File size: 8,672 Bytes
5d756f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import torch
import numpy as np
from dp2.layers import Sequential
from dp2.layers.sg2_layers import Conv2d, FullyConnectedLayer, ResidualBlock
from .base import BaseStyleGAN
from typing import List, Tuple
from .utils import spatial_embed_keypoints, mask_output


def get_chsize(imsize, cnum, max_imsize, max_cnum_mul):
    n = int(np.log2(max_imsize) - np.log2(imsize))
    mul = min(2**n, max_cnum_mul)
    ch = cnum * mul
    return int(ch)


class StyleGANUnet(BaseStyleGAN):
    def __init__(
            self,
            scale_grad: bool,
            im_channels: int,
            min_fmap_resolution: int,
            imsize: List[int],
            cnum: int,
            max_cnum_mul: int,
            mask_output: bool,
            conv_clamp: int,
            input_cse: bool,
            cse_nc: int,
            n_middle_blocks: int,
            input_keypoints: bool,
            n_keypoints: int,
            input_keypoint_indices: Tuple[int],
            fix_errors: bool,
            **kwargs
        ) -> None:
        super().__init__(**kwargs)
        self.n_keypoints = n_keypoints
        self.input_keypoint_indices = list(input_keypoint_indices)
        self.input_keypoints = input_keypoints
        assert not (input_cse and input_keypoints)
        cse_nc = 0 if cse_nc is None else cse_nc
        self.imsize = imsize
        self._cnum = cnum
        self._max_cnum_mul = max_cnum_mul
        self._min_fmap_resolution = min_fmap_resolution
        self._image_channels = im_channels
        self._max_imsize = max(imsize)
        self.input_cse = input_cse
        self.gain_unet = np.sqrt(1/3)
        n_levels = int(np.log2(self._max_imsize) - np.log2(min_fmap_resolution))+1
        encoder_layers = []
        self.from_rgb = Conv2d(
            im_channels + 1 + input_cse*(cse_nc+1) + input_keypoints*len(self.input_keypoint_indices),
            cnum, 1
        )
        for i in range(n_levels):  # Encoder layers
            resolution = [x//2**i for x in imsize]
            in_ch = get_chsize(max(resolution), cnum, self._max_imsize, max_cnum_mul)
            second_ch = in_ch
            out_ch = get_chsize(max(resolution)//2, cnum, self._max_imsize, max_cnum_mul)
            down = 2

            if i == 0:  # first (lowest) block. Downsampling is performed at the start of the block
                down = 1
            if i == n_levels - 1:
                out_ch = second_ch
            block = ResidualBlock(in_ch, out_ch, down=down, conv_clamp=conv_clamp, fix_residual=fix_errors)
            encoder_layers.append(block)
        self._encoder_out_shape = [
            get_chsize(min_fmap_resolution, cnum, self._max_imsize, max_cnum_mul),
            *resolution]

        self.encoder = torch.nn.ModuleList(encoder_layers)

        # initialize decoder
        decoder_layers = []
        for i in range(n_levels):
            resolution = [x//2**(n_levels-1-i) for x in imsize]
            in_ch = get_chsize(max(resolution)//2, cnum, self._max_imsize, max_cnum_mul)
            out_ch = get_chsize(max(resolution), cnum, self._max_imsize, max_cnum_mul)
            if i == 0:  # first (lowest) block
                in_ch = get_chsize(max(resolution), cnum, self._max_imsize, max_cnum_mul)

            up = 1
            if i != n_levels - 1:
                up = 2
            block = ResidualBlock(
                in_ch, out_ch, conv_clamp=conv_clamp, gain_out=np.sqrt(1/3),
                w_dim=self.style_net.w_dim, norm=True, up=up,
                fix_residual=fix_errors
            )
            decoder_layers.append(block)
            if i != 0:
                unet_block = Conv2d(
                    in_ch, in_ch, kernel_size=1, conv_clamp=conv_clamp, norm=True,
                    gain=np.sqrt(1/3) if fix_errors else np.sqrt(.5))
                setattr(self, f"unet_block{i}", unet_block)

