Spaces:
Runtime error
Runtime error
File size: 10,088 Bytes
a9f29d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
"""
Approach: "StyleMC: Multi-Channel Based Fast Text-Guided Image Generation and Manipulation"
Original source code:
https://github.com/autonomousvision/stylegan_xl/blob/f9be58e98110bd946fcdadef2aac8345466faaf3/run_stylemc.py#
Modified by Håkon Hukkelås
"""
import os
from pathlib import Path
import tqdm
import re
import click
from dp2 import utils
import tops
from typing import List, Optional
import PIL.Image
import imageio
from timeit import default_timer as timer
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.transforms.functional import resize, normalize
from dp2.infer import build_trained_generator
import clip
#----------------------------------------------------------------------------
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def save_image(img, path):
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB').save(path)
def unravel_index(index, shape):
out = []
for dim in reversed(shape):
out.append(index % dim)
index = index // dim
return tuple(reversed(out))
def num_range(s: str) -> List[int]:
'''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.'''
range_re = re.compile(r'^(\d+)-(\d+)$')
m = range_re.match(s)
if m:
return list(range(int(m.group(1)), int(m.group(2))+1))
vals = s.split(',')
return [int(x) for x in vals]
#----------------------------------------------------------------------------
def spherical_dist_loss(x, y):
x = F.normalize(x, dim=-1)
y = F.normalize(y, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def prompts_dist_loss(x, targets, loss):
if len(targets) == 1: # Keeps consistent results vs previous method for single objective guidance
return loss(x, targets[0])
distances = [loss(x, target) for target in targets]
return torch.stack(distances, dim=-1).sum(dim=-1)
def embed_text(model, prompt, device='cuda'):
return
#----------------------------------------------------------------------------
@torch.no_grad()
@torch.cuda.amp.autocast()
def generate_edit(
G,
dl,
direction,
edit_strength,
path,
):
for it, batch in enumerate(dl):
batch["embedding"] = None
styles = get_styles(None, G, batch, truncation_value=0)
imgs = []
grad_changes = [_*edit_strength for _ in [0, 0.25, 0.5, 0.75, 1]]
grad_changes = [*[-x for x in grad_changes][::-1], *grad_changes]
batch = {k: tops.to_cuda(v) if v is not None else v for k,v in batch.items()}
for i, grad_change in enumerate(grad_changes):
s = styles + direction*grad_change
img = G(**batch, s=iter(s))["img"]
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255)
imgs.append(img[0].to(torch.uint8).cpu().numpy())
PIL.Image.fromarray(np.concatenate(imgs, axis=1), 'RGB').save(path + f'{it}.png')
@torch.no_grad()
def get_styles(seed, G: torch.nn.Module, batch, truncation_value=1):
all_styles = []
if seed is None:
z = np.random.normal(0, 0, size=(1, G.z_channels))
else:
z = np.random.RandomState(seed=seed).normal(0, 1, size=(1, G.z_channels))
z_idx = np.random.RandomState(seed=seed).randint(0, len(G.style_net.w_centers))
w_c = G.style_net.w_centers[z_idx].to(tops.get_device()).view(1, -1)
w = G.style_net(torch.from_numpy(z).to(tops.get_device()))
w = w_c.to(w.dtype).lerp(w, truncation_value)
if hasattr(G, "get_comod_y"):
w = G.get_comod_y(batch, w)
for block in G.modules():
if not hasattr(block, "affine") or not hasattr(block.affine, "weight"):
continue
gamma0 = block.affine(w)
if hasattr(block, "affine_beta"):
beta0 = block.affine_beta(w)
gamma0 = torch.cat((gamma0, beta0), dim=1)
all_styles.append(gamma0)
max_ch = max([s.shape[-1] for s in all_styles])
all_styles = [F.pad(s, ((0, max_ch - s.shape[-1])), "constant", 0) for s in all_styles]
all_styles = torch.cat(all_styles)
return all_styles
def get_and_cache_direction(output_dir: Path, dl_val, G, text_prompt):
cache_path = output_dir.joinpath(
"stylemc_cache", text_prompt.replace(" ", "_") + ".torch")
