Spaces:
Running
on
Zero
Running
on
Zero
amazonaws-la
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -26,21 +26,6 @@ ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1"
|
|
26 |
ENABLE_USE_VAE = os.getenv("ENABLE_USE_VAE", "1") == "1"
|
27 |
|
28 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
29 |
-
models = ["runwayml/stable-diffusion-v1-5",
|
30 |
-
"stabilityai/stable-diffusion-xl-base-1.0",
|
31 |
-
"stablediffusionapi/juggernaut-xl-v8",
|
32 |
-
"emilianJR/epiCRealism",
|
33 |
-
"SG161222/Realistic_Vision_V5.1_noVAE",
|
34 |
-
"cagliostrolab/animagine-xl-3.0",
|
35 |
-
"misri/cyberrealistic_v41BackToBasics",
|
36 |
-
"malcolmrey/serenity",
|
37 |
-
"SG161222/RealVisXL_V3.0",
|
38 |
-
"stablediffusionapi/realistic-stock-photo-v2",
|
39 |
-
"stablediffusionapi/pixel-art-diffusion-xl",
|
40 |
-
"playgroundai/playground-v2-1024px-aesthetic",
|
41 |
-
"dataautogpt3/ProteusV0.3",
|
42 |
-
"stablediffusionapi/disney-pixar-cartoon",
|
43 |
-
"RunDiffusion/Juggernaut-XL-Lightning"]
|
44 |
|
45 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
46 |
if randomize_seed:
|
@@ -67,7 +52,7 @@ def generate(
|
|
67 |
use_vae: bool = False,
|
68 |
use_lora: bool = False,
|
69 |
apply_refiner: bool = False,
|
70 |
-
|
71 |
vaecall = 'stabilityai/sd-vae-ft-mse',
|
72 |
lora = 'amazonaws-la/juliette',
|
73 |
lora_scale: float = 0.7,
|
@@ -75,15 +60,15 @@ def generate(
|
|
75 |
if torch.cuda.is_available():
|
76 |
|
77 |
if not use_vae:
|
78 |
-
pipe = DiffusionPipeline.from_pretrained(
|
79 |
|
80 |
if use_vae:
|
81 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
82 |
-
pipe = DiffusionPipeline.from_pretrained(
|
83 |
|
84 |
if use_lora:
|
85 |
pipe.load_lora_weights(lora)
|
86 |
-
pipe.fuse_lora(lora_scale
|
87 |
|
88 |
if ENABLE_CPU_OFFLOAD:
|
89 |
pipe.enable_model_cpu_offload()
|
@@ -155,7 +140,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
155 |
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
156 |
)
|
157 |
with gr.Group():
|
158 |
-
|
159 |
vaecall = gr.Text(label='VAE')
|
160 |
lora = gr.Text(label='LoRA')
|
161 |
lora_scale = gr.Slider(
|
@@ -340,7 +325,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
340 |
use_vae,
|
341 |
use_lora,
|
342 |
apply_refiner,
|
343 |
-
|
344 |
vaecall,
|
345 |
lora,
|
346 |
lora_scale,
|
|
|
26 |
ENABLE_USE_VAE = os.getenv("ENABLE_USE_VAE", "1") == "1"
|
27 |
|
28 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
31 |
if randomize_seed:
|
|
|
52 |
use_vae: bool = False,
|
53 |
use_lora: bool = False,
|
54 |
apply_refiner: bool = False,
|
55 |
+
model = 'cagliostrolab/animagine-xl-3.0',
|
56 |
vaecall = 'stabilityai/sd-vae-ft-mse',
|
57 |
lora = 'amazonaws-la/juliette',
|
58 |
lora_scale: float = 0.7,
|
|
|
60 |
if torch.cuda.is_available():
|
61 |
|
62 |
if not use_vae:
|
63 |
+
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
|
64 |
|
65 |
if use_vae:
|
66 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
67 |
+
pipe = DiffusionPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
|
68 |
|
69 |
if use_lora:
|
70 |
pipe.load_lora_weights(lora)
|
71 |
+
pipe.fuse_lora(lora_scale)
|
72 |
|
73 |
if ENABLE_CPU_OFFLOAD:
|
74 |
pipe.enable_model_cpu_offload()
|
|
|
140 |
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
141 |
)
|
142 |
with gr.Group():
|
143 |
+
model = gr.Text(label='Model')
|
144 |
vaecall = gr.Text(label='VAE')
|
145 |
lora = gr.Text(label='LoRA')
|
146 |
lora_scale = gr.Slider(
|
|
|
325 |
use_vae,
|
326 |
use_lora,
|
327 |
apply_refiner,
|
328 |
+
model,
|
329 |
vaecall,
|
330 |
lora,
|
331 |
lora_scale,
|