Spaces:
Runtime error
Runtime error
File size: 22,553 Bytes
5d756f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 |
import torch
import torch.nn as nn
from easydict import EasyDict
from .base import BaseGenerator
import numpy as np
from typing import List
class LatentVariableConcat(nn.Module):
def __init__(self, conv2d_config):
super().__init__()
def forward(self, _inp):
x, mask, batch = _inp
z = batch["z"]
x = torch.cat((x, z), dim=1)
return (x, mask, batch)
def get_padding(kernel_size: int, dilation: int, stride: int):
out = (dilation * (kernel_size - 1) - 1) / 2 + 1
return int(np.floor(out))
class Conv2d(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=None, dilation=1, groups=1,
bias=True, padding_mode='zeros',
demodulation=False, wsconv=False, gain=1,
*args, **kwargs):
if padding is None:
padding = get_padding(kernel_size, dilation, stride)
super().__init__(
in_channels, out_channels, kernel_size, stride, padding, dilation,
groups, bias, padding_mode)
self.demodulation = demodulation
self.wsconv = wsconv
if self.wsconv:
fan_in = np.prod(self.weight.shape[1:]) / self.groups
self.ws_scale = gain / np.sqrt(fan_in)
nn.init.normal_(self.weight)
if bias:
nn.init.constant_(self.bias, val=0)
assert not self.padding_mode == "circular",\
"conv2d_forward does not support circular padding. Look at original pytorch code"
def _get_weight(self):
weight = self.weight
if self.wsconv:
weight = self.ws_scale * weight
if self.demodulation:
demod = torch.rsqrt(weight.pow(2).sum([1, 2, 3]) + 1e-7)
weight = weight * demod.view(self.out_channels, 1, 1, 1)
return weight
def conv2d_forward(self, x, weight, bias=True):
bias_ = None
if bias:
bias_ = self.bias
return nn.functional.conv2d(x, weight, bias_, self.stride,
self.padding, self.dilation, self.groups)
def forward(self, _inp):
x, mask = _inp
weight = self._get_weight()
return self.conv2d_forward(x, weight), mask
def __repr__(self):
return ", ".join([
super().__repr__(),
f"Demodulation={self.demodulation}",
f"Weight Scale={self.wsconv}",
f"Bias={self.bias is not None}"
])
class LeakyReLU(nn.LeakyReLU):
def forward(self, _inp):
x, mask = _inp
return super().forward(x), mask
class AvgPool2d(nn.AvgPool2d):
def forward(self, _inp):
x, mask, *args = _inp
x = super().forward(x)
mask = super().forward(mask)
if len(args) > 0:
return (x, mask, *args)
return x, mask
def up(x):
if x.shape[0] == 1 and x.shape[2] == 1 and x.shape[3] == 1:
# Analytical normalization
return x
return nn.functional.interpolate(
x, scale_factor=2, mode="nearest")
class NearestUpsample(nn.Module):
def forward(self, _inp):
x, mask, *args = _inp
x = up(x)
mask = up(mask)
if len(args) > 0:
return (x, mask, *args)
return x, mask
class PixelwiseNormalization(nn.Module):
def forward(self, _inp):
x, mask = _inp
norm = torch.rsqrt((x**2).mean(dim=1, keepdim=True) + 1e-7)
return x * norm, mask
class Linear(nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features)
self.linear = nn.Linear(in_features, out_features)
fanIn = in_features
self.wtScale = 1 / np.sqrt(fanIn)
nn.init.normal_(self.weight)
nn.init.constant_(self.bias, val=0)
def _get_weight(self):
return self.weight * self.wtScale
def forward_linear(self, x, weight):
return nn.functional.linear(x, weight, self.bias)
def forward(self, x):
return self.forward_linear(x, self._get_weight())
class OneHotPoseConcat(nn.Module):
def forward(self, _inp):
x, mask, batch = _inp
landmarks = batch["landmarks_oh"]
res = x.shape[-1]
landmark = landmarks[res]
x = torch.cat((x, landmark), dim=1)
del batch["landmarks_oh"][res]
return x, mask, batch
def transition_features(x_old, x_new, transition_variable):
assert x_old.shape == x_new.shape,\
"Old shape: {}, New: {}".format(x_old.shape, x_new.shape)
return torch.lerp(x_old.float(), x_new.float(), transition_variable)
class TransitionBlock(nn.Module):
def forward(self, _inp):
x, mask, batch = _inp
x = transition_features(
batch["x_old"], x, batch["transition_value"])
mask = transition_features(
batch["mask_old"], mask, batch["transition_value"])
del batch["x_old"]
del batch["mask_old"]
return x, mask, batch
class UnetSkipConnection(nn.Module):
def __init__(self, conv2d_config: dict, in_channels: int,
out_channels: int, resolution: int,
residual: bool, enabled: bool):
super().__init__()
self.use_iconv = conv2d_config.conv.type == "iconv"
self._in_channels = in_channels
self._out_channels = out_channels
self._resolution = resolution
self._enabled = enabled
self._residual = residual
if self.use_iconv:
self.beta0 = torch.nn.Parameter(torch.tensor(1.))
