squaadai / app.py
forplaytvplus's picture
Update app.py
d49eeee verified
raw
history blame
17.7 kB
#!/usr/bin/env python
from __future__ import annotations
import requests
import os
import random
import gradio as gr
import numpy as np
import spaces
import torch
import cv2
from PIL import Image
from io import BytesIO
from diffusers.utils import load_image
from diffusers import StableDiffusionXLControlNetPipeline, StableDiffusionXLControlNetInpaintPipeline, ControlNetModel, AutoencoderKL, DiffusionPipeline, AutoPipelineForImage2Image, AutoPipelineForInpainting, UNet2DConditionModel
from controlnet_aux import HEDdetector
DESCRIPTION = "# Run any LoRA or SD Model"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>⚠️ This space is running on the CPU. This demo doesn't work on CPU 😞! Run on a GPU by duplicating this space or test our website for free and unlimited by <a href='https://squaadai.com'>clicking here</a>, which provides these and more options.</p>"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1824"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1"
ENABLE_USE_LORA2 = os.getenv("ENABLE_USE_LORA2", "1") == "1"
ENABLE_USE_VAE = os.getenv("ENABLE_USE_VAE", "1") == "1"
ENABLE_USE_IMG2IMG = os.getenv("ENABLE_USE_IMG2IMG", "1") == "1"
ENABLE_USE_CONTROLNET = os.getenv("ENABLE_USE_CONTROLNET", "1") == "1"
ENABLE_USE_CONTROLNETINPAINT = os.getenv("ENABLE_USE_CONTROLNETINPAINT", "1") == "1"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU
def generate(
prompt: str = "",
negative_prompt: str = "",
prompt_2: str = "",
negative_prompt_2: str = "",
use_negative_prompt: bool = False,
use_prompt_2: bool = False,
use_negative_prompt_2: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale_base: float = 5.0,
num_inference_steps_base: int = 25,
controlnet_conditioning_scale: float = 1,
control_guidance_start: float = 0,
control_guidance_end: float = 1,
strength_img2img: float = 0.7,
use_vae: bool = False,
use_lora: bool = False,
use_lora2: bool = False,
model = 'stabilityai/stable-diffusion-xl-base-1.0',
vaecall = 'madebyollin/sdxl-vae-fp16-fix',
lora = '',
lora2 = '',
controlnet_model = 'diffusers/controlnet-canny-sdxl-1.0',
lora_scale: float = 0.7,
lora_scale2: float = 0.7,
use_img2img: bool = False,
use_controlnet: bool = False,
use_controlnetinpaint: bool = False,
url = '',
controlnet_img = '',
controlnet_inpaint = '',
):
if torch.cuda.is_available():
if not use_img2img:
pipe = DiffusionPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16)
if use_vae:
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained(model, vae=vae, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16)
if use_img2img:
pipe = AutoPipelineForImage2Image.from_pretrained(model, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16)
init_image = load_image(url)
if use_vae:
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
pipe = AutoPipelineForImage2Image.from_pretrained(model, vae=vae, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16)
if use_controlnet:
controlnet = ControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, controlnet=controlnet, torch_dtype=torch.float16)
image = load_image(controlnet_img)
image = np.array(image)
image = cv2.Canny(image, 250, 255)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = Image.fromarray(image)
if use_vae:
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, controlnet=controlnet, vae=vae, torch_dtype=torch.float16)
if use_controlnetinpaint:
controlnet = ControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetInpaintPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, controlnet=controlnet, torch_dtype=torch.float16)
image_start = load_image(controlnet_img)
image = load_image(controlnet_img)
image_mask = load_image(controlnet_img2img)
