Spaces:
Runtime error
Runtime error
import tops | |
from dp2 import utils | |
from pathlib import Path | |
from torch_fidelity.generative_model_modulewrapper import GenerativeModelModuleWrapper | |
import torch | |
import torch_fidelity | |
class GeneratorIteratorWrapper(GenerativeModelModuleWrapper): | |
def __init__(self, generator, dataloader, zero_z: bool, n_diverse: int): | |
if isinstance(generator, utils.EMA): | |
generator = generator.generator | |
z_size = generator.z_channels | |
super().__init__(generator, z_size, "normal", 0) | |
self.zero_z = zero_z | |
self.dataloader = iter(dataloader) | |
self.n_diverse = n_diverse | |
self.cur_div_idx = 0 | |
def forward(self, z, **kwargs): | |
if self.cur_div_idx == 0: | |
self.batch = next(self.dataloader) | |
if self.zero_z: | |
z = z.zero_() | |
self.cur_div_idx += 1 | |
self.cur_div_idx = 0 if self.cur_div_idx == self.n_diverse else self.cur_div_idx | |
with torch.cuda.amp.autocast(enabled=tops.AMP()): | |
img = self.module(**self.batch)["img"] | |
img = (utils.denormalize_img(img)*255).byte() | |
return img | |
def compute_fid(generator, dataloader, real_directory, n_source, zero_z, n_diverse): | |
generator = GeneratorIteratorWrapper(generator, dataloader, zero_z, n_diverse) | |
batch_size = dataloader.batch_size | |
num_samples = (n_source * n_diverse) // batch_size * batch_size | |
assert n_diverse >= 1 | |
assert (not zero_z) or n_diverse == 1 | |
assert num_samples % batch_size == 0 | |
assert n_source <= batch_size * len(dataloader), (batch_size*len(dataloader), n_source, n_diverse) | |
metrics = torch_fidelity.calculate_metrics( | |
input1=generator, | |
input2=real_directory, | |
cuda=torch.cuda.is_available(), | |
fid=True, | |
input2_cache_name="_".join(Path(real_directory).parts) + "_cached", | |
input1_model_num_samples=int(num_samples), | |
batch_size=dataloader.batch_size | |
) | |
return metrics["frechet_inception_distance"] | |