        # Initialize "middle blocks" that do not have down/up sample
        middle_blocks = []
        for i in range(n_middle_blocks):
            ch = get_chsize(min_fmap_resolution, cnum, self._max_imsize, max_cnum_mul)
            block = ResidualBlock(
                ch, ch, conv_clamp=conv_clamp, gain_out=np.sqrt(.5) if fix_errors else np.sqrt(1/3),
                w_dim=self.style_net.w_dim, norm=True,
            )
            middle_blocks.append(block)
        if n_middle_blocks != 0:
            self.middle_blocks = Sequential(*middle_blocks)
        self.decoder = torch.nn.ModuleList(decoder_layers)
        self.to_rgb = Conv2d(cnum, im_channels, 1, activation="linear", conv_clamp=conv_clamp)
        # Initialize "middle blocks" that do not have down/up sample
        self.decoder = torch.nn.ModuleList(decoder_layers)
        self.scale_grad = scale_grad
        self.mask_output = mask_output

    def forward_dec(self, x, w, unet_features, condition, mask, s, **kwargs):
        for i, layer in enumerate(self.decoder):
            if i != 0:
                unet_layer = getattr(self, f"unet_block{i}")
                x = x + unet_layer(unet_features[-i])
            x = layer(x, w=w, s=s)
        x = self.to_rgb(x)
        if self.mask_output:
            x = mask_output(True, condition, x, mask)
        return dict(img=x)

    def forward_enc(self, condition, mask, embedding,  keypoints, E_mask, **kwargs):
        if self.input_cse:
            x = torch.cat((condition, mask, embedding, E_mask), dim=1)
        else:
            x = torch.cat((condition, mask), dim=1)
        if self.input_keypoints:
            keypoints = keypoints[:, self.input_keypoint_indices]
            one_hot_pose = spatial_embed_keypoints(keypoints, x)
            x = torch.cat((x, one_hot_pose), dim=1)
        x = self.from_rgb(x)

        unet_features = []
        for i, layer in enumerate(self.encoder):
            x = layer(x)
            if i != len(self.encoder)-1:
                unet_features.append(x)
        if hasattr(self, "middle_blocks"):
            for layer in self.middle_blocks:
                x = layer(x)
        return x, unet_features

    def forward(
            self, condition, mask,
            z=None, embedding=None, w=None, update_emas=False, x=None,
            s=None,
            keypoints=None,
            unet_features=None,
            E_mask=None,
            **kwargs):
        # Used to skip sampling from encoder in inference. E.g. for w projection.
        if x is not None and unet_features is not None:
            assert not self.training
        else:
            x, unet_features = self.forward_enc(condition, mask, embedding, keypoints, E_mask, **kwargs)
        if w is None:
            if z is None:
                z = self.get_z(condition)
            w = self.get_w(z, update_emas=update_emas)
        return self.forward_dec(x, w, unet_features, condition, mask, s, **kwargs)


class ComodStyleUNet(StyleGANUnet):

    def __init__(self, min_comod_res=4, lr_multiplier_comod=1, **kwargs) -> None:
        super().__init__(**kwargs)
        min_fmap = min(self._encoder_out_shape[1:])
        enc_out_ch = self._encoder_out_shape[0]
        n_down = int(np.ceil(np.log2(min_fmap) - np.log2(min_comod_res)))
        comod_layers = []
        in_ch = enc_out_ch
        for i in range(n_down):
            comod_layers.append(Conv2d(enc_out_ch, 256, kernel_size=3, down=2, lr_multiplier=lr_multiplier_comod))
            in_ch = 256
        if n_down == 0:
            comod_layers = [Conv2d(in_ch, 256, kernel_size=3)]
        comod_layers.append(torch.nn.Flatten())
        out_res = [x//2**n_down for x in self._encoder_out_shape[1:]]
        in_ch_fc = np.prod(out_res) * 256
        comod_layers.append(FullyConnectedLayer(in_ch_fc, 512, lr_multiplier=lr_multiplier_comod))
        self.comod_block = Sequential(*comod_layers)
        self.comod_fc = FullyConnectedLayer(
            512+self.style_net.w_dim, self.style_net.w_dim, lr_multiplier=lr_multiplier_comod)

    def forward_dec(self, x, w, unet_features, condition, mask, **kwargs):
        y = self.comod_block(x)
        y = torch.cat((y, w), dim=1)
        y = self.comod_fc(y)
        for i, layer in enumerate(self.decoder):
            if i != 0:
                unet_layer = getattr(self, f"unet_block{i}")
                x = x + unet_layer(unet_features[-i], gain=np.sqrt(.5))
            x = layer(x, w=y)
        x = self.to_rgb(x)
        if self.mask_output:
            x = mask_output(True, condition, x, mask)
        return dict(img=x)

    def get_comod_y(self, batch, w):
        x, unet_features = self.forward_enc(**batch)
        y = self.comod_block(x)
        y = torch.cat((y, w), dim=1)
        y = self.comod_fc(y)
        return y