boxes[i] = torch.tensor([x0, y0_new, x1, y1_new])
            else:
                center = x0 + (x1 - x0) // 2
                length = (x1-x0).div(correction_factor).round().long()
                x0_new = center - length.div(2).long()
                x1_new = center + length.div(2).long()
                image_crop = img[:, y0:y1, x0:x1]
                pad = ((x0_new-x0).abs(), (x1_new-x1).abs())
                image_crop = torch.nn.functional.pad(image_crop, [*pad, ])
                padded_boxes[i] = torch.tensor([x0_new, y0, x1_new, y1])
            image_crop = F.resize(image_crop.float(), (256, 192), antialias=True)
            image_crop = F.normalize(image_crop, mean=[0.485*255, 0.456*255,
                                     0.406*255], std=[0.229*255, 0.224*255, 0.225*255])
            images[i] = image_crop

        x = self.backbone(images)
        out = self.keypoint_head(x)
        pts = torch.empty((out.shape[0], out.shape[1], 3), dtype=torch.float32, device=img.device)
        # For each human, for each joint: y, x, confidence
        b, indices = torch.max(out, dim=2)
        b, indices = torch.max(b, dim=2)

        c, indicesc = torch.max(out, dim=3)
        c, indicesc = torch.max(c, dim=2)
        dim1 = torch.tensor(1./64, device=img.device)
        dim2 = torch.tensor(1./48, device=img.device)
        for i in range(0, out.shape[0]):
            pts[i, :, 0] = indicesc[i, :] * dim1 * (padded_boxes[i][3] - padded_boxes[i][1]) + padded_boxes[i][1]
            pts[i, :, 1] = indices[i, :] * dim2 * (padded_boxes[i][2] - padded_boxes[i][0]) + padded_boxes[i][0]
            pts[i, :, 2] = c[i, :]
        pts = pts[:, :, [1, 0, 2]]
        return pts