if cache_path.is_file():
print("Loaded cache from:", cache_path)
return torch.load(cache_path)
direction = find_direction(G, text_prompt, None, dl_val=iter(dl_val))
cache_path.parent.mkdir(exist_ok=True, parents=True)
torch.save(direction, cache_path)
return direction
@torch.cuda.amp.autocast()
def find_direction(
G,
text_prompt,
batches,
#layers,
n_iterations=128*8,
batch_size=8,
dl_val=None
):
time_start = timer()
clip_model = clip.load("ViT-B/16", device=tops.get_device())[0]
target = [clip_model.encode_text(clip.tokenize(text_prompt).to(tops.get_device())).float()]
all_styles = []
if dl_val is not None:
first_batch = next(dl_val)
else:
first_batch = batches[0]
first_batch["embedding"] = None if "embedding" not in first_batch else first_batch["embedding"]
s = get_styles(0, G, first_batch)
# stats tracker
cos_sim_track = AverageMeter('cos_sim', ':.4f')
norm_track = AverageMeter('norm', ':.4f')
n_iterations = n_iterations // batch_size
progress = ProgressMeter(n_iterations, [cos_sim_track, norm_track])
# initalize styles direction
direction = torch.zeros(s.shape, device=tops.get_device())
direction.requires_grad_()
utils.set_requires_grad(G, False)
direction_tracker = torch.zeros_like(direction)
opt = torch.optim.AdamW([direction], lr=0.05, betas=(0., 0.999), weight_decay=0.25)
grads = []
for seed_idx in tqdm.trange(n_iterations):
# forward pass through synthesis network with new styles
if seed_idx == 0:
batch = first_batch
elif dl_val is not None:
batch = next(dl_val)
batch["embedding"] = None if "embedding" not in batch else batch["embedding"]
else:
batch = {k: tops.to_cuda(v) if v is not None else v for k, v in batches[seed_idx].items()}
styles = get_styles(seed_idx, G, batch) + direction
img = G(**batch, s=iter(styles))["img"]
batch = {k: v.cpu() if v is not None else v for k, v in batch.items()}
# clip loss
img = (img + 1)/2
img = normalize(img, mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
img = resize(img, (224, 224))
embeds = clip_model.encode_image(img)
cos_sim = prompts_dist_loss(embeds, target, spherical_dist_loss)
cos_sim.backward(retain_graph=True)
# track stats
cos_sim_track.update(cos_sim.item())
norm_track.update(torch.norm(direction).item())
if not (seed_idx % batch_size):
# zeroing out gradients for non-optimized layers
#layers_zeroed = torch.tensor([x for x in range(G.num_ws) if not x in layers])
#direction.grad[:, layers_zeroed] = 0
opt.step()
grads.append(direction.grad.clone())
direction.grad.data.zero_()
# keep track of gradients over time
if seed_idx > 3:
direction_tracker[grads[-2] * grads[-1] < 0] += 1
# plot stats
progress.display(seed_idx)
# throw out fluctuating channels
direction = direction.detach()
direction[direction_tracker > n_iterations / 4] = 0
print(direction)
print(f"Time for direction search: {timer() - time_start:.2f} s")
return direction
@click.command()
@click.argument("config_path")
@click.argument("input_path")
@click.argument("output_path")
#@click.option('--layers', type=num_range, help='Restrict the style space to a range of layers. We recommend not to optimize the critically sampled layers (last 3).', required=True)
@click.option('--text-prompt', help='Text', type=str, required=True)
@click.option('--edit-strength', help='Strength of edit', type=float, required=True)
@click.option('--outdir', help='Where to save the output images', type=str, required=True)
def stylemc(
config_path,
#layers: List[int],
text_prompt: str,
edit_strength: float,
outdir: str,
):
cfg = utils.load_config(config_path)
G = build_trained_generator(cfg)
cfg.train.batch_size = 1
n_iterations = 256
dl_val = tops.config.instantiate(cfg.data.val.loader)
direction = find_direction(G, text_prompt, None, n_iterations=n_iterations, dl_val=iter(dl_val))
text_prompt = text_prompt.replace(" ", "_")
generate_edit(G, input_path, direction, edit_strength, output_path)
if __name__ == "__main__":
stylemc()
|