Spaces:
Running
on
Zero
Running
on
Zero
amazonaws-la
commited on
Commit
•
1e95d75
1
Parent(s):
210bcbd
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ import numpy as np
|
|
10 |
import PIL.Image
|
11 |
import spaces
|
12 |
import torch
|
13 |
-
from diffusers import
|
14 |
|
15 |
DESCRIPTION = "# SDXL"
|
16 |
if not torch.cuda.is_available():
|
@@ -55,8 +55,8 @@ def generate(
|
|
55 |
lora = 'amazonaws-la/juliette',
|
56 |
) -> PIL.Image.Image:
|
57 |
if torch.cuda.is_available():
|
58 |
-
pipe =
|
59 |
-
|
60 |
if use_lora:
|
61 |
pipe.load_lora_weights(lora)
|
62 |
pipe.fuse_lora(lora_scale=0.7)
|
@@ -90,9 +90,32 @@ def generate(
|
|
90 |
guidance_scale=guidance_scale_base,
|
91 |
num_inference_steps=num_inference_steps_base,
|
92 |
generator=generator,
|
93 |
-
use_karras_sigmas=True,
|
94 |
output_type="pil",
|
95 |
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
|
98 |
examples = [
|
|
|
10 |
import PIL.Image
|
11 |
import spaces
|
12 |
import torch
|
13 |
+
from diffusers import AutoencoderKL, DiffusionPipeline
|
14 |
|
15 |
DESCRIPTION = "# SDXL"
|
16 |
if not torch.cuda.is_available():
|
|
|
55 |
lora = 'amazonaws-la/juliette',
|
56 |
) -> PIL.Image.Image:
|
57 |
if torch.cuda.is_available():
|
58 |
+
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16, safety_checker=None)
|
59 |
+
|
60 |
if use_lora:
|
61 |
pipe.load_lora_weights(lora)
|
62 |
pipe.fuse_lora(lora_scale=0.7)
|
|
|
90 |
guidance_scale=guidance_scale_base,
|
91 |
num_inference_steps=num_inference_steps_base,
|
92 |
generator=generator,
|
|
|
93 |
output_type="pil",
|
94 |
).images[0]
|
95 |
+
else:
|
96 |
+
latents = pipe(
|
97 |
+
prompt=prompt,
|
98 |
+
negative_prompt=negative_prompt,
|
99 |
+
prompt_2=prompt_2,
|
100 |
+
negative_prompt_2=negative_prompt_2,
|
101 |
+
width=width,
|
102 |
+
height=height,
|
103 |
+
guidance_scale=guidance_scale_base,
|
104 |
+
num_inference_steps=num_inference_steps_base,
|
105 |
+
generator=generator,
|
106 |
+
output_type="latent",
|
107 |
+
).images
|
108 |
+
image = refiner(
|
109 |
+
prompt=prompt,
|
110 |
+
negative_prompt=negative_prompt,
|
111 |
+
prompt_2=prompt_2,
|
112 |
+
negative_prompt_2=negative_prompt_2,
|
113 |
+
guidance_scale=guidance_scale_refiner,
|
114 |
+
num_inference_steps=num_inference_steps_refiner,
|
115 |
+
image=latents,
|
116 |
+
generator=generator,
|
117 |
+
).images[0]
|
118 |
+
return image
|
119 |
|
120 |
|
121 |
examples = [
|