self.beta1 = torch.nn.Parameter(torch.tensor(1.))
else:
if self._residual:
self.conv = build_base_conv(
conv2d_config, False, in_channels // 2,
out_channels, kernel_size=1, padding=0)
else:
self.conv = ConvAct(
conv2d_config, in_channels, out_channels,
kernel_size=1, padding=0)
def forward(self, _inp):
if not self._enabled:
return _inp
x, mask, batch = _inp
skip_x, skip_mask = batch["unet_features"][self._resolution]
assert x.shape == skip_x.shape, (x.shape, skip_x.shape)
del batch["unet_features"][self._resolution]
if self.use_iconv:
denom = skip_mask * self.beta0.relu() + mask * self.beta1.relu() + 1e-8
gamma = skip_mask * self.beta0.relu() / denom
x = skip_x * gamma + (1 - gamma) * x
mask = skip_mask * gamma + (1 - gamma) * mask
else:
if self._residual:
skip_x, skip_mask = self.conv((skip_x, skip_mask))
x = (x + skip_x) / np.sqrt(2)
if self._probabilistic:
mask = (mask + skip_mask) / np.sqrt(2)
else:
x = torch.cat((x, skip_x), dim=1)
x, mask = self.conv((x, mask))
return x, mask, batch
def __repr__(self):
return " ".join([
self.__class__.__name__,
f"In channels={self._in_channels}",
f"Out channels={self._out_channels}",
f"Residual: {self._residual}",
f"Enabled: {self._enabled}"
f"IConv: {self.use_iconv}"
])
def get_conv(ctype, post_act):
type2conv = {
"conv": Conv2d,
"gconv": GatedConv
}
# Do not apply for output layer
if not post_act and ctype in ["gconv", "iconv"]:
return type2conv["conv"]
assert ctype in type2conv
return type2conv[ctype]
def build_base_conv(
conv2d_config, post_act: bool, *args, **kwargs) -> nn.Conv2d:
for k, v in conv2d_config.conv.items():
