hysts HF staff commited on
Commit
d8fa9a9
·
1 Parent(s): 8154dc2

Change default num_steps

Browse files
Files changed (1) hide show
  1. app.py +8 -5
app.py CHANGED
@@ -9,7 +9,7 @@ import gradio as gr
9
  import numpy as np
10
  import PIL.Image
11
  import torch
12
- from diffusers import DiffusionPipeline
13
 
14
  DESCRIPTION = "# SD-XL"
15
  if not torch.cuda.is_available():
@@ -24,8 +24,10 @@ ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
24
 
25
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
26
  if torch.cuda.is_available():
 
27
  pipe = DiffusionPipeline.from_pretrained(
28
  "stabilityai/stable-diffusion-xl-base-1.0",
 
29
  torch_dtype=torch.float16,
30
  use_safetensors=True,
31
  variant="fp16",
@@ -33,6 +35,7 @@ if torch.cuda.is_available():
33
  if ENABLE_REFINER:
34
  refiner = DiffusionPipeline.from_pretrained(
35
  "stabilityai/stable-diffusion-xl-refiner-1.0",
 
36
  torch_dtype=torch.float16,
37
  use_safetensors=True,
38
  variant="fp16",
@@ -75,8 +78,8 @@ def generate(
75
  height: int = 1024,
76
  guidance_scale_base: float = 5.0,
77
  guidance_scale_refiner: float = 5.0,
78
- num_inference_steps_base: int = 50,
79
- num_inference_steps_refiner: int = 50,
80
  apply_refiner: bool = False,
81
  ) -> PIL.Image.Image:
82
  generator = torch.Generator().manual_seed(seed)
@@ -211,7 +214,7 @@ with gr.Blocks(css="style.css") as demo:
211
  minimum=10,
212
  maximum=100,
213
  step=1,
214
- value=50,
215
  )
216
  with gr.Row(visible=False) as refiner_params:
217
  guidance_scale_refiner = gr.Slider(
@@ -226,7 +229,7 @@ with gr.Blocks(css="style.css") as demo:
226
  minimum=10,
227
  maximum=100,
228
  step=1,
229
- value=50,
230
  )
231
 
232
  gr.Examples(
 
9
  import numpy as np
10
  import PIL.Image
11
  import torch
12
+ from diffusers import AutoencoderKL, DiffusionPipeline
13
 
14
  DESCRIPTION = "# SD-XL"
15
  if not torch.cuda.is_available():
 
24
 
25
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
26
  if torch.cuda.is_available():
27
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
28
  pipe = DiffusionPipeline.from_pretrained(
29
  "stabilityai/stable-diffusion-xl-base-1.0",
30
+ vae=vae,
31
  torch_dtype=torch.float16,
32
  use_safetensors=True,
33
  variant="fp16",
 
35
  if ENABLE_REFINER:
36
  refiner = DiffusionPipeline.from_pretrained(
37
  "stabilityai/stable-diffusion-xl-refiner-1.0",
38
+ vae=vae,
39
  torch_dtype=torch.float16,
40
  use_safetensors=True,
41
  variant="fp16",
 
78
  height: int = 1024,
79
  guidance_scale_base: float = 5.0,
80
  guidance_scale_refiner: float = 5.0,
81
+ num_inference_steps_base: int = 25,
82
+ num_inference_steps_refiner: int = 25,
83
  apply_refiner: bool = False,
84
  ) -> PIL.Image.Image:
85
  generator = torch.Generator().manual_seed(seed)
 
214
  minimum=10,
215
  maximum=100,
216
  step=1,
217
+ value=25,
218
  )
219
  with gr.Row(visible=False) as refiner_params:
220
  guidance_scale_refiner = gr.Slider(
 
229
  minimum=10,
230
  maximum=100,
231
  step=1,
232
+ value=25,
233
  )
234
 
235
  gr.Examples(