Spaces:
Running
on
Zero
Running
on
Zero
amazonaws-la
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -23,6 +23,7 @@ USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
|
23 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
24 |
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
|
25 |
ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1"
|
|
|
26 |
|
27 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
28 |
|
@@ -48,6 +49,7 @@ def generate(
|
|
48 |
guidance_scale_refiner: float = 5.0,
|
49 |
num_inference_steps_base: int = 25,
|
50 |
num_inference_steps_refiner: int = 25,
|
|
|
51 |
use_lora: bool = False,
|
52 |
apply_refiner: bool = False,
|
53 |
model = 'SG161222/Realistic_Vision_V6.0_B1_noVAE',
|
@@ -55,10 +57,16 @@ def generate(
|
|
55 |
lora = 'amazonaws-la/juliette',
|
56 |
) -> PIL.Image.Image:
|
57 |
if torch.cuda.is_available():
|
58 |
-
|
59 |
-
|
|
|
60 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
62 |
if use_lora:
|
63 |
pipe.load_lora_weights(lora)
|
64 |
pipe.fuse_lora(lora_scale=0.7)
|
@@ -193,6 +201,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
193 |
step=32,
|
194 |
value=1024,
|
195 |
)
|
|
|
196 |
use_lora = gr.Checkbox(label='Use Lora', value=False, visible=ENABLE_USE_LORA)
|
197 |
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER)
|
198 |
with gr.Row():
|
@@ -255,6 +264,13 @@ with gr.Blocks(css="style.css") as demo:
|
|
255 |
queue=False,
|
256 |
api_name=False,
|
257 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
use_lora.change(
|
259 |
fn=lambda x: gr.update(visible=x),
|
260 |
inputs=use_lora,
|
@@ -300,6 +316,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
300 |
guidance_scale_refiner,
|
301 |
num_inference_steps_base,
|
302 |
num_inference_steps_refiner,
|
|
|
303 |
use_lora,
|
304 |
apply_refiner,
|
305 |
model,
|
|
|
23 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
24 |
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
|
25 |
ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1"
|
26 |
+
ENABLE_USE_VAE = os.getenv("ENABLE_USE_VAE", "1") == "1"
|
27 |
|
28 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
29 |
|
|
|
49 |
guidance_scale_refiner: float = 5.0,
|
50 |
num_inference_steps_base: int = 25,
|
51 |
num_inference_steps_refiner: int = 25,
|
52 |
+
use_vae: bool = False,
|
53 |
use_lora: bool = False,
|
54 |
apply_refiner: bool = False,
|
55 |
model = 'SG161222/Realistic_Vision_V6.0_B1_noVAE',
|
|
|
57 |
lora = 'amazonaws-la/juliette',
|
58 |
) -> PIL.Image.Image:
|
59 |
if torch.cuda.is_available():
|
60 |
+
|
61 |
+
if not use_vae:
|
62 |
+
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
|
63 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
64 |
|
65 |
+
if use_vae:
|
66 |
+
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
67 |
+
pipe = DiffusionPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
|
68 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
69 |
+
|
70 |
if use_lora:
|
71 |
pipe.load_lora_weights(lora)
|
72 |
pipe.fuse_lora(lora_scale=0.7)
|
|
|
201 |
step=32,
|
202 |
value=1024,
|
203 |
)
|
204 |
+
use_vae = gr.Checkbox(label='Use VAE', value=False, visible=ENABLE_USE_VAE)
|
205 |
use_lora = gr.Checkbox(label='Use Lora', value=False, visible=ENABLE_USE_LORA)
|
206 |
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER)
|
207 |
with gr.Row():
|
|
|
264 |
queue=False,
|
265 |
api_name=False,
|
266 |
)
|
267 |
+
use_vae.change(
|
268 |
+
fn=lambda x: gr.update(visible=x),
|
269 |
+
inputs=use_vae,
|
270 |
+
outputs=vaecall,
|
271 |
+
queue=False,
|
272 |
+
api_name=False,
|
273 |
+
)
|
274 |
use_lora.change(
|
275 |
fn=lambda x: gr.update(visible=x),
|
276 |
inputs=use_lora,
|
|
|
316 |
guidance_scale_refiner,
|
317 |
num_inference_steps_base,
|
318 |
num_inference_steps_refiner,
|
319 |
+
use_vae,
|
320 |
use_lora,
|
321 |
apply_refiner,
|
322 |
model,
|