assert k not in kwargs
kwargs[k] = v
# Demodulation should not be used for output layers.
demodulation = conv2d_config.normalization == "demodulation" and post_act
kwargs["demodulation"] = demodulation
conv = get_conv(conv2d_config.conv.type, post_act)
return conv(*args, **kwargs)
def build_post_activation(in_channels, conv2d_config) -> List[nn.Module]:
_layers = []
negative_slope = conv2d_config.leaky_relu_nslope
_layers.append(LeakyReLU(negative_slope, inplace=True))
if conv2d_config.normalization == "pixel_wise":
_layers.append(PixelwiseNormalization())
return _layers
def build_avgpool(conv2d_config, kernel_size) -> nn.AvgPool2d:
return AvgPool2d(kernel_size)
def build_convact(conv2d_config, *args, **kwargs):
conv = build_base_conv(conv2d_config, True, *args, **kwargs)
out_channels = conv.out_channels
post_act = build_post_activation(out_channels, conv2d_config)
return nn.Sequential(conv, *post_act)
class ConvAct(nn.Module):
def __init__(self, conv2d_config, *args, **kwargs):
super().__init__()
self._conv2d_config = conv2d_config
conv = build_base_conv(conv2d_config, True, *args, **kwargs)
self.in_channels = conv.in_channels
self.out_channels = conv.out_channels
_layers = [conv]
_layers.extend(build_post_activation(self.out_channels, conv2d_config))
self.layers = nn.Sequential(*_layers)
def forward(self, _inp):
return self.layers(_inp)
class GatedConv(Conv2d):
def __init__(self, in_channels, out_channels, *args, **kwargs):
out_channels *= 2
super().__init__(in_channels, out_channels, *args, **kwargs)
assert self.out_channels % 2 == 0
self.lrelu = nn.LeakyReLU(0.2, inplace=True)
self.sigmoid = nn.Sigmoid()
def conv2d_forward(self, x, weight, bias=True):
x_ = super().conv2d_forward(x, weight, bias)
x = x_[:, :self.out_channels // 2]
y = x_[:, self.out_channels // 2:]
x = self.lrelu(x)
y = y.sigmoid()
assert x.shape == y.shape, f"{x.shape}, {y.shape}"
return x * y
class BasicBlock(nn.Module):
def __init__(
self, conv2d_config, resolution: int, in_channels: int,
out_channels: List[int], residual: bool):
super().__init__()
assert len(out_channels) == 2
self._resolution = resolution
self._residual = residual
self.out_channels = out_channels
_layers = []
_in_channels = in_channels
for out_ch in out_channels:
conv = build_base_conv(
conv2d_config, True, _in_channels, out_ch, kernel_size=3,
resolution=resolution)
_layers.append(conv)
_layers.extend(build_post_activation(_in_channels, conv2d_config))
_in_channels = out_ch
self.layers = nn.Sequential(*_layers)
if self._residual:
self.residual_conv = build_base_conv(
conv2d_config, post_act=False, in_channels=in_channels,
out_channels=out_channels[-1],
kernel_size=1, padding=0)
self.const = 1 / np.sqrt(2)
def forward(self, _inp):
x, mask, batch = _inp
y = x
mask_ = mask
assert y.shape[-1] == self._resolution or y.shape[-1] == 1
y, mask = self.layers((x, mask))
if self._residual:
residual, mask_ = self.residual_conv((x, mask_))
y = (y + residual) * self.const
mask = (mask + mask_) * self.const
return y, mask, batch
def extra_repr(self):
return f"Residual={self._residual}, Resolution={self._resolution}"
class PoseNormalize(nn.Module):
@torch.no_grad()
def forward(self, x):
return x * 2 - 1
class ScalarPoseFCNN(nn.Module):
def __init__(self, pose_size, hidden_size,
output_shape):
super().__init__()
pose_size = pose_size
self._hidden_size = hidden_size
output_size = np.prod(output_shape)
self.output_shape = output_shape
self.pose_preprocessor = nn.Sequential(
PoseNormalize(),
Linear(pose_size, hidden_size),
nn.LeakyReLU(.2),
Linear(hidden_size, output_size),
nn.LeakyReLU(.2)
)
def forward(self, _inp):
x, mask, batch = _inp
pose_info = batch["landmarks"]
del batch["landmarks"]
pose = self.pose_preprocessor(pose_info)
pose = pose.view(-1, *self.output_shape)