image = np.array(image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = Image.fromarray(image)
if use_vae:
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetInpaintPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, controlnet=controlnet, vae=vae, torch_dtype=torch.float16)
if use_lora:
pipe.load_lora_weights(lora, adapter_name="1")
pipe.set_adapters("1", adapter_weights=[lora_scale])
if use_lora2:
pipe.load_lora_weights(lora, adapter_name="1")
pipe.load_lora_weights(lora2, adapter_name="2")
pipe.set_adapters(["1", "2"], adapter_weights=[lora_scale, lora_scale2])
if ENABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
else:
pipe.to(device)
if USE_TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
generator = torch.Generator().manual_seed(seed)
if not use_negative_prompt:
negative_prompt = None # type: ignore
if not use_prompt_2:
prompt_2 = None # type: ignore
if not use_negative_prompt_2:
negative_prompt_2 = None # type: ignore
if use_controlnetinpaint:
image = pipe(
prompt=prompt,
strength=strength_img2img,
controlnet_conditioning_scale=controlnet_conditioning_scale,
eta=0.0,
mask_image=image_mask,
image=image_start,
control_image=image,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale_base,
num_inference_steps=num_inference_steps_base,
generator=generator,
).images[0]
return image
if use_controlnet:
image = pipe(
prompt=prompt,
controlnet_conditioning_scale=controlnet_conditioning_scale,
control_guidance_start=control_guidance_start,
control_guidance_end=control_guidance_end,
image=image,
negative_prompt=negative_prompt,
prompt_2=prompt_2,
width=width,
height=height,
negative_prompt_2=negative_prompt_2,
guidance_scale=guidance_scale_base,
num_inference_steps=num_inference_steps_base,
generator=generator,
).images[0]
return image
elif use_img2img:
images = pipe(
prompt=prompt,
image=init_image,
strength=strength_img2img,
negative_prompt=negative_prompt,
prompt_2=prompt_2,
negative_prompt_2=negative_prompt_2,
width=width,
height=height,
guidance_scale=guidance_scale_base,
num_inference_steps=num_inference_steps_base,
generator=generator,
).images[0]
return images
else:
return pipe(
prompt=prompt,
negative_prompt=negative_prompt,
prompt_2=prompt_2,
negative_prompt_2=negative_prompt_2,
width=width,
height=height,
guidance_scale=guidance_scale_base,
num_inference_steps=num_inference_steps_base,
generator=generator,
).images[0]
with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
gr.HTML(
"<p><center>📙 For any additional support, join our <a href='https://discord.gg/JprjXpjt9K'>Discord</a></center></p>"
)
gr.Markdown(DESCRIPTION, elem_id="description")
with gr.Group():
model = gr.Text(label='Model', placeholder='e.g. stabilityai/stable-diffusion-xl-base-1.0')
vaecall = gr.Text(label='VAE', placeholder='e.g. madebyollin/sdxl-vae-fp16-fix')
lora = gr.Text(label='LoRA 1', placeholder='e.g. nerijs/pixel-art-xl')
lora2 = gr.Text(label='LoRA 2', placeholder='e.g. nerijs/pixel-art-xl')
controlnet_model = gr.Text(label='Controlnet', placeholder='e.g diffusers/controlnet-canny-sdxl-1.0')
lora_scale = gr.Slider(
info="The closer to 1, the more it will resemble LoRA, but errors may be visible.",
label="Lora Scale 1",
minimum=0.01,
maximum=1,
step=0.01,
value=0.7,
)
lora_scale2 = gr.Slider(
info="The closer to 1, the more it will resemble LoRA, but errors may be visible.",
label="Lora Scale 2",
minimum=0.01,
maximum=1,
step=0.01,
value=0.7,
)
url = gr.Text(label='URL (Img2Img)')
controlnet_img = gr.Text(label='URL (Controlnet)', placeholder='e.g https://example.com/image.png')
controlnet_inpaint = gr.Text(label='URL (Controlnet - IMG2IMG)', placeholder='e.g https://example.com/image.png')
with gr.Row():
prompt = gr.Text(
placeholder="Input prompt",
label="Prompt",
show_label=False,
max_lines=1,