if x.shape[0] == 1 and x.shape[2] == 1 and x.shape[3] == 1:
# Analytical normalization propagation
pose = pose.mean(dim=2, keepdim=True).mean(dim=3, keepdims=True)
x = torch.cat((x, pose), dim=1)
return x, mask, batch
def __repr__(self):
return " ".join([
self.__class__.__name__,
f"hidden_size={self._hidden_size}",
f"output shape={self.output_shape}"
])
class Attention(nn.Module):
def __init__(self, in_channels):
super(Attention, self).__init__()
# Channel multiplier
self.in_channels = in_channels
self.theta = Conv2d(
self.in_channels, self.in_channels // 8, kernel_size=1, padding=0,
bias=False)
self.phi = Conv2d(
self.in_channels, self.in_channels // 8, kernel_size=1, padding=0,
bias=False)
self.g = Conv2d(
self.in_channels, self.in_channels // 2, kernel_size=1, padding=0,
bias=False)
self.o = Conv2d(
self.in_channels // 2, self.in_channels, kernel_size=1, padding=0,
bias=False)
# Learnable gain parameter
self.gamma = nn.Parameter(torch.tensor(0.), requires_grad=True)
def forward(self, _inp):
x, mask, batch = _inp
# Apply convs
theta, _ = self.theta((x, None))
phi = nn.functional.max_pool2d(self.phi((x, None))[0], [2, 2])
g = nn.functional.max_pool2d(self.g((x, None))[0], [2, 2])
# Perform reshapes
theta = theta.view(-1, self.in_channels // 8, x.shape[2] * x.shape[3])
phi = phi.view(-1, self.in_channels // 8, x.shape[2] * x.shape[3] // 4)
g = g.view(-1, self.in_channels // 2, x.shape[2] * x.shape[3] // 4)
# Matmul and softmax to get attention maps
beta = nn.functional.softmax(torch.bmm(theta.transpose(1, 2), phi), -1)
# Attention map times g path
o = self.o((torch.bmm(g, beta.transpose(1, 2)).view(-1,
self.in_channels // 2, x.shape[2], x.shape[3]), None))[0]
return self.gamma * o + x, mask, batch
class MSGGenerator(BaseGenerator):
def __init__(self):
super().__init__(512)
max_imsize = 128
unet = dict(enabled=True, residual=False)
min_fmap_resolution = 4
model_size = 512
image_channels = 3
pose_size = 14
residual = False
conv_size = {
4: model_size,
8: model_size,
16: model_size,
32: model_size,
64: model_size//2,
128: model_size//4,
256: model_size//8,
512: model_size//16
}
self.removable_hooks = []
self.rgb_convolutions = nn.ModuleDict()
self.max_imsize = max_imsize
self._image_channels = image_channels
self._min_fmap_resolution = min_fmap_resolution
self._residual = residual
self._pose_size = pose_size
self.current_imsize = max_imsize
self._unet_cfg = unet
self.concat_input_mask = True
self.res2channels = {int(k): v for k, v in conv_size.items()}
self.conv2d_config = EasyDict(
pixel_normalization=True,
leaky_relu_nslope=.2,
normalization="pixel_wise",
conv=dict(
type="conv",
wsconv=True,
gain=1,
)
)
self._init_decoder()
self._init_encoder()
def _init_encoder(self):
self.encoder = nn.ModuleList()
imsize = self.max_imsize
self.from_rgb = build_convact(
self.conv2d_config,
in_channels=self._image_channels + self.concat_input_mask*2,
out_channels=self.res2channels[imsize],
kernel_size=1)
while imsize >= self._min_fmap_resolution:
current_size = self.res2channels[imsize]
next_size = self.res2channels[max(imsize//2, self._min_fmap_resolution)]
block = BasicBlock(
self.conv2d_config, imsize, current_size,
[current_size, next_size], self._residual)
self.encoder.add_module(f"basic_block{imsize}", block)
if imsize != self._min_fmap_resolution:
self.encoder.add_module(
f"downsample{imsize}", AvgPool2d(2))
imsize //= 2
def _init_decoder(self):
self.decoder = nn.ModuleList()
self.decoder.add_module(
"latent_concat", LatentVariableConcat(self.conv2d_config))
if self._pose_size > 0:
m = self._min_fmap_resolution
pose_shape = (16, m, m)
pose_fcnn = ScalarPoseFCNN(self._pose_size, 128, pose_shape)
self.decoder.add_module("pose_fcnn", pose_fcnn)
imsize = self._min_fmap_resolution
self.rgb_convolutions = nn.ModuleDict()
while imsize <= self.max_imsize:
current_size = self.res2channels[max(imsize//2, self._min_fmap_resolution)]
start_size = current_size
if imsize == self._min_fmap_resolution:
start_size += 32
if self._pose_size > 0:
start_size += 16
else:
self.decoder.add_module(f"upsample{imsize}", NearestUpsample())
skip = UnetSkipConnection(
self.conv2d_config, current_size*2, current_size, imsize,
**self._unet_cfg)
self.decoder.add_module(f"skip_connection{imsize}", skip)
next_size = self.res2channels[imsize]
block = BasicBlock(
self.conv2d_config, imsize, start_size, [start_size, next_size],
residual=self._residual)
self.decoder.add_module(f"basic_block{imsize}", block)
to_rgb = build_base_conv(
self.conv2d_config, False, in_channels=next_size,
out_channels=self._image_channels, kernel_size=1)
self.rgb_convolutions[str(imsize)] = to_rgb
imsize *= 2
self.norm_constant = len(self.rgb_convolutions)
def forward_decoder(self, x, mask, batch):
imsize_start = max(x.shape[-1] // 2, 1)
rgb = torch.zeros(
(x.shape[0], self._image_channels,
imsize_start, imsize_start),
dtype=x.dtype, device=x.device)
mask_size = 1
mask_out = torch.zeros(
(x.shape[0], mask_size,
imsize_start, imsize_start),
dtype=x.dtype, device=x.device)
imsize = self._min_fmap_resolution // 2
for module in self.decoder:
x, mask, batch = module((x, mask, batch))
if isinstance(module, BasicBlock):
imsize *= 2
rgb = up(rgb)
mask_out = up(mask_out)
conv = self.rgb_convolutions[str(imsize)]
rgb_, mask_ = conv((x, mask))
assert rgb_.shape == rgb.shape,\
f"rgb_ {rgb_.shape}, rgb: {rgb.shape}"
rgb = rgb + rgb_
return rgb / self.norm_constant, mask_out
def forward_encoder(self, x, mask, batch):
if self.concat_input_mask:
x = torch.cat((x, mask, 1 - mask), dim=1)
unet_features = {}
x, mask = self.from_rgb((x, mask))
for module in self.encoder:
x, mask, batch = module((x, mask, batch))
if isinstance(module, BasicBlock):
unet_features[module._resolution] = (x, mask)
return x, mask, unet_features
def forward(
self,
condition,
mask, keypoints=None, z=None,
**kwargs):
keypoints = keypoints.flatten(start_dim=1).clip(-1, 1)
if z is None:
z = self.get_z(condition)
z = z.view(-1, 32, 4, 4)
batch = dict(
landmarks=keypoints,
z=z)
orig_mask = mask
x, mask, unet_features = self.forward_encoder(condition, mask, batch)
batch = dict(
landmarks=keypoints,
z=z,
unet_features=unet_features)
x, mask = self.forward_decoder(x, mask, batch)
x = condition * orig_mask + (1 - orig_mask) * x
return dict(img=x)
def load_state_dict(self, state_dict, strict=True):
if "parameters" in state_dict:
state_dict = state_dict["parameters"]
old_checkpoint = any("basic_block0" in key for key in state_dict)
if not old_checkpoint:
return super().load_state_dict(state_dict, strict=strict)
mapping = {}
imsize = self._min_fmap_resolution
i = 0
while imsize <= self.max_imsize:
old_key = f"decoder.basic_block{i}."
new_key = f"decoder.basic_block{imsize}."
mapping[old_key] = new_key
if i >= 1:
old_key = old_key.replace("basic_block", "skip_connection")
new_key = new_key.replace("basic_block", "skip_connection")
mapping[old_key] = new_key
mapping[old_key] = new_key
old_key = f"encoder.basic_block{i}."
new_key = f"encoder.basic_block{imsize}."
mapping[old_key] = new_key
old_key = "from_rgb.conv.layers.0."
new_key = "from_rgb.0."
mapping[old_key] = new_key
i += 1
imsize *= 2
new_sd = {}
for key, value in state_dict.items():
old_key = key
if "from_rgb" in key:
new_sd[key.replace("encoder.", "").replace(".conv.layers", "")] = value
continue
for subkey, new_subkey in mapping.items():
if subkey in key:
old_key = key
key = key.replace(subkey, new_subkey)
break
if "decoder.to_rgb" in key:
continue
new_sd[key] = value
return super().load_state_dict(new_sd, strict=strict)
def update_w(self, *args, **kwargs):
return
|