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
use_controlnet = gr.Checkbox(label='Use Controlnet', value=False, visible=ENABLE_USE_CONTROLNET)
use_controlnetinpaint = gr.Checkbox(label='Use Controlnet Img2Img', value=False, visible=ENABLE_USE_CONTROLNETINPAINT)
use_img2img = gr.Checkbox(label='Use Img2Img', value=False, visible=ENABLE_USE_IMG2IMG)
use_vae = gr.Checkbox(label='Use VAE', value=False, visible=ENABLE_USE_VAE)
use_lora = gr.Checkbox(label='Use Lora 1', value=False, visible=ENABLE_USE_LORA)
use_lora2 = gr.Checkbox(label='Use Lora 2', value=False, visible=ENABLE_USE_LORA2)
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
negative_prompt = gr.Text(
placeholder="Input Negative Prompt",
label="Negative prompt",
max_lines=1,
visible=False,
)
prompt_2 = gr.Text(
placeholder="Input Prompt 2",
label="Prompt 2",
max_lines=1,
visible=False,
)
negative_prompt_2 = gr.Text(
placeholder="Input Negative Prompt 2",
label="Negative prompt 2",
max_lines=1,
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale_base = gr.Slider(
info="Scale for classifier-free guidance",
label="Guidance scale",
minimum=1,
maximum=20,
step=0.1,
value=5.0,
)
with gr.Row():
num_inference_steps_base = gr.Slider(
info="Number of denoising steps",
label="Number of inference steps",
minimum=10,
maximum=100,
step=1,
value=25,
)
with gr.Row():
controlnet_conditioning_scale = gr.Slider(
info="controlnet_conditioning_scale",
label="controlnet_conditioning_scale",
minimum=0.01,
maximum=2,
step=0.01,
value=1,
)
with gr.Row():
control_guidance_start = gr.Slider(
info="control_guidance_start",
label="control_guidance_start",
minimum=0.01,
maximum=1,
step=0.01,
value=0,
)
with gr.Row():
control_guidance_end = gr.Slider(
info="control_guidance_end",
label="control_guidance_end",
minimum=0.01,
maximum=1,
step=0.01,
value=1,
)
with gr.Row():
strength_img2img = gr.Slider(
info="Strength for Img2Img",
label="Strength",
minimum=0,
maximum=1,
step=0.01,
value=0.7,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
queue=False,
api_name=False,
)
use_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_prompt_2,
outputs=prompt_2,
queue=False,
api_name=False,
)
use_negative_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt_2,
outputs=negative_prompt_2,
queue=False,
api_name=False,
)
use_vae.change(
fn=lambda x: gr.update(visible=x),
inputs=use_vae,
outputs=vaecall,
queue=False,
api_name=False,
)
use_lora.change(
fn=lambda x: gr.update(visible=x),
inputs=use_lora,
outputs=lora,
queue=False,
api_name=False,
)
use_lora2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_lora2,
outputs=lora2,
queue=False,
api_name=False,
)
use_img2img.change(
fn=lambda x: gr.update(visible=x),
inputs=use_img2img,
outputs=url,
queue=False,
api_name=False,
)
use_controlnet.change(
fn=lambda x: gr.update(visible=x),
inputs=use_controlnet,
outputs=controlnet_img,
queue=False,
api_name=False,
)
use_controlnetinpaint.change(
fn=lambda x: gr.update(visible=x),
inputs=use_controlnetinpaint,
outputs=controlnet_inpaint,
queue=False,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
prompt_2.submit,
negative_prompt_2.submit,
run_button.click,
],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=[
prompt,
negative_prompt,
prompt_2,
negative_prompt_2,
use_negative_prompt,
use_prompt_2,
use_negative_prompt_2,
seed,
width,
height,
guidance_scale_base,
num_inference_steps_base,
controlnet_conditioning_scale,
control_guidance_start,
control_guidance_end,
strength_img2img,
use_vae,
use_lora,
use_lora2,
model,
vaecall,
lora,
lora2,
controlnet_model,
lora_scale,
lora_scale2,
use_img2img,
use_controlnet,
use_controlnetinpaint,
url,
controlnet_img,
controlnet_inpaint,
],
outputs=result,
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20, default_concurrency_limit=